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Three-point dynamic spin correlations in ferromagnets in the critical region above the Curie point are 
studied and physical effects due to them are discussed. It is shown that, because of the three-point 
correlations, there exists a strong dependence of the dynamic spin form factor, measured in neutron- 
scattering experiments, on the magnitude of the atomic spin. Evidently, this explains the difference in the 
character of the energy dependences of the form factors of Fe [J. W. Lynn, Phys. Rev. B11, 2624 
(197511 and EuO [O.W. Dietrich, J. Als-Nielsm, and L. Passell, Phys. Rev. 814, 4923 (1976)l. The 
three-point correlations in uniaxial ferromagnetics can lead to a strong dependence of the critical 
absorption on the magnetic field, and it is clear that this has been observed in GdC13 [G. Kamleiter and J. 
Kotzler, Sol. State. Commun. 14, 787 (197411. Finally, three-point correlations lead to the appearance of 
polarization of neutrons when they are scattered in magnets in the paramagnetic phase, and to dependence 
of the scattering cross section on the polarization of the incident neutrons. These effects are due to 
interference of the first and second terms of the perturbation-theory series for the magnetic-scattering 
amplitude and are very small in the far paramagnetic region. However, near the Curie point, because of 
the growth ot critical fluctuations, they increase strongly. Estimates of the expected effect are made, and 
agree with experimental results for the dependence of the cross section on the polarization for iron near 
T, [A.V. Lazuta, S.V. Maleev, B.P. Topwag, A.I. Okorokov, A.G. Gukasov, Ya. M. Otchik, and 
V. V. Runov, LIYaN (Leningrad Nuclear Physics Institute) Preprint no. 366 (1977), and A. I. 
Okorokov, A. G. Gukasov, Ya. M. Otchik, and V.V. Runov, Phys. Lett. 6SA, 60 (1978)l. In the last 
section, the polarization that arises is calculated in the framework of spin-wave theory for a multidomain 
unmagnetized ferromagnet. 

PACS numbers: 75.25.+z, 75.M.Gw, 61.12. -q, 75.30.D~ 

1. INTRODUCTION 

A s  is well known, terms containing odd powers of the 
magnetic-moment density M(r) are absent in the Landau 
expansion for the free energy of a ferromagnet near the 
Curie point. At the same time, above T, in zero exter- 
nal magnetic field there are no static correlation func- 
tions of an odd number of quantities M(r). The static 
correlation functions are related in a well knawn way to 
vertex parts in the diagrammatic perturb$ion-theory 
series (see, e.g., the book by Patashinskii and Pokrov- 
s l ~ i ~ ~ ' ~ ,  in which, as is well known, there are also no 
odd vertices above T,. Essentially, the absence of odd 
static correlations is a consequence of the symmetry of 
the system with respect to time reversal (we consider 
this question in more detail below). Therefore, in the 
dynamical theory odd correlations of the magnetization 
should certainly be present. 

In the present paper we discuss the properties of 
three-point dynamic correlations of the magnetization, 
and certain physical effects that arise from their exis- 
tence. The principal results obtained are the appear- 
ance of polarization of the neutrons in critical neutron 
scattering in ferromagnets above the Curie point and the 
dependence of the neutron-scattering cross section in 
this region on the polarization of the incident beam. 
These effects arise because of the interference of the 
first and second terms of the perturbation-theory series 
for the magnetic-scattering amplitude, the interference 
term being found to be proportional to the integral of 

the three-point dynamic correlation function of the mag- 
netizations. This result has been published by us in a 
short co rnmun i~a t ion .~~*~~  Despite its small size, the 
effect under consideration has been observed experi- 
mentally by Okorokov, Gukasov, Otchik, and R U ~ O V , ~ ~ ~ ~ ]  
and their results agree satisfactorily with the theoreti- 
cal estimates made on the basis of the dynamic-scaling 
hypothesis for three-point correlations. It should be 
noted that, s o  far as we are aware, only pair correla- 
tions of critical fluctuations have been studied experi- 
mentally up to now, at least in magnets. Thus, Ref. 4 
must be regarded as the first attempt to study more- 
complicated correlations. Nonzero "bare" odd corre- 
lators of the magnetization arise as a result of the non- 
commutativity of the spin projections of the individual 
atoms. Therefore, for large values of the atomic spin 
S odd correlations should be suppressed. This can lead 
to a large difference in the form of the formfactors 
describing the dynamics of pair correlations for ferro- 
magnets with small and large spins. This form factor 
was measured in Fe (S= 1) by ~ y n n ~ ~ ]  and in EuO 
(S= 7/2) by Dietrich et al.c61 In the former case, at a 
fixed momentum and at nonzero energies, Lynn ob- 
served broadened peaks, which he interpreted a s  spin 
waves above the Curie point, while in the latter case 
such peaks were not observed. It is not excluded that 
this difference is, in fact, associated with the suppres- 
sion of odd correlations. 

Finally, we note one more phenomenon that is most 
probably associated with three-point dynamic correla- 
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tions. This is  the anomalous temperature dependence, 
observed by Kamleiter and ~ B t z l e r , ~ ~ ]  of the critical 
absorption of electromagnetic radiation in the uniaxial 
ferromagnet GdC$. One of the authorsc8] once explained 
this effect by starting from the assumption that an ex- 
ternal magnetic field, when it interacts with a three- 
point dynamic magnetization correlation, violates the 
symmetry selection rule that leads to the so-called nor- 
mal behavior in which the temperature dependence of 
the lifetime of a critical fluctuation is the same as that 
of the static susceptibility. The correctness of this ex- 
planation could be checked by studying the dependence of 
the critical absorption in GdC$ on the magnetic field. 
Unfortunately, up to now this has not been done. 

Concluding the Introduction, we shall discuss in 
somewhat more detail the content of the subsequent sec- 
tions of the paper. In Sec. 2 we analyze the general 
properties of three-point correlations in magnets in the 
absence of long-range order (the paramagnetic phase) 
and discuss, in more detail than in the Introduction, the 
question of the effect of the spin magnitude on the dyna- 
mics of the paramagnetic phase of ferromagnets. In 
Sec. 3 of the paper we discuss the polarization effects 
that arise from three-point correlations and occur in 
the scattering of neutrons in magnets in the paramag- 
netic phase, and, on the basis of the dynamic-scaling 
hypothesis, make estimates of the magnitude of the ex- 
pected effects for the case of scattering in ferromagnets 
above the Curie point. 

Finally, in the last section we calculate the polariza- 
tion arising as a result of three-point correlations in an 
unmagnetized multi-domain ferromagnet at low temper- 
atures, when the spin-wave theory is valid. The size of 
the polarization obtained is small, and its experimental 
observation should be further complicated by the depo- 
larizing influence of the magnetic fields of the domains. 
At the same time this calculation appears to us to be of 
fundamental interest, since an unmagnetized multi-do- 
main ferromagnet possesses, in effect, the same mag- 
netic symmetry as  the ferromagnet above the Curie 
point. However, unlike in the paramagnetic phase, 
where only more or  less reliable estimates of the ex- 
pected effect are possible, in the case of a multi-do- 
main ferromagnet all the calculations can be carried 
through to the end. A s  a result, using this example it 
is  possible to verify by means of direct calculations the 
correctness of the basic ideas, used in the earlier sec- 
tions of the paper, concerning the properties of three- 
point correlations. 

2. PROPERTIES OF THREE-POINT CORRELATIONS 

Below, in place af the magnetic-moment density M(r) 
it will be convenient for us to use the atomic spins S, 
and their Fourier components 

Following Vaks, Larkin, and ~ i k i n , ~ ~ '  we define the 
three-spin Matsubara Green function by the equality 

Clearly, the function F is  symmetric under permuta- 
tions of "particles," i.e., of pairs (a,, R,, iw,) and (a,, 
R,, iw,). Using the usual expansion over intermediate 
states (see the book by Abrikosov, Gor'kov, and Dzya- 
l o ~ h i n s k i ~ , ~ ' ~ ~  and the paper by one of the authorscng it 
is not difficult to obtain the following spectral repre- 
sentation for F: 

s:;'s;:' s::' 
Fa,m,~,(Rl, o1,Rz7 ~ 2 ,  R8, US)= { ( oh-o,) (mca+ml) 

abc 

Here S("'=S~~(R),, w,=E,-E,, and all'the imaginary 
frequencies iw, are  replaced by w,. A s  can be seen 
from this expansion, the function F is an analytic func- 
tion of the variables w,, in each of which it has a cut 
along the real axis. All the observable physical effects 
associated with dynamic three-spin correlations can be 
described by means of appropriately chosen combina- 
tions of the different branches of the function F at real 
frequencies. Here, however, it must be remembered 
that, by virtue of the invariance of the system under 
translations in time, the real frequencies should be re- 
lated by a conservation law (w, + w, + w, = 0), so that the 
function F is, in fact, not a sum of three analytic func- 
tions depending on the pairs of arguments (w,, w,), 
(w,, w,), and (w,, w,), but a sum of two functions of two 
independent pairs of arguments, e.g., (w,, w,) and 
(w,, w,). The decomposition of the function F into two 
such functions F("(w,, w,) and F (2 ' (~ , ,  0,) is easily per- 
formed by expanding the last two terms in formula (2) 
in partial fractions and taking the frequency conserva- 
tion law into account; as  a result, for F(')  we have 

(3) 
while F(,) is  obtained from this expression by replacing 
w, by w, and interchanging Sf,' and S(,'. 

In the next section of this paper it will be shown that 
the polarization effects of interest to us can be expres- 
sed in terms of the Fourier transform of the ternary 
correlator of the spins: 

=2n6 (wt+o,+ol) F&,(R,, Rx, R,; mi,  a:, as), (4) 
where 

(0) F,,.,,,(Ri, R2, Rs; @I,  0 2 ,  @I) 
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It is clear that the function F ' O '  differs by only a factor 
from the discontinuity " of the first term in the expres- 
sion (3) for F(" in the variables w, and w,. It is not 
difficult to express the function F ( O '  in terms of the 
quantities A , q ( "  and A , A ~ ( ~ ' .  In fact, it follows 
from (3) and the analogous expression for Ft2' that 
A,A$(" and A , A . ~ ' ~ '  are sums of two terms, each of 
which contains a sum, over intermediate states, of 
three S("' and two 6-functions. Taking into account the 
energy conservation law (w,+ w,+ w, = 0), it is easy to 
transform the sums over intermediate states appearing 
in A,A$'~' in such a way that they will be proportional 
to the sums appearing in A,W(". A s  a result, a sys- 
tem of two linear equations is obtained; solving this, 
we find 

Here n(w)=[exp (w/T) - 1]'l, and the approximate equal- 
ity on the right is valid for 1 w ] << T. This formula is 
analogous to the well known expression for the Fourier 
transform of the correlator (S&(t)S&(o)) in terms of the 
imaginary part of the susceptibility (see e.g., Refs. 5 
and 6). 

We naw consider the question of the properties of the 
function F that follow from the symmetry of the system 
with respect to time reversal. A s  is well known, when 
t is replaced by -t the spectrum of the system is not al- 
tered but the matrix elements of the spins before and 
after such a transformation?re connected by the rela- 
tion S;= where ?i and b are the states a and b re- 
versed in time. Using these properties and also the 
hermiticity of the spin operators, it is not difficult to 
convince oneself that the function F ' O )  is purely imagin- 
ary and to obtain from (2) the equality 

K~,,(R,, R,, R,; OI, o,, os)=-Fb:b,,(R1, n,, Rz; -"I, -at. -US). (6) 
It follows immediately from this formula that at zero 

frequencies, i.e., in the static limit, the function F is 
identically equal to zero. 

To conclude this section we shall discuss the question 
of the effect of the spin magnitude on the critical dyna- 
mics of ferromagnets above T,. We shall assume that 
the atomic spin S is a large number, and elucidate the 
parametric dependence of the quantities of interest on 
S. First we shall consider the static theory. The 
many-particle Green functions of this theory are de- 
fined by the equality 

where S,,, = S,(R,,,, r,), and Vgk, is the interaction en- 
ergy of the atomic spins, which includes not only the 
exchange energy but also other forms of interaction, 
e.g., dipole-dipole interaction. From this formula it 
follows immediately that the spin dependence of the sta- 
tic 2n-particle Green function has the form 

and, in particular, for the ordinary Green function we 
obtain the formula 

while for the Curie temperature we have the estimate 
T, - SPv/9. 

Going over to the dynamical theory in accordance with 
the dynamic-scaling hypothesis of Halperin and Hohen- 
berg,'lZ1 as generalized by ~ o l y a k o v ~ ' ~ ~  to many-parti- 
cle Green functions, we have 

where bl(S, 7) is the characteristic energy in the dyna- 
mic scaling, whose spin dependence we shall not speci- 
fy, and T=(T-  T,)T,". 

We turn now to the odd dynamic Green functions. 
Such functions are nonzero only because of the noncom- 
mutativity of the atomic spins. For the single-cell bare 
three-particle Green function (single-cell block) of dis- 
crete frequencies an expression has been obtainedCB1 
which, in zero magnetic field, is proportional not to S3 
but to 54. In an analogous way one can convince oneself 
that the bare Green function of order 2n+ 1 is propor- 
tional to S2n.2' Since the exact Green function is obtain- 
ed by complicating the single-cell function by attaching 
other single-cell blocks to it by means of interaction 
lines Vm, (see Ref. 9), the expression for the odd 
Green functions in the leading approximation in S should 
have the form 

where, by virtue of the dynamic-scaling hypothesis, 
n(S, r )  is the same quantity as in (9). 

We shall examine now how the existence of the odd 
correlations affects the properties of the Green func- 
tion G(q, w). In Ref. 9 G(q, w) was expressed in terms 
of the irreducible part C(G"=C" - v,), which can be 
represented in the form of the diagrammatic series 

Here the third term arises from the existence of odd 
vertices. In the static theory these vertices are equal 
to zero, and therefore, this term, represented in the 
form of a sum over discrete f r e q ~ e n c i e s , ~ ~ " ~ '  is not 
singular near the Curie point, i.e., does not contain 
terms in which all Green functions appear with zero 
discrete frequencies. The same is true for all the other 
diagrams with odd vertices. In the static limit on= 0 
all such diagrams lead to a certain additional renor- 
malization of the Curie temperatures, not taken into ac- 
count in the usual static theory.['] After this renormal- 
ization and analytic continuation in the frequency, the 
contribution to ;T; and G from diagrams with odd ver- 
tices should vanish for w = 0. Furthermore, a s  is well 
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known, for ImG there exists the representation 

Im G.,(o) =n (l-e-*Ir) Z-' exp (-EdT)SdaS~'8 (er-o). (12) 
ab 

Because of the odd correlations, in the sum over a and 
b there are terms in which the t-parities of the states 
a and b are different. This means that the product of 
the phases of the wavefunctions of the states a and b dif- 
fers in sign from that for the states ii and 5.  Then, in 
order that the equality S,O, = -Sf; hold, a factor cancel- 
ling this difference in sign is needed. From what has 
been said above it is clear that this factor should be the 
difference w,. We must suppose, therefore, that the 
contribution to ImG due to odd correlations is  propor- 
tional to 03 for small w .  As a result, we arrive at the 
following parametric representation for the Green func- 
tion G in the critical region above T,: 

where 

Here, po and p, are even functions of w, finite at w = 0. 
In analyzing the critical dynamics above T,, for G it has 
been found to be convenient to use the representa- 
tion[& 141 

where & is  the retarded Green function of the operators 
dS,/dt. Using reasoning analogous to that given above 
for r, we obtain the representation 

whe re 

are even functiotks of w, finite at w = 0. In neutron-scat- 
tering experiments one measures the dynamic form fac- 
tor 

It is  clear that N= No+ N,, where No,, =go,,. A s  func- 
ti- of w the quantities No and N, behave differently. 
N,,(q, 0) # 0, and No decreases with increase of w for 
w>> 0 (see Ref. 14), whereas N,(q,O)= 0, and N, has a 
maximum somewhere near w - and only then begins to 
decrease. It is  obvious, then, that the charcter of the 
behavior of the form factor N depends on the relative 
contributions of No and N,. If the contribution of N, is 
large the function N should have a maximum at w -a, 
whereas for small N, there will be no such maximum. It 
is obvious that the larger is S, the smaller is  the contri- 
bution of N, to N. This is  in qualitative agreement with 
the results of Refs. 5 and 6: in Fe, where S = 1, a max- 

imum of N was observed at w # 0, while in EuO, where 
S= 7/2, such a maximum was not observed. 

3.  POLARIZATION EFFECTS IN CRITICAL SCATTER- 
ING ABOVE T, 

First of all we shall explain why an initially unpolar- 
ized beam of neutrons becomes polarized on scattering 
in a ferromagnet above T,. It is well known that the 
Born scattering amplitude has the form 

where q = p - p', p and p' are the initial and final mo- 
menta of the neutron, e =qq", r,, is the classical elec- 
tron radius, y is  the gyromagnetic ratio of the neutron, 
1/20 is  its spin, Sj  is the spin of the atom at the point 
R,, and F(q) is the magnetic form factor of the atom. 
The polarization is a pseudovector. Since the Born am- 
plitude (17) depends on the momentum transfer q, in the 
Born approximation there is no pseudo-vector along 
which the polarization vector of the scattered neutrons 
can point. A s  shown below, the expression for the po- 
larization P, arising from the interference of the first 
and second orders of perturbation theory, contains the 
pseudo-tensor (SPS!'). If we confine ourselves to tak- 
ing only exchange forces into account, this is propor- 
tional to c d y ,  and, since in second order the amplitude 
depends on p and p' separately, the pseudo-vector 
p X p' is formed, along which the polarization points. 
Since p x p' is the only pseudo-vector in the system, the 
polarization will also point along it when dipolar forces 
are taken into account, although in this case (SFgSj) 
has a more complicated tensor structure. In the scat- 
tering of slow neutrons with momentum of the order of 
the inverse lattice constant, far from the critical re- 
gion the polarization is small. It is proportional to the 
ratio of the energy of the magnetic interaction of the 
neutron and the atomic spin at a distance of the order of 
the inverse lattice constant to the interaction energy in 
the spin system, which can be written in the form 
r&,,/aV, where a is a quantity of the order of the lat- 
tice constant and Eo=A2/2maZ(Eo=24 K for a =  1 A). In 
the critical region the correlations between the spins 
grow and the polarization is enhanced (up to 3 X lo'* in 
the experiments of Refs. 3 and 4).  

Since the existence of three-spin correlations is a 
dynamical phenomenon, the polarization depepds 
strongly on the relative magnitudes of the lietime of a 
fluctuation and the time of flight d the neutron across 
the fluctuation, and also on the actual dynamical beha- 
vior of the fluctuations. A s  has been shown,[151 the dy- 
namical properties of a ferromagnet in the range of 
temperatures in which 4nx << 1 (the exchange region) dif- 
fer from the properties in the region 4nx>> 1 (the dipo- 
lar region). Therefore, the dependences of the polari- 
zation on 7 =  (T - T,)Til and the scattering angle -9 in the 
exchange region differ from the dependences in the di- 
polar region. This makes it possible to make an addi- 
tional check on the predictions of the theory concerning 
the influence of the dipolar forces on the critical dy- 
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namics of ferromagnets. In Refs. 3 and 4 it was not the 
polarization that was measured, but the difference of the 
cross sections for scattering of neutrons with initial 
polarizations parallel and antiparallel t o  p X p'. The ex- 
istence of this difference and the appea-ance of polari- 
zation are due to the same causes, and the estimates of 
the dependence of the polarization on B and T are also 
valid for this difference. Below we shU obtain the for- 
mula for the polarization of the neutrons and indicate 
the changes that lead to expressions for the difference 
of the cross sections. 

The polarization vector of the scattered neutrons is 
determined by the formula 

Here S,,, is a matrix element of the S-matrix, the av- 
eraging is performed over the states of the sample and 
aver the spin states of the incident nevtron beam, To is 
an infinitely long time interval, to which the expression 
in angular brackets is proportional, and N is the total 
number of magnetic atoms (we normalize the cross sec- 
tion to that for one magnetic atom, a d  take ti= 1). 

The amplitude (S- I),,, is expressed in the usual way 
in the form of a series in powers of th& magnetic inter- 
action (I,: 

+ ( - i ) * j  5- ( atl f at* U-,,(t,)U-.,(t~)exp(i~~t~+io~t~)+. . . . 
( 2 ~ ) ~ - i  -_ 

(19) 
2 1  

U p -  -r.7N"'F (4) (S,~O), 
m 

where 

Since polarization does not arise in first order in 4, 
we take into account both the terms written out in (19), 
and, in the expression (18) for the polarization P, con- 
sider the interference term of order U:. Making use of 
(20), for a crystal with a center of inversion we obtain 
from (18) 

6 0  p, --- - - 2 x W  dp, 
p ' ( r o ~ ~ ~ - ~  7 ~ w ~ ( ~ l , ~ ~ ( q 2 )  d~ d ~ '  p mTo (-n) - 

r - 1, 

x j d t  !at, j d t ,  ( ( ~ , ~ ~ ( t ) ~ , , l * ( t ~ ) S , , " ( t , )  >cxp(iot+io,t,+io,tz) 
-- -- -- 
- (S,;" (t?)S,,Lo(ll)S,l'(t) )ex~ (-tot-io,t,-l'02tI)]Sp(o~oDDoIoT). 

(21) 
Using the symmetry under time reversal, it is not dif- 
ficult to transform the expression (21) to the following 
final form: 

We also quote the formula for the cross section for 

scattering of polrized neutrons: 

where Po is the initial polarization and the expression 
for $d200/dhld~' differs from (22) in the signs of the 
last two pairs of 6-symbols. 

The correlator of three S1 appearing in (22) is ex- 
pressed, in complete analogy with (5), in terms of the 
three-spin Green function F1. In order that the dyna- 
mic-scaling theory can be used in estimates of the mag- 
nitude of the polarization, it is necessary to express 
F1 in terms of the spin Green functions G and the vertex 
part I'. Here, unlike in the usual relation~hip~'~'  be- 
tween F and the functions G and r, in the expression 

. for F1 only the transverse (to the external momenta) 
parts of the Green functions appear: 

bl t *  

Fdy(q,,  q ~ ,  qs; of. o r ,  o , ) ~ G ~ ( ~ i ) ~ ~ ( ~ r ) ~ ~ ( ~ s ) ~ ~ , q , q ~ ( ~ t ~  02, us), 

Before proceeding to the transformation of the ex- 
pression (22), we shall discuss estimates for G1 and G" 
in the exchange and dipolar regions, and also the tensor 
properties of r&. In the so-called exchange region 
4~ << 1 (see Ref. 15), where the influence of the dipole 
forces can be neglected, G: =Gt. In the dipolar region 
4 7 ~  >> 1 the isotropy is violated, and at small q we have 
Gt>> G:. But if the momentum q i s  greater than the 
characteristic dipolar momentum qo = u''~;/~T,' 'I2 
(wo=4n(gpo)av,'1, where g is the atomic g-factor, p, is  
the Bohr magneton, and v, is the volume of the unit 
cell), then Ga= G:. 

It is obvious that in the exchange region r& is an 
isotropic antisymmetric pseudo-tensor, and, therefore, 
rdy a cdY. In the dipolar region, besides &OBY the ex- 
pression for the vertex also contains terms proportion- 
al to pseudo-tensors constructed from contractions of 
E* with components of the vectors e, q, and e. 

We shall give the expression for the polarization that 
follows from (22), (24), and (5), confining ourselves in 
the expression for ram to the term proportional to E ~ ~ ~ ,  

i.e., putting rue= 1/6cdYI': 

x(GcL(o)Gq,'(~t)Gq;L(~,)r,q,q,(~, o,, oz) )a) (P, e,, c,) .  (25) 

where 
@(e.e,,v,)=[e,Xez l(e,e2)-[e~ell(eel)-[~21 W e z )  

This expression for P is exact in the exchange region 
and suitable for estimates in the dipolar region. 

Above the Curie point the exact functional forms of G 
and r are not known; therefore, we can obtain only ra- 
ther crude estimates for P. Here we give the expres- 
sions that follow from the dynamic-scaling theory for 
the functions G and I' appearing in (25), and the final 
results for the polarizatior,. The procedure for evalu- 
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ating the integral in (25) has been transferred to the 
Appendix. 

We shall consider the exchange region (4rx < 1, o r  
x >  q,). For  G we have the expression'12] 

G,(o)=-G,(O)g(qlx, o/Q,), g(q/x,  0) =L (26) 
where G,(O) is the static Green function, fo r  which we 
shall use the Ornstein-Zernike formula G,(O) = Z[(q2 
+ ".i2)a2]", where Z -  T'l and x= rYa'l(v= 2/3); x is the 
inverse correlation length, and the characteristic en- 
ergy 51, = ~ , ( q a ) ~ / ~  for q >x and 51, = &&,= T , ( X ~ ) ~ / ~  for 
q < x .  In the dynamic-scaling theory the vertex part r 
has the following functional form, which is easily ob- 
tained from the unitarity ~ o n d i t i o n s ~ ' ~ * ' ~ ~ :  

fo r  q Sxand w -Ox, the function y - 1. If all momenta 
a re  large compared with x, the dependence on %in r 
drops out. In addition, in the case when one of the mo- 
menta, e.g., q, is small compared with q, and q,, in 
accordance with the principle of coalescence of corre- 
l a t i o n ~ ~ ' ~ ]  we have 

Before writing out the final formulas for the polari- 
zation in the case of small-angle scattering, we shall 
discuss the character of the behavior of P(q, x )  as a 
function of q for fixed x .  Using the expressions given 
for G and r, it is not difficult to convince oneself that 
a s  q decreases (q 2 X) the polarization increases s o  long 
a s  w s 51,. For  w >> 51, the functions appearing in (25) 
begin to fall off rapidlyc14]; therefore, the maximum 
value of the polarization can be achieved in the region 
w s 51,. The energy transfer in scattering through a 
fixed angle 9 is a function of the momentum transfer, 
and, if w(p2/2m)"<< 1, i t  can be represented in the 
form w =pm"(q2 - (p9)2)1/2. Here the inequality w s 52, 
means that q 2 q,= (2&pa~; ' )~/~a" ,  Eo = (2112~~)-~. This 
condition is the opposite of the condition for  quasi-elas- 
ticity in the scattering and corresponds to the state- 
ment that the time of flight of the neutron across a fluc- 
tuation of size -9'' is of the same order a s  o r  greater 
than the characteristic lifetime of the fluctuation. Thus, 
the largest value of the polarization ar ises  when the en- 
ergy exchange between the neutron and the spin fluctua- 
tions is maximal. 

Since qa<< 1, the restriction q 29, also means that 
Tc(2paE0)" >> 1, i.e., critical enhancement of the po- 
larization is possible in the scattering of sufficiently 
cold neutrons in high-temperature ferromagnets. Gen- 
erally speaking, then, the behavior of P(q) depends on 
the relative magnitudes of q, q,, and X. On the other 
hand, the exchange region is defined by the inequality 
%>go, and for  most ferromagnets is not large. Taking 
into account also that we can only make asymptotic es- 
timates for the polarization, there is no particulqr 
sense in considering the two cases x > q, > qo and 
q,> x > 9,. Therefore, we confine ourselves to the case 
QC s 90- In this case we obtain a parametrically fairly 
well defined maximum for the polarization in the ex- 
change region, and we can carry out matching with the 

dipolar region. 

The corresponding expression for the polarization for 
scattering through a given angle 9 has the form 

where n = p x p P  Ipxp'l". As 9-0 the polarization van- 
ishes. This is a consequence of the additional symme- 
try of the three-point vertex (the special pp' plane dis- 
appears) and of the regularity of G and r a s  9- 0. It 
can be seen from (29) that P falls off with decrease of 
q,; therefore, the optimal value is qc=qo. In this case 
the maximal value of the polarization is attained on the 
boundary of the exchange and dipolar regions (x=qo=p9) 
and is of the order of roa'1(qoa)'2EoT;1. 

Finally, we shall discuss the estimation of the pola- 
rization in the dipolar region. As was noted above, in 
this region the three-spin correlator acquires aniso- 
tropy, due both to the anisotropy of G and to the aniso- 
tropy of the vertex r. At the same time, in the expres- 
sion (25) for the polarization, from the vertex PBY only 
the part proportional to was taken into account. 
However, it can be shown that, although taking other 
par ts  of ruBy into account does lead to a different angu- 
l a r  dependence of the integral, it does not change the 
estimate obtained on the basis of formula (25). The only 
difference from the calculations in the exchange region 
is that one takes into account the different dependence 
of the characteristic energy on the momentum: 

I t  is necessary to note that, in this dependence of the 
characteristic energy on the momentum, restrictions on 
q (like those in the exchange region) do not ar ise  (for 
4 c ~ 4 0 ) .  

Evaluating the integral in (25) in accordance with the 
procedure described in the Appendix fo r  q, = go, we ob- 
t ain 

As has been shown above, the polarization is most 
easily observed in ferromagnets with high T, (e.g., in 
iron o r  nickel). It is knownc"] that for Fe the quantity 
a = l  A, and the optimal conditions q,-q, for compari- 
son with the theory a re  achieved with neutron wave- 
lengths X -  20 a. In this case the polarization in the di- 
polar region fo r  r-10'4 reaches the value In the 
exchange region the polarization does not exceed the 
value lo", which is reached on the boundary of the di- 
polar and exchange regions. The estimates for nickel 
give approximately the same results. 
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4. POLARIZATION ON SCATTERING BY SPIN WAVES 
IN A MULTI-DOMAIN SAMPLE 

In this section we shall calculate the polarization that 
arises in the scattering of neutrons in a ferromagnet at 
a sufficiently low temperature, when spin-wave theory 
is valid. We shall assume that the sample is divided in- 
to a large number of randomly oriented domains, so 
that there is no macroscopic magnetic moment. The 
neutron po1,arization arising in scattering in one domain 
consists of two parts. One part depends on the direc- 
tion of the magnetization M of the domain and disap- 
pears on averaging over the orientations of the domains. 
The other part of the polarization, which, as abwe T,, 
is due to three-spin correlakions, has a component 
along n that does not depend on M and does not vanish on 
averaging. We shall calculate this part of the polariza- 
tion. We shall neglect the effect of the dipolar forces 
and anisotropy on the spin waves. 

It can be seen from the formula (23) for P that to de- 
termine the polarization we need an expression for 
(S;S$q) averaged over the orientations of the domains. 
We shall express the spin projections Sa in the fixed 
laboratory coordinate frame in terms of the spin pro- 
jections in a coordinate frame with its z axis pointing 
along the domain magnetization: 

where m, are the unit vectors of the coordinate axes 
associated with the domain. Having written -pin 
components in terms of magnon creation and annihila- 
tion operators: 

we average (SfsdA) over the domain orientations. This 
averaging is easily performed if we take into account 
that the spatial and thermodynamic averaging are not 
coupled, and (m,%%3 = 1/6cm. A s  a result, from for- 
mula (29) we obtain 

where d20/dC2dE' is the cross section, averaged over 
the domain orientations, for scattering by spin waves, 
and E ,  = 2maq2; a -100 for Fe and ~ i . ~ ~ ~ ~  Solving the 
equations obtained from the requirement that the argu- 
ments of the &functions in (33) be equal to zero, we can 
conclude that the polarization is nonzero only when the 
inequality ffq 2p is fulfilled, i.e., in scattering through 
small angles 9 c 2/a and with small energy transfer 
I E, - E, I c EJ(~/LYP - 92]1/2. Analogous conditions are 
also imposed on the virtual momentum and energy 
transfers; therefore, at high temperatures the statisti- 
cal weights can be replaced by T(E, - E,,)" and T(EP 
- E,,)". As a result, it follows from (33) that 

¶I 

#o p' 1 * P - = ' l , n ( 2 m r o r ) ' ~ ~ - - - - ; j  sin 6, d62 j drp 
d~ dE" p ( 2 s )  

I 

X(6 [2pq2 (cos 0 cos &+sin 0 sin 6: cos r p )  -aqZz]  
x6 [2pq  cos O+aq2-2aqqz cos a?] )  

- (6  [ 2pq2 (cos 0 cos &+sin 0 sin 6: cos cp) +aq,*] 
~ 6 [ 2 p q  cos 0-aqZ+ 2aqq, cos 6 . . ] } ,  (34) 

where cos 9, = (e= e,) and cos 0 = (p* q)(pq)" . In this in- 
terval the second pair of &functions differs from the 
first only in the sign in front of a, and therefore it is 
sufficient to calculate the integral with the first term in 
curly brackets. 

We introduce the notation'u = cos 0, u, = cos 9,, ffq/2p 
= v ,  aq2/2p=v,. Integrating over 9, and q in formula 
(34), we obtain 

where 

The expression for I' differs from the formula for I +  by 
the replacement of v by -v. The integration limits fi,,, 
are determined from the requirement (cosq ( -( 1. 
Taking the integral in (35) does not present any difficul- 
ty; therefore, we give the final formulas for the pola- 
rization: 

$0 T q'lp' p-= 
I"( P $ISN ( p - p ~ ) ' / p ~ -  (.!2)'(q!p) { bn dQ m. *Isn - 

(3 6) 

where a=p9/2 lp -p' I for 

K 
( u )  a .  

and b = -11 - (aq/2p)2]/ff9 for 

From formula (36) it can be seen that in scattering 
through a fixed angle, Plln for all energy transfers. 
This is sufficient for the integral of the polarization 
over the energy to be nonzero. However, the expres- 
sions for P in the region of angles 9<l / f f  diverge as  
the energy transfers approach the threshold for crea- 
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tion of a spin wave, and, therefore, in this region it is  
necessary to take into account the gap in the spin-wave 
spectrum. 

For l/a < 8 < 2/(u the expression (36) does not have 
singularities in the energy transfer, and for the polari- 
zation on scattering through angle 9 we have 

For 9> l/a the one-magnon scattering cross section, 
associated with the correlator (S+S,), is  equal to zero; 
therefore, u(9) in (37) is determined by the longitudinal 
correlator, i.e., by processes in which two spin waves 
take part: 

where C is a number of order unity. 

It follows from the formulas (37) and (38) that the po- 
larization in ferromagnets with ar - 100 can reach a val- 
ue of the order of one per cent. However, to observe it 
is rather complicated, since it has this magnitude in the 
small region of angles l/o! <9<2/a,  where the total in- 
tensity of the scattered neutrons is small. Moreover, 
in the case that we have considered it is practically im- 
possible to observe this polarization because of the de - 
polarizing field of the random domains. At the same 
time, in the case of a band domain structure the depo- 
larizing influence of the domains can be small, and, 
clearly, the value of the polarization will not differ 
greatly from that obtained above, so that in this case 
the effect considered can be observed experimentally. 

In conclusion, the authors express their gratitude to 
A. I. Okorokov, V. V. Runov, A. G. Gukasov, and V. A.  
Ruban for a large number of interesting discussions. 

APPENDIX 

We shall estimate the polarization in the exchange re- 
tion (# >q0) for ps >> x . The estimates for the other re- 
gions are made in an analogous manner. 

The expression (25) for P in the coordinate frame in 
which the z axis is parallel to q and the zx plane is the 
scattering plane has the form 

~ G q ( i * ) ) G q + q ~ ( ~ t ) G q ~ ( ~ ~ ) ~ q , - ~ - q - . - q t ( ~ ~  at, wz) I 
9:-qr' 

xcos 0: sin 8 r  coe rp ( q L t 2 q f i  cos o:+q,= - ' ) * 
where 

ol=Bp~-Ep+q,=Ep.-E,-2E,a'pg? cos $-@,a2q,'. 
or=EpA.,-E,=2E,aLprl, cos $+E.a:g2*, o=Ep-Ep.,  

cos cP-cosbz cos 8+ sin 6, sin 0 cos cp, cos O=(pq) ( p q )  - I ;  

for small-angle scattering, sin 0 =p9/q. 

It can be seen from (A.l) that the integration over cp 
gives a nonzero result only when the dependence of the 
expression in square brackets (the discontinuities of the 
three-spin Green function) on the energies containing 
cos cp is  taken into account. A s  a result of taking the 
discontinuities, several terms arise. One of the terms 
giving the principal contribution is the simplest to esti- 
mate and has the form 

where 

r ( o ,  o,, oz) --r(o+M, ot-i6,  oz+i6)-r (w+i6,  o,+i6, o,-i6) + r ( w - i s ,  @,-is, 02+i8) - r (o - i 6 ,  o,+i6, w2-ifi). 

The expression for f in the form of a combination of 
different branches of the function I' has been obtained 
taking into account the fact that I' is an analytic function 
of two independent pairs of arguments. Like F ' O )  [cf. 
(6)], the expression (A.2) is purely imaginary and 
changes sign under the replacement w, -. -w,. If we 
take into account that AG(w2 is an odd function, it fol- 
lows from this that f'(w,)=I'(-w,). Therefore, for 
w, s a,, we shall assume f(w,) to be a weakly varying 
function of w,, finite at w, = 0. The dependence of I' on 
the momenta is determined by the formulas (27), (28). 

We shall evaluate the integral over q,. Since for 
w, >> a,, the functions G and I' fall off rapidly,c141 the 
principal contribution arises from the region w, S a,,. 
This, generally speaking, leads for fixed q, to a re- 
striction on the range of integration over the angles, 
and to an extra small factor. However, it is not diffi- 
cult to convince oneself that for q,= q,,, in the entire im- 
portant range of integration q, 2q0, this does not happen. 
Since the region pa>>% has been chosen, q>> x .  Using 
the expressions (26) for G and (27), (28) for  I' it is easy 
to see that the integral over q, converges and the prin- 
cipal contribution arises from the region 9,-x. For 
q >> q, - x we have 

A factor proportional to coscp arises from AGll(wl) and 
is of the order of 

Finally, we consider the remaining integral, over 9,: 

For q, = 0 this expression vanishes. Therefore, for 
q, - X  << q an extra small factor xq" appears. 

A s  a result, taking into account all the estimates 
given above, we have 

Here we have taken into account that 
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and introduced the dimensional constant a, which was 
omitted above. 

To obtain the polarization on scattering through angle 
8 it is necessary to integrate PdLa/d&ldE' over the en- 
ergy transfer and divide by 48). The integration over 
E' is equivalent to integration over q over the region 
q >-Pa; this leads simply to the replacement q -p8 in 
(A.4) and gives the expression (29) of the main text. 

')we recall  that by  the discontinuity of a fundion across  the 
cut we mean the quantity AJQ= [f (x+ i6) - f (x-is)] /2i. 

2'In Ref. 8 the spin dependence of the odd vertices was detar- 
mined without taking this fact into account. 
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The residual magnetic moment and unidirectional exchange anisotropy of a chromium-rich iron-chromium 
alloy and an iron-nickel Invar alloy were investigated as a function of temperature. In both cases the 
magnetic moment and the unidirectional anisotropy were retained in the tempmture range between the 
Curie and Nkl  points. These experimental results were used to draw conclusions on the nature of the 
physical anomalies of Invar alloys. The proposed model was found to be in agreement with all the 
currently available experimental data. 

PACS numbers: 75.50.Bb, 75.30.Gw, 75.10.-b 

Several models have been suggested to explain the 
anomalies of the physical properties of Invar alloys. 
They include the latent antiferromagnetism model of 
~ondorski!,~"~] the model of two y states of Weiss, C4' 

the models based on the alloy heterogeneity (Schlos- 
serC5v6]) and allowing for the ordering in alloys (Kachi 
and Asa r~o~~-~ ' ) ,  the model of weak band ferromagnetism 
of Wohlfarth, and others. A l l  these models ex- 
plain more or less satisfactorily the anomalies of the 
dependence of the magnetic moment and Curie temper- 
ature of the alloys (FeNi, FePt, FePd) on their compo- 
sitions, anomalous values of the high-field susceptibil- 
ity, etc. However, none of these models explains all 
the physical properties of Invar alloys, for example, 
the temperature dependence of the linear expansion co- 

efficient (see Fig. 2b Some of them are 
even in conflict with the experimental observations. 

In the models postulating antiferromagnetism of 
Invar alloysc3] there still remains the question how to 
explain the influence of antiferromagnetism on the 
physical properties of Invar alloys at temperatures 
above the NBel point T, of the antiferromagnetic com- 
ponent (this temperature is -50° K for the Fe-Ni 
alloys). 

We investigated chromium-rich Fe-Cr alloys from 
which samples with a low expansion coefficient, known 
as "nonmagnetic Invars," were prepared. The inves- 
tigated alloys with 78-93% C r  exhibited unidirectional 
exchange an is~t ropy .~ '~]  One of the investigated alloys 
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