
a transition to a ferromagnetic state is observed. These 
substances a r e  apparently well described by the exciton- 
ic-ferromagnet model,['] s o  that i t  is possible to apply 
to them (of course, only qualitatively), the results  ob- 
tained above. When the phases of CDW and SDW having 
the same period coincide, the summary magnetic mo- 
ment of the sample is not equal to zero and a domain 
structure is produced. It is of interest to investigate 
such systems near the temperature of the transition to 
the ferromagnetic state, a s  an attempt to observe in 
them long-wave oscillations of the density and of the 
magnetic moment. A theoretical calculation with a two- 
component order parameter and a t  finite temperatures 
is a rather laborious task even in the homogeneous case, 
and will therefore be the subject of a separate paper. 

Interest in the investigation of phase transitions in 
nonequilibrium system is stimulated by the search of 
means of raising the critical superconducting temper- 
ture. We have shown here that under the influence of a 
pump source the magnetic ordering due to collective ef- 
fects of coexistence of singlet and triplet electron-hole 
pairings turns out to be inhomogeneous (modulated), 
with a period that is determined by the pump intensity. 
This effect can be observed in experiment by magnetic 
measurements. 
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A one-dimensional model of ctassical spins with n = l,2, and 3 components (Ising, planar rotator, and 
Heisenberg models) and with random antiferromagnetic interaction J of the nearest neighbors is 
considered. In such a system, the average thermodynamic value of the spin at a site is different from zero 
in a magnetic field. The value of s is random, and its distribution is described by a function /,(x). An 
integral equation is obtained for A(%) in weak magnetic field, assuming the distribution function fJ(x) to 
be given. The moments of the distribution of s are calculated as functions of the type of function fJ(x) 
and of the temperature. Conditions under which the susceptibility of the system x increases as T+O are 
analyzed. It is shown that if the susceptibility X-+m as T+O, then the distribution of s becomes 
symmetrical as T+O, and the most probable value i of s tends to be zero. The results are used to 
interpret the experimental data on the temperature dependence of the paramagnetic shift of the NMR in 
quasi-one-dimensional Qn(TCNQ), crystals. 

PACS numbers: 75.10.Hk, 76.60.Cq 

1. WTRODUCf ION one-dimensional TCNQ sal ts  with asymmetric cationsc11 
and of magnetic polymers such a s  polymetalphos- 
phines.[21 

This article is devoted to a theoretical investigation 
of the properties of one-dimensional spin systems with The class of magnetic polymers has not yet been in- 
random exchange interaction. Interest in  these systems vestigated in  great  detail. All that is known is the tem- 
is due to the experimental investigations of the quasi- perature dependence of the susceptibility of two repre- 
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sentatives of this class, containing Mn atoms (uncom- 
pensated spin S = 5/2) and Cr atoms (S = 3/2) in a tem- 
perature interval of the order of and larger than the ex- 
change interaction. In the investigated temperature in- 
terval, the sample susceptibility can be described with 
good accuracy within the framework of the model of a 
classical system of spins with random antiferromag- 
netic Heisenberg interaction for the nearest-neighbor 
spins, and the variation of the exchange interaction i s  
of the order of the average interaction. So strong a dis- 
order of these systems i s  apparently to structure de- 
fects inherent in polymer compounds. 

More widely studied was the class of quasi-one-di- 
mensional disordered magnetic crystals. Typical rep- 
resentatives of this class are the charge-transfer salts 
Q~(TCNQ),, Ad(TCNQ), and NMP-TCNQ. The crystals 
of these salts contain alternating parallel chains of 
TCNQ anions with uncompensated spin and of cations, 
the internal disorder being due to the random spatial 
orientation of the asymmetric cation molecule in the 
chainsL1] 

At  temperatures below about 10-20 K, an increase of 
the paramagnetic susceptibility with decreasing T, 
x a  T-a with 0 < a  < 1, was observed in TCNQ salts with 
Qn, Ad, and NMP. The increase of the total paramag- 
netic moment M of the crystal with increasing magnetic 
field H in strong fields g k H  >> kB T also follows a power 
law M (Ref. 3), and an analogous relation C a T"OL 
was observed for the dependence of the heat capacity C 
on temperature in a zero magnetic field.[4s51 

To explain the low-temperature anomalous magnetic 
properties of TCNQ salts with asymmetrical cations, a 
model of localized spins S = 1/2, with a one-dimensional 
Heisenberg antiferromagnetic interaction, was proposed 
in Ref. 3. The Hamiltonian of this system is 

where S, is the spin operator at site k and the quantities 
J,%O are random. Within the framework of the Hamil- 
tonian (1) it i s  easy to understand qualitatively the rea- 
son why the susceptibility x increases with decreasing 
temperature, and the cause of the anomalous behavior 
of all the remaining thermodynamic characteristics of 
the system near the point T = 0 and H = 0, if it is as- 
sumed that the J ,  can be arbitrarily By 
changing over in the Hamiltonian (1) from spin opera- 
tors to Fermi operators and using the Landau Fermi- 
liquid approximation,') we can express the thermody- 
namic quantities in terms of the fermion state density 
p ( E) near the midpoint E = 0 of the fermion band. The 
assumption that the state density has an anomaly of the 
type p(c) =Ac'OL as E - 0 permits a complete quantitative 
description of the functions M(H, 7') and C(H, T), which 
agrees well with the experimental datar3'51 (A and (Y 
are parameters of this semiphenomenological theory 
and are  determined from the experimental data). There 
is thus no doubt at present that the Hamiltonian (1) with 
arbitrarily small values of J, can provide a complete 
description of the low-temperature properties of TCNQ 
salts with asymmetric cations. The theory i s  as  yet 

incapable, however, to state unequivocally how the dis- 
tribution function of the quantities J ,  must behave near 
J,= 0 if the Hamiltonian (1) is to yield the same power- 
law dependences of x(T), M(H, O), and C(0, T) that have 
been observed in e~pe r imen t . [~ '~~  

Theodorou and Morrel Cohen have proposed a micro- 
scopic model of an electron system with disorder (Hub- 
bard model with random values of the electron energy 
at the sites), which is equivalent to a system of local- 
ized spins with interaction (I), if the analysis i s  con- 
fined to thermodynamic properties at low tempera- 
ture~.[~*']  Within the framework of this model, the 
randomness of the interaction of the spins J, appears 
in natural fashion and the distribution function of the 
random quantities J ,  can be calculated. The param- 
eters J ,  for different k turn out to be uncorrelated, 
their distribution functions a r e  identical, and as  x- 0 
the distribution function f,(x) takes the form f,(x) a xe, 
where the exponent /3 i s  positive or negative, depending 
on the parameters of the initial electron system. This 
model explains thus why the quantities J ,  in the Hamil- 
tonian (1) are  random and why they can take on arbi- 
trarily small values. 

Shchegolev et a1 .[lo] have recently published experi- 
mental data on the paramagnetic shift and width of the 
NRM line in Qn(TCNQ),. The paramagnetic NMR shift 
of the protons on the molecules is determined by the 
average electron spin per molecule, so that NMR mea- 
surements yield information on the distribution of the 
uncompensated spin at the sites on the chain. For a 
homogeneous system, the thermodynamic and quantum- 
mechanical mean value of the spin at the site s,=(S;) 
is the same for all sites and i s  proportional to the pa- 
rametric susceptibility x  and to the magnetic field H 
(the angle brackets denote here and below the thermo- 
dynamic and quantum-mechanical averaging, while 
averaging over the configuration will  be designated by a 
bar over the symbol for the corresponding quantity). In 
a disordered system, the values of s, at different sites 
are  different and only the configuration mean value E, 
is proportional to XH (according to the ergodic hypoth- 
esis Z, =z, s ,  / N ,  where N is the number of spins in the 
chain). We are interested in the distribution of the 
quantity s ,  described by introducing the distribution 
function f, (x). 

Let the NMR line shape g(v) in the absence of inhomo- 
geneous magnetization be determined by the function 
g,(v -v,), where v, is the center of the resonance line 
of the protons in the diamagnetic state at s,= 0 (usually 
c,(v - v,) is a Gaussian distribution). Then, taking into 
account the inhomogeneity of the magnetization, we ob- 
tain for the line shape of the NMR on the protons 

where the constant A, is determined by the electron- 
proton hyperfine interaction on the molecule, and m is 
the number of protons on the molecule. Thus, mea- 
surements of the NMR line shape in an inhomogeneous 
system make it possible to determine from (2) the dis- 
tribution function f, (x) if the function g,(v - v,) is known. 
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Shchegolev e t  al.  measured the temperature depen- 
dence of that frequency value B a t  which the derivative 
of g(v - ud with respect to frequency vanishes. The 
quantity B is the most probable value of the frequency in 
the g(u - vo) distribution (the most probable value of a 
random quantity a will henceforth be designated 5). 
According to measurements made a t  T r  8 K, the 
quantity B(T) - uo is proportional to the susceptibility 
x(T) and increases when the temperature decreases be- 
low 40 K, reaching a maximum at 8 K; below this tem- 
perature, B(T) - uo approaches zero with decreasing 
temperature. It follows from these data that if the dis- 
tribution function fa  (x) in (2) has a single peak (with 
center a t  x =  S), then the temperature dependence of 

fa (x) is such that S(T) =F(T)=x(T)H at T >  8 K, but when 
the temperature is lowered (T- 0) we have S - 0, 
whereas increases in proportion to T'OL. Thus, mea- 
surements of the paramagnetic shift of the NMR in Qn 
(TCNQ), have shown that in  this system the distribution 
function of s  depends substantially on temperature, and 
the task of the theory is to  determine this dependence 
within the framework of the Hamiltonian (1). 

So far ,  however, we do not know any method of cal- 
culating f, (x) for  quantum Heisenberg models with ran- 
dom interaction. We shall therefore investigate in the 
present article the behavior of the function fa  ( x )  for 
models of classical spins with antiferromagnetic inter- 
action in all those cases in which x is seen to increase 
a s  T-0. The results enable us to draw qualitative con- 
clusions concerning the temperature dependence of f a  (x)  
in the quantum model. It can furthermore be assumed 
that a classical spin system provides a fair  approxima- 
tion for the description of magnetic polymerr21 with 
spins a s  high a s  5/2 and 3/2. And once the temperature 
dependence of the NMR line shape in magnetic polymers 
is eventually experimentally studied,[21 then these data 
can be compared with the theoretical results obtained 
below for a classical disordered Heisenberg model. 

2. EQUATION FOR THE SPIN DISTRIBUTION 
FUNCTION AT THE SITES IN ISOTROPIC CLASSICAL 
MODELS 

We consider a spin-interaction model with n = 1, 2, 3 
components in a magnetic field H-0, The Hamiltonian 
of the system is 

+- 
% -z ( J ~ S ~ : S ~ , - ~ S ~ ~ ) ,  n - I ,  

where h =gp,H. In the case n = 1 (the Ising model) we 
have S:=*l, and the unit vector S, specifies the direc- 
tion in the two-dimensional space (x, z )  in the planar- 
resonator model (n = 2) and the direction in three-dimen- 
sional space in the Heisenberg model (n = 3).') 

The random quantities J ,  with different k will be as-  
sumed independent, we assume the distribution func- 
tions for them to be the same and equal to f,(x). In a 
weak magnetic field the thermodynamic mean value of 

the spin s, a t  the site k is given by 

Our task is to  determine the distribution functions of the 
quantities s , .  For an infinite chain these functions a re  
the same for a l l  s, and we designate them fa(%). 
According to the ergodic hypothesis the function f, (x) 
describes also the distribution of s, over the chain. In 
a l l  the considered isotropic models, the correlation 
functions (S,S,+,) are  defined by the  relation^[^^-'^] 

where Zo(x) is a Bessel function of imaginary argument. 
From (4) and (5) we obtain 

From the definition of the random quantities u, i t  fol- 
lows that a l l  a re  independent and have the same distri- 
bution function f,, (x). From (6) we get for an infinite 
chain 

fr=l-~kb+i, (7) 

and an analogous relation holds for 7,. The random 
quantities u,+, and 5 ,+ ,  in (7) a re  independent. The 
quantities 5 ,  and 5,+,  have in an infinite system the 
same distribution function f (x). For this function we 
get from (7) the integral equation 

The quantities 5 ,  and qk a r e  independent, and for  the 
distribution function f,(x) of the quantity u we get 

and f, (x) = ~nh- j f , (x~n / lz )~  Equations (8) and (9) deter- 
mine the function f ,(x) in  terms of the specified distri- 
bution function f,(x), Since the series for 5 ,  is of alter- 
nating sign and each succeeding term of the series is 
smaller than the preceding one, i t  follows that 0 st,  9 1  
and analogously 0 sr], cl. Thus, - 1  a, s +1 ,  i.e., the 
function f,(x) differs from zero in the interval [-I, +I]. 

To calculate the moments of the distribution i t  i s  con- 
venient to introduce the characteristic function cp,(t) 
for the quantity a  (p,(t) is the Fourier transform of the 
function f,(x)), It follows from (8) and (9) that 
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Expanding the functions q(t)  and cp,(t) in (10) in powers 
of t , we obtain the coefficients of the series of cp,(t) in 
t , and the k-th order derivative f cp,(t ) with respect 
to t at t=O yields the value of ikuk. For the first two 
moments of s we obtain from (10) 

s i - E  - 
%=rr=Tn(lfii)' uk= T f a  ( z T )  uk ( 2 )  dx, 

a (11) 

sT= (T) '+ 2h2[?- (ii)']  

~ n ~ ( 1 - 2 )  ( l + E ) ' .  

3. TEMPERATURE DEPENDENCE OF THE 
SUSCEPTIBILITY AND THE SPIN DlSTRlBUTlON 
FUNCTION IN  CLASSICAL ISOTROPIC MODELS 

In this part we determine, within the framework of 
the classical model, that for of the function f ,(x) near 
x = 0 which leads to the appearance of a singularity of 
the magnetic susceptibility a s  T- 0. At the same time 
we find the form off, for those f,(x) distributions at 
which x increases at T- 0. We confine ourselves to 
the class functions f,(x) with a power-law asymptotic 
behavior as  x- 0, i.e., to functions of the type f,(x) 
-fa a s  x- 0(a <I) ,  and obtain those values of a at 
which the susceptibility increases without limit when 
the temperature drops to zero. Later on, a quantitative 
analysis will be made of the temperature dependences 
of x and f, (x) for a distribution function f,(x) of the 
form 

f a ( 4  -( i -c)8(z-Z,)+cp(z) ,  

where cu < 1 and 6(x) is the delta function. The first  
term of f,(x) describes the homogeneous interaction in 
the chain, and the second represents "defects" with 
concentration c, where l a c >  0. The growth of x as 
T- 0 i s  determined by the second term of f,(x), since 
this term describes the distribution of the weak inter- 
actions. If a! > 0, the function f,(x) i s  singular at x- 0, 
and if cu = 0 the distribution of J is homogeneous at 
small& As a-1 or I,-0, we havep(x)-6(x), i.e., in 
a chain with probability c there is no interaction at all 
between neighboring spins. This limiting case corre- 
sponds to the "piecewise" model, which we shall use a s  
the starting point for the understanding of the causes of 
the growth of x as T- 0 and of the specifics of the fo(x) 
distribution at low temperatures. 

The "piecewise" model. As I, - 0 or  a! - 1, the dis- 
tribution (12) takes the form , 

f , ( z )  - ( ~ - C ) S ( ~ - Z ~ ) + C S ( Z ) ,  (13) 
i.e., the entire system breaks up in random fashion into 
noninteracting subsystems ("pieces") and the interaction 
wifhin the subsystems is homogeneous and is equal to 
10- 

At T2 I, the average spin S coincides with the corre- 
sponding value in the homogeneous chain, accurate to 
terms of order of c as  c-0, the variance Ds is small 

to the extent that the concentration c is small, and in 
this temperature region DS(S)' - c << 1. - 

At T-0, it is easy to calculate 8, 02, and 7 and 
reconstruct completely the function f,(x) for an arbi- 
trary concentration c: 

where the susceptibility X, of a homogeneous chain is 
referred to a single site. The results (14) admit of a 
simple interpretation. The pieces with even numbers of 
spins a s  T- 0 yield a mean value tf - 4(1- c)(2 - c)"nx,T 
-0 at each site, and the probability that the node belongs 
to an even piece is 2(1- c)(2 - c)-~.  Odd pieces have one 
unpaired spin and as  T- 0 they yield a susceptibility 
growth that follows the Curie law. At each site of an 
odd piece, regardless of its length, we have la1 =1 and 
the sign of o at the neighboring sites of the odd piece is 
opposite, being positive on the terminal sites. This 
result for the piecewise model follows directly from (6) 
if it is recognized that u(x) - 1 as  x- .o, so that 5, (as 
well a s  qk )  is a sum of the finite series 1 - 1 + I - .  . . , 
which is equal to 0 or 1, depending on the location of 
the node k. It follows from this picture that the entire 
asymmetry of the distribution of the quantity s relative 
to the point s = 0 is connected with one end-point spin of 
the odd pieces; at c << 1 the asymmetry i s  small to the 
extent that c is small, and S = ch/2Tn, so that (3)'/Ds 
-c2 << 1. 

Thus, in the piecewise model the variance of the dis- 
tribution of s increases like T-2 a s  T- 0, and at c c< 1 
the distribution of s becomes symmetric with respect 
to the point s = 0. As the temperature decreases from 
I, to 0, the value of .5 in this model changes from S to 0. 

Singular distribution of J, low temperatures. We 
proceed now to investigate the form of the distribution 
f,(x) at TccI,andO<cu<l. From (11) weget, accurate 
to terms of higher order in the temperature, 

It i s  seen from (1.) that @ =  ~ n ~ / h  - 0 as  T- 0, but the 
limiting value of u2 differs from zero, i s  independent of 
the concentration c, and depends only on the parameter 
a! (when a! changes from 1 to 0, the limiting value of 3 
decreases from 1/2 to 0 at n = 2  or 3 and from 1/2 to 
ln2 - 1/2 for n = 1). It i s  easy to verify that, regardless 
of the value of c ,  all the odd moments of the distribution 
of u vanish in the limit a s  T- 0, and all the even mo- 
ments tend to limits that depend only on a. When a! 
changes from unity to zero, the ratio 3/(?)' changes 
from 2 to infinity at n = 2  and 3 to approximately four at 
n = 1. Consequently, in the limit a s  T- 0, regardless of 
the concentration c, the distributions of u and s become 
symmetrical, and S - 0. From the continuity in the pa- 
rameter a! it follows that the three peaks in the distri- 
bution of a remain, at least for a values close to unity. 
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The form of the distribution f ,(x) a t  a! s 1 and T- 0 is 
shown qualitatively in the figure. 

To understand the behavior of the susceptibility and of 
the function f, (x) a s  functions of the temperature in the 
case of singular f,(x) distributions, we can use the 
"cluster" concepts of Theodorou and M.  ohe en.^^*^] We 
define a cluster as a group of spins m, m + 1,. . . , m+p 
with interactions J,, J,,,, . . . , J,,,,, > T and with inter- 
actions J,-,, J,,, < T at  the boundary of the cluster 
(pieces a re  particular cases of clusters, differing only 
that the breakdown into clusters depends on the temper- 
ature, and in the piecewise model the breakdown into 
pieces is constant at T <  I,). A contribution to the sus- 
ceptibility is made by clusters with odd numbers of 
spins. The effective concentration of such clusters is 

Each odd cluster gives a susceptibility 1/T, and we ob- 
tain for the singular part of x an expression that differs 
from the exact expression (15) by only a numerical 
factor. Inside the cluster there is a strong antiferro- 
magnetic spin correlations (S,S,+,)= (-I), for 1 << k ~ p ,  
but this correlation becomes weak for spins from dif- 
ferent clusters. The distribution of the average spin s, 
over the cluster is therefore similar to that in the 
piecewise model, i.e., s,= (-l)m+kh/Tn. As T- 0, the 
effective cluster concentration decreases like p-u and, 
in accordance with the results for the piecewise model, 
when the temperature decreases the asymmetry of the 
distributions of s and a with respect to the point 0 van- 
ishes, regardless of the value of c. 

Homogeneous distribution of J, low temperatures. It 
remains now to consider regular distributions with n 
S O .  In the Ising model, these distributions do not lead 
to a growth of x a s  T- 0, while in the continuous Hei- 
senberg and planar-rotator models this growth takes 
place only if a = 0, 3, 

From (10) we obtain for n = 2 and 3 and for a, = 0 

It i s  seen from (16) that 3 increases logarithmically 
with decreasing temperature, and the value of s i s  
distributed approximately in the interval from -h/ 
n ~ l n ' / ~ ( ~ , / ~ )  to + h / n ~ l n l ' * ( ~ ~ / ~ ) .  In contrast t o g e  
singular distributions with n > 0, however, now u2 tends 
to zero a s  T - 0 like a, In-'(I,/ T), It is easy to  verify 

fs lr) 

A FIG. 1. Qualitative picture of the 
distribution f, ( x )  as T- 0 and 
at values of a close to unity. 

-1 0 1 2  

that all even moments tend to zero like b,ln"(I,j~) 
(for, example, b,= 3/2u2 + 1/8a,) and the ratio 2/(7)' 
increases like ln(Il/T) a s  T- 0. Thus, in the limiting 
case n = 0 the distribution of s has only one peak at s = 0. 

At a, = 0, the Ising model and the continuous models 
give different results for the behavior of x a s  T-0. 
In addition, the cluster argument of Theodorou and 
Cohen provides a qualitatively correct description of 
the situation in the Ising model for all  values of a!; i t  
describes correctly the situation in the continuous 
models a t  a, > 0, but predicts incorrectly the behavior 
of x as T- 0 in  the case a! = 0 for the continuous models. 
What is the reason? 

In all  classical models, long range-order sets in a s  
T - 0, since u(x) - 1 a s  x- 4,. The approach to this 
long-range order, however, is different in the Ising 
model and in the continuous models, because 1 - u(x) 
-2e-2~ ,1/2x, and l /x as x-4, and at  n = l ,  2, and 3, 

respectively. In the Ising model the magnetic excita- 
tions a r e  connected with complete breakdown of the 
antiferromagnetic correlation of the neighboring spins, 
and for such excitations there is a gap equal to the ex- 
change interaction of the corresponding spins. The 
quantities x and 1 - u a r e  therefore exponentially small 
a s  T- 0. Excitations of this type, which we shall call 
"breaks", exist also in the continuous models. But the 
latter have, besides breaks, also gapless excitations of 
the spin-wave type, for which the spin rotation at 
neighboring sites is small. The asymptotic behavior of 
the type x-' in the continuous models i s  due precisely to 
the spin waves. In the homogeneous model, the contri- 
butions of the two types of excitation a re  approximately 
equal a t  T = I,, , but at T << I. only the spin-wave excita- 
tions remain and lead to a nonzero susceptibility x0 a s  
T-0. 

The disordered character of the exchange interaction, 
which admits of arbitrarily small J, facilitates the 
appearance of breaks, and the antiferromagnetic corre- 
lation of the neighboring spins i s  violated in those 
places where J <  T, i.e., a t  the boundaries of the clus- 
ters. Small J, however, facilitate also the appearance 
of spin-wave excitations, increasing their density of 
states a t  low energies. The cluster argument of Theo- 
dorou and Cohen takes into account only excitations of 
the break type. In the Ising model only this type of ex- 
citation exists, and therefore the cluster argument pre- 
dicts correctly the condition CY > 0 at  which x increases 
a s  T- 0 in the Ising model. In the continuous models, 
for the singular distribution functions (12), the behavior 
of the susceptibility a t  low temperatures is determined 
mainly by the breaks, and the cluster argument again 
yields the correct asymptotic form of x a s  T- 0. At 
CY = 0, however, the growth of x a s  T- 0 in the continu- 
ous models is determined only by the spin-wave excita- 
tions, since the contribution from the break yields 
x - const # 0 a s  T- 0. In this situation, the cluster ar-  
gument[6*7J can not predict correctly the behavior of the 
susceptibility at low temperatures, 

Conlinuoz~s models in the elzii re tctr~pe vatitre vutzge. 
We have investigated above the behavjor of systems 
with 1 > CY '-0 at low temperatures. We consider now the 
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behavior of the continuous models in the entire temper- 
ature range. 

At c << 1 the behavior of the system in the temperature 
region T 2  I, does not differ from the behavior of a 
homogeneous system. For temperatures I, << T<< I, we 
obtain 

It follows from (17) that the susceptibility i s  practically 
constant and is equal to x0 at T> cIo, after which it be- 
gins to increase monotonically at I, < T< cIo in accord 
with the Curie law, this growth slows down at TzZ,, 
and at T <<I, we get x - T'a at a > 0 and - ln(Z,/T) at 
a = 0. The relative variance DS/($ is of the order of 
c when T>>Z,C~/~, i t  increases with decreasing temper- 
ature in the region from to I&, then remains 
practically constant at 2c" from Zoc to I,, and with 
further decrease of temperature the ratio Ds/(S) in- 
creases like pa-' at a! > 0 and like l/Pln3(Z1/T) at 
a =o. 

At c = 1, the growth of Ds/(S)' with decreasing tem- 
perature begins at a temperature on the order of I,, and 
3 differs little from S only at temperatures T>>Il. 

4. DISCUSSION 
We now formulate briefly the results for classical 

models, and discuss the degree to which these results 
can be valid for the quantum Heisenberg model of spins 
1/2. 

1. In the classical models, the singularity of fJ(x) a s  
x- 0 leads to a singular behavior of the same type in 
the temperature dependence of x a s  T- 0. In the con- 
tinuous classical models the susceptibility increases 
logarithmically as  T- 0 if fJ(x) is constant or decreases 
as x- 0 not faster than logarithmically (not faster than 
1 l n ~ ) - ~  with 1 >  /3>O). In all the remaining cases there 
is no increases of susceptibility as  T- 0. 

At present we do not know of corresponding exact 
conclusion for the Heisenberg spin 1/2 model (the re- 
sults for the quantum XY model a re  given in Ref. 3). 
Theodorou and  ohe en[^^'^ have advanced the hypothesis 
that the cluster argument i s  suitable also for the pre- 
diction of the behavior of the susceptibility in the Hei- 
senberg quantum model, and accordingly the suscepti- 
bility increases as  T- 0 only in the case when the dis- 
tribution function f,(x) i s  singular. There are grounds, 
however, for doubting the correctness of this conclusion 
for the Heisenberg quantum model. In fact, the energy 
at which the short-range antiferromagnetic correlation 
is destroyed for the spins k and k+ 1 in the Heisenberg 
quantum model depends not only on the exchange inter- 
action 4 of the spins k and k +  1, but also on the struc- 
ture of the interactions of the other spins of the chain 
in the vicinity of the sites k and k +  1. There are there- 
fore no grounds for assuming that the cluster argument 
i s  suitable for the description of the loss of short-range 
order in a chain (i.e., of excitations of the break type)!) 
In addition, for a spin-l/2 chain we have no under- 
standing whatever of the relative role of excitations of 
the spin-wave type, whose contribution to the suscep- 

tibility is not accounted for by the cluster argument. 
Yet we have verified, with continuous classical models 
with a! = 0 a s  an example, that the growth of the suscep- 
tibility a s  T-0 can be due only to these excitations. 

2. In the classical models, the second moment of the 
distribution of s increases with decreasing temperature 
like Tz when the susceptibility has a power-law in- 
crease, and increases like 1/p ln(I1/T) if x increases 
logarithmically. In the limit as  T- 0 the distribution of 
s becomes symmetric about s = 0, so that when the tem- 
perature decreases the most probable value of s 
changes from the mean value S to zero. We note that. 
the results S(T) - 0 and the growth of s(T) a s  T- 0 can 
occur only if (2)1/2 increases faster than 3 with de- 
creasing temperature. 

The last conclusion i s  general and is valid also in the 
Heisenberg quantum model. Therefore if experiments 
yields S(T) - 0 and x(T) -- - a s  T- 0, then the second 
moment of the NMR line should increase with decreas- 
ing temperature faster than x ( T ) .  We note that in the 
piecewise model for the quantum case we have 2- Tz 
as T- 0, and in another mode of disorder this growth 
will of course not be faster than TZ. 

3. In the classical models the distribution of s has 
three peaks in the limit a s  T- 0 if x - Ta and a i s  not 
very small. As a! -- 0 only one peak of the distribution 
of s remains at s = 0. 

Arguments can be advanced that the distribution of s 
as  T- 0 in a spin-l/2 system will have only one peak 
near the value s = 0. We consider the piecewise model 
for the Hamiltonian (1). For an odd piece the average 
value of the unpaired spin at the site (in a magnetic 
field) decreases from the edge of the chain towards its 
middle, and alternates in sign5) (thus, for a piece of 
three spins we have s, = s,=L/GT and sz = -h/12T). 
Therefore even in an odd piece, if large enough, the 
most probable is a value of s close to zero. 

Thus, on the basis of the Heisenberg Hamiltonian for 
a spin-l/2 system with random exchange interaction, 
we can apparently explain the temperature dependence 
of the paramagnetic shift of the NMR in Qn(TCNQ), ob- 
tained in Ref. 10. It i s  undoubtedly of interest to mea- 
sure also the second moment of the NMR line in this 
compound and to determine on the basis of these data 
the value of s2 a s  a function of temperature. 

The author thanks I. F. ~hchegolev and A. I. Larkin 
for a useful discussion, and D. I. Khomskir and V. V. 
K U Z ~  for reviewing the manuscript and valuable re- 
marks. 

Note added in proof (20 June 1978). It is shown in Ref. 
15 that in a disordered system of fermions with inter- 
action the energy conservation law and the localized 
character of the wave functions restricts the decay of 
the quasiparticles, and their damping decreases more 
rapidly than (a - when the quasiparticle energy a 
approaches E,, if p ( t )  near c, is  singular. It can be 
assumed that in this situation, too, the damping of the 
quasiparticles near E, i s  small enough. 
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l ) ~ h e  question of the applicability of the Fermi-liquid ap- 
proximation to our system remains open from the theoretical 
point of view. This approximation does not hold for 
ordinary ordered one-dimensional systems of fermions 
wtth spins, since a charge-density-wave instability and a 
gupercanducting instability o r  a spin-density-wave insta- 
bility alter the ground state of the system. t8*91 In a system 
of spinless fermions there i s  no spin-density-wave insta- 
bility o r  a superconducting instability with momentum q = 0. 
In a strongly disordered system we have also no charge- 
density-wave instability or a superconducting instability 
with momenta q z 0. Thus, a system of spinless interacting 
Fermi particles, equivalent to the Heisenberg Hamiltonian 
of spin-l/2 particles with random interaction, constitutes a 
normal Fermi liquid. In the case of a normal three-dimen- 
sional homogeneous Fermi liquid the damping of the quasi- 
particles near the Fermi level i s  small because of the con- 
straints imposed on the decay by the energy and momentum 
conservation laws (see Note Added in Proof). 

2'We know now of magnetic crystals that can be described 
within the framework of a one-dimensional model of spins 
with n = 1 ,  2, and 3. "I1 It is  not clear a s  yet, however, 
whether exchange interadion with sufficiently strong dis- 
order can be realized in real compounds in the situations 
n = l  and 2. 

3 ) ~ h e  conclusion that x increases a s  T- 0 in the Heisenberg 
model as  a = 0 is  cited in Ref. 2. It follows from (11) that 
the growth of x a s  T- 0 in the continuous models (n = 2, 3) 
occurs when fJh) decreases a s  x-- 0, but not faster than 
logarithmically, i. e. , not faster than I In x I d  with 1 >B > 0. 

4 ) ~ f  we consider two neighboring clusters with strong inter- 
action 1, within the clusters and weak interaction J,<< I, 
for spins k and k+ 1 on their boundary, then the energy 
required to destroy the antiferromagnetic order for the 
spins k and k + 1 is proportional to J,  only if each cluster 
has an odd number of spins, and furthermore in this case 
the proportionality coefficient depends on the number of 
spins in the clusters. In all the remaining situations the 
interaction energy of the clusters is proportional to J i .  
Under these conditions all  the excitations of the quantum 

chain can be delocalized, a s  is the case in the quantum XY 
model (see Ref. 7).  The cluster interpretation cannot be 
used to describe excitations of the delocalized type. 

5 ) ~ h i s  result is connected with the fact that in a one-dimen- 
sional spin-112 system there is no order even a t  T =  0. lid' 
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Scattering of light in smectic A 
I. F. Lyuksyutov 
L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences 
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Zh. Eksp. Teor. Fiz. 75, 7-763 (August 1978) 

It is shown that because of an anomalous momentum dependence, fluctuations of the deviation of layers 
(the Landau-Peierls mode) lead to strong fluctuations of the modulus of the order parameter. This 
produces additional scattering of light, which can be observed at small scattering angles when there is 
zero momentum transfer in the plane of a layer. 

PACS numbers: 61.30.Cz, 78.40.D~ 

A smect ic  liquid c r y s t a l  of type A is a sys tem with 
one-dimensional periodicity, In it, as in a nematic ,  
the  molecules are oriented along a cer ta in  axis; and in 
addition, t h e r e  is adens i ty  wave along th i s  a x i s  because 
of ordering of the cen te rs  of m a s s  of the  molecules. 
A smectic A is usually represen ted  as a sys tem of 
l a y e r s  with a thickness  of the  o r d e r  of the  length of a 
molecule, in each of which elongated, rod-shaped mo- 

lecu les  are ar ranged  with t h e i r  long a x e s  along the 
n o r m a l  to  the  l ayer .  Fluctuations of the displacement 
of the  l a y e r s  in such  a sys tem,  with one-dimensional 
periodicity, were considered by Landau and ~eier1s.c ' '  
Let t h e  l a y e r s  b e  perpendicular to the  z axis, and let 
u be  t h e  displacement  of a layer  f r o m  the equilibrium 
position. Then t h e  f r e e  energy F of such  a system, in 
the approximation quadrat ic  with respec t  to  11, has  the 
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