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Magnetic ordering of band electrons in systems that are unstable to electron-hole pairing is considered. In 
a doped excitonic dielectric the spatial period of the order parameter is not commensurate with the crystal- 
lattice period. The phase diagram is plotted and the line of transition from the inhomogeneous 
(noncommensurate) state of the excitonic dielectric into an inhomogeneous state of an excitonic 
ferromagnet is determined. In the ferromagnetic phase the system breaks up into domains whose 
dimensions depend on the impurity concentration. In nonequilibrium systems such as a pumped excitonic 
dielectric, a magnetic state with long-wave modulation of the order parameter can also set in, but the 
phase diagram differs substantially from the equilibrium case. The region of inhomogeneous solutions on 
the phase diagrams is wider than that of homogeneous ones for both equilibrium and nonequilibriwn 
systems. 
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$1. INTRODUCTION 

It is well known that in systems with electron-hole 
pairing, at a definite ratio of the singlet and triplet cou- 
pling constants, a charge-density wave (CDW) can co- 
exist with a spin-density wave (sDw).~'] In a metal-di- 
electric phase transition, the structure distortions a re  
due to the charge-density wave and the antiferromag- 
netic properties to the spin-density wave; ferromag- 
netism sets  in when the CDS and SDW coexist. The or-  
der parameter is in this case a two-component quantity 

;\=A.+A,u, (1) 
where a is a vector made up of Pauli matrices, while 
A, and A, a r e  the singlet and triplet order parameters. 
In the equilibrium casec1] the existence of A, and A, 
leads to the appearance of spontaneous magnetization, 
whereas in nonequilibrium systems the simultaneous 
presence of the singlet and triplet order parameters 
may, generally speaking, not lead to the appearance of 
magnetizati~n.['~ 

All the investigations of two-band equilibrium systems 
in which CDW and SDW can coexist['] were made under 
the assumption that the order parameters A, and A, a re  
periodic and have either the period of the crystal lattice 
(if the initial electron spectrum was of the form &,(p) 
= -E,(P), o r  with double this period (if .cl(p) = -%(p +w), 
where w is half the reciprocal-lattice vector of the cry- 
stal). It is known,[31 however, that even in system with 
one type of pairing (singlet o r  triplet), in a definite 
range of temperatures, electron and hole density differ- 
ences, and interaction constants, the solution energy- 
wise more favored i s  the one for an order parameter 
whose period i s  not commensurate with the lattice peri- 
od. If the extrema of the energy bands coincide in mo- 
mentum space, an additional long-wave modulation with 
period -(nuF)-' is superimposed on the variation of A, 
and A, with the period of the crystal structure ( 2 ~ ) ~ ' .  
If the band extrema a r e  separated in momentum space 
by a vector w, then the period of the system will be 
doubled, and superimposed on it is also a long-wave 
modulation with period -(nu,)-', where n i s  the differ- 
ence of the concentrations of the electrons and holes in 

energy units, and v, i s  the velocity on the Fermi sur- 
face. 

The conclusion drawn in Ref. 1 that the dielectric 
phase (the excitonic-insulator phase) i s  unstable to a 
transition into a ferromagnetic phase was based on a 
calculation of the paramagnetic susceptibility of a com- 
mensurate (subsequently also called homogeneous) di- 
electric phase. It will be shown here that the results of 
Ref. 1 remain valid in the phase diagram region (A,,, A,, 
>> Zn), where the influence of the long-wave modulation 
is small  (A,, and A,, a r e  the singlet and triplet order 
parameters in the absence of doping). The conclusion 
that regions where CDW and SDW coexist remains in 
force also for that part of the phase diagram in which 
the noncommensurability (inhomogeneity) of the order 
parameter i s  substantial and the results of Ref. 1 do not 
hold. 

Besides a doped equilibrium system, we consider 
here a nonequilibrium system of the pumped excitonic- 
dielectric type,14] in which solutions with long-wave 
modulation can likewise be more favored in the case of 
one type of pairing than unmodulated ones. Just  a s  in 
the equilibrium case, the region of existence of non- 
commensurate (inhomogeneous) solutions for A, and A, 
turns out to be wider than that for homogeneous ones. 
For the phase-diagram points A,,, A,, >> 5,5n) all the re- 
sults of Ref. 2 remain valid, since the influence of the 
long-wave modulation in this region i s  small, but the 
conclusion that A, and A, coexist extends over a wider 
region of the diagram than in the homogeneous case.['] 

The problem of magnetic ordering with long-wave 
modulation, in the case of a single-mode laser  regime, 
is also considered in the present paper. It is mathe- 
matically similar to the problem of magnetic ordering 
in an equilibrium system. It must be recognized, how- 
ever, that in the laser  regime the spatial long-wave 
modulation of the order parameters i s  determined not 
from the condition that the f ree  energy be a minimum, 
a s  in the equilibrium system, but by external conditions 
(e.g., the choice of the resonator parameters). Al- 
lowance for this circumstance does not change qualita- 
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tively the phase diagram, although the very fact of pair- 
ing in a state with nonzero frequency can lead in the 
case of weak damping to instability of the system to a 
transition into a multimode regime.C5' 

8 2. MAGNETIC ORDERING WITH ' 
NONCOMMENSURATE PERIOD IN A DOPED 
EXClTONlC DIELECTRIC 

Consider an isotropic semimetal having one electron 
and one hole Fermi surface, both centered a t  a single 
point of the Brillouin zone, To investigate the transition 
of such a system into an inhomogeneous magnetic sys- 
tem we used the Hamiltonian of Ref. 1, in which we re- 
tain only the terms that determine the instability of the 
semimetal to the formation of CDW and SDW. We shall 
treat  the problem hereafter in the high-density approx- 
imation (e2/kviv,>> 1, where e i s  the electron charge and 
v, i s  its Fermi velocity), so  that all the interaction po- 
tentials in the Hamiltonian of the problem will be re- 
garded a s  constants independent of the momentum. 

We analyze the system with the aid of the Green's 
functions 

Gttm@(r ,  r', t ,  t') =-i(T+,s(r,  t)$,c+(r' ,  t ' ) ) ,  (2) 

Fj,ae(r, r', t ,  t r )  =-i<Tlp,.(r, t)lp,,+(r1, t') ), izi. (3) 

Here iand j a r e  the band indices; a and f i  a r e  the spin 
indices; +i, and a r e  the electron annihilation and 
creation operators. For the functions (2) and (3) we can 
obtain the system of equations 

The i index in (4) denotes the spin projection on the z 
axis in the so-called z-representation,['] in which the 
vector A, i s  directed along the z axis. In accord with 
(I) ,  in this representation 6 becomes a diagonal matrix 
with components A+ and A,: 

A* (1) =A, ( r )*At(r ) .  (5) 

We investigate the system at a given difference be- 
tween the electron and hole densities, a s  was done in 
Ref. 1 for the homogeneous case. We express the elec- 
tro-neutrality condition in the form 

d o  dr 
N= I [GI,+ ( o ,  r ,  1 )  +GI- ( o ,  r ,  r )  -G2,+ ( 0 ,  r ,  r )  -G2.- ( o ,  r )  1- 

4n ' (6) 

where N i s  the concentration of the doping impurity. We 
shall need later the difference between the electron and 
hole densities in energy units, n =N/~N(O), where ~ ( 0 )  
is the state density on the Fermi level. 

A. Solution when the phase of the order parameter is not 
fixed 

Assume that the Hamiltonian of the system does not 
contain terms that fix the phase of the order parameter. 
In this case the self-consistency equations take the form 

A 8 ( r ) = -  I [ F . . + ( o .  r , r ) + F , , - ( o ~ r )  ] d o ,  
4% 

, r - - [E,,+ ( o ,  r, r ) - F z , - ( o ,  r .  I )  ] d o ,  A ( ) -  ~ T J  (7 

where g, and g, a r e  the singlet and triplet coupling con- 
stants. The simplest solution of the system (7), with al-  

lowance for (4), will be sought in the form 

A+ ( r )  = A ,  exp( i2qr) .  (8) 

where A ,  and q a r e  quantities to be determined. Al- 
though the solution (8) is, strictly speaking, valid only 
if the order-parameter phase is not fixed, it neverthe- 
less makes it possible to answer, a t  least qualitatively 
(and even quantitatively, with not too large an e r r o r  a t  
small A ,) the question of the behavior of the line of the 
phase-transition into the magnetic state for more real- 
istic models. 

In the homogeneous case q =  0 (Ref. 1) i t  is possible to 
find analytically the line of transition into the ferromag- 
netic state on the (A,,, A,,) phase diagram. This line 
determines the boundary of the region in which nontrivial 
solutions of the system (7), A,+ 0 and A,+ 0, can coexist. 
In the inhomogeneous case, i.e., a t  q+ 0, i t  is impos- 
sible to obtain an analytic solution for the transition line, 
and we therefore perform a numerical calculation for the 
case of one order parameter, and then determine on the 
phase diagram the stability limit of the obtained solution. 
The information contained in Ref. 3 on the behavior of the 
system in the case of one order parameter is insufficient 
for our purposes, since Ref. 3 gives only the function 
A(n), but not q(n) and p(n) (p is the chemical-potential 
shift due to doping). The system (7) for the order pa- 
rameters can be reduced to the form 

r*+=(p*Q)IA+, r*-=(p*Q)lA- ,  Q=v~q ,  
G(r)=~(~~~-i)si~nr~{~r~t\rch~r~-(r~-l)'~}. (10) 

The electroneutrality condition (6) reduces to 

where 

y ( r ) = @ ( l r l - l ) s i g n r . { l r l  ( r Z - 1 ) " - A r c h l r l ) .  (12) 
A numerical solution of the system (9)-(12) for the 

case A+ = 1A- 1 = A is shown in Fig. 1 (curves 1,2,  and 3 
show A(n), p(n), and Q(n), respectively). The value of 
Q was chosen to minimize the f ree  energy, a s  was done 
in Ref. 3. 

To find the line of the second-order phase transition 
from the excitonic-dielectric state into the excitonic 
ferromagnet state, we expand the system (9)-(12) in 
powers of A, up to the quadratic terms (we assume that 
in the initial phase there existed only singlet pairing, 
and A, =O; all  the results for the case of an initial phase 
with triplet pairing a r e  obtained by making the substitu- 
tions A,, -A,,, A, - A,). After cumbersome calcula- 
tions, we obtain the following equation for the A, = O  line 
on the (A,,, A,,) diagram. 

At ,l- > As: 

- + ( - A ) ~ J - - [ + + ( + ~ - A , ) ~ ] ) .  (13) In--- 
0 2Q 
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FIG. 1. 

FIG. 2. 

At Jp-I>A,, p-<O: 
A.o A a 

ln-= - ~ { [ l ~ - l + ( ~ - a - ~ ~ a ) p ~ ] - 1 + [ ~ + + ( p + 2 - ~ ~ ) ' ~ l - 1 } .  (14) 
Ato 24 

It is seen from Fig. 1 that at A,, - 1 . 3 2 4 ~ ~  we have As - 0, 
p - n, Q - 1.2n, i.e., p-<O, which corresponds to Eq. 
(14). The coupling-constant region in which the magnetic 
transition-line lies, a s  seen from (14) is characterized 
by the relation A,,< A,,. As shown in Ref. 6, for  a 
semimetal with equal electron and hole densities (n=O) 
this result i s  unphysical, for a growth of A, in the co- 
existence region would lead in this case to a physically 
meaningless decrease of A,. Thus, a s  A, -0 the sys- 
tem (9)-(12) has no magnetic solutions, in contrast to 
the commensurate case.['] The reason is  that although 
the absolute magnitude of the gap IA(r ) l  i s  a homogene- 
ous and isotropic quantity, the energy spectrum of the 
system in the inhomogeneous state of the excitonic di- 
electric i s  anisotropic: 

As a result of this anisotropy, the chemical potential @ 

at q larger than a certain value lies in the conduction 
band of the excitonic dielectric for some directions of 
the momentum p, whereas for other directions it lies 
either inside the gap o r  even in the valence band, i.e., 
a partial redistribution of the electrons among the bands 
takes place in the system. With increasing A,, the band 
"overlap" effect decreases and at p 2 Q, a s  seen from 
(15), a line of transition into the magnetic phase ap- 
pears. On the (A,,, A,,) diagram (Fig. 2) this corre- 
sponds to A,, = 1.333n. Finally, with even further in- 
crease of A,, the relation @- > A, begins to be satisfied, 
Q -0, and to find the transition line we must use Eq. 
(13). It is easy to show that a s  Q - 0  Eq. (13) reduces to 

Recognizing that a s  Q -0 we have in the case of one type 
of pairing 

u2-A.'=nZ, A.2=A,,(A,p-2n),  (18) 

we can obtain for the line of transition into the magnetic 
phase a s  Q - 0  the asymptotic expression 

which coincides, a s  i t  should, with the result of Ref. 1. 

We have so fa r  regarded the difference n between the 
electron and hole densities a s  specified. Inequality of 
these densities can be due either to doping o r  to the 
presence of some Fermi-surface sections that act a s  
reservoirs of electrons and holes. In the latter case, a 
fixed n corresponds to a zero capacity of the reservoir. 
We can consider also another limiting case, a reservoir 
of infinite capacity, which in our problem corresponds 
to fixed chemical potential p . It was shown earlierL1] 
that in the homogeneous case no ferromagnetic solution 
is realized at fixed p, since a more profitable nonmag- 
netic solution exists. To analyze the system in the 
presence of long-wave modulation we have used the nu- 
merical results of Fulde and  erre ell,[^^ who investigated 
mathematically an analogous problem of the inhomo- 
geneous state of a superconductor in an exchange field. 
At 1.324 p <  A,, < p f l  the magnetic transition lines lies 
in the region A,, > A,,, i.e., the result is unphysical, a s  
already mentioned above. At A,, r a first-order 
phase transition takes place into a homogeneous state 
with A, =Aso in which, a s  already mentioned, no mag- 
netic solution i s  realized. Thus, a t  fixed p there i s  no 
region of magnetic solutions on the phase diagram. We 
emphasize that all the foregoing is valid if the Fermi 
surfaces have the same shape. On the other hand, if the 
Fermi  surfaces have individual non-coincident sections, 
then a region of magnetic solutions will apparently be 
present on the diagram at a finite reservoir  capacity. 

B. Solution at fixed phase of order parameter 

As already mentioned, a solution in the form (8) is in- 
correct  for a doped excitonic dielectric, since the 
Hamiltonian of the system contains terms that fix the 
phase oi +he order parameter. We consider now the 
case when the order  parameters a r e  real (we assume 
that imaginary order  parameters correspond to a state 
that is energywise less  favored, an assumption correct 
at certain values of the interaction c o n ~ t a n t ~ ' ~ ) .  The so- 
lution must be sought in the form of a superposition of 
solutions of the type (8): 

A. ~ ( r )  = A , ,  e s p ( 2 i q r ) + ~ : , ,  ex*(-2iqr) .  (20) 

In this case it is impossible to obtain an equation in 
closed form for the order parameters A, and A,, since 
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Eq. (20) is, strictly speaking, not an exact solution. At 
small  As and A,, however, a representation in the form 
(20) is valid and the problem can be solved by perturba- 
tion theory. To this end, we represent the function 
Fi,(r ,  r', t, t ' )  in the form 

F,,* ( r ,  r', t ,  t ' )  =F;,, (r-r', t ,  t l ) e x p [ - i q ( r + r l )  ] 

+F-*,, (r-r', t ,  t1 )exp[ iq(r+r ' )  I. (21) 

Substituting (21) and (20) in (4) and discarding the higher 
harmonics, we can obtain the following system of equa- 
tions for the Fourier components of the Green's func- 
tions (2) and (3): 

( a - E )  G I I * = ~ + A * F : = L ( W  P - 9 )  +ArsF:q, 11(0, P + P ) ,  

(o+E+v&.q)F-',,,(o, p)-A*Gii*(o,  P - q ) .  
A similar system of equations can be obtained for the 
functions G $, and F i,. 

The system of equations for the order parameter will 
take the following form: 

ig. 
A , = - 7 -  [ A + l + + A - I - ] ,  A,= - i-[A+I+-A-1-1,  g* 

2 
(23) 

where 

The system (23)-(24) is valid a t  I A , I  <<v,q, for i t  is 
precisely in this case that the higher harmonics that a r e  
multiples of q can be discarded. Therefore a s  9-0, in 
contrast to (9), the solution (23) will not coincide with 
the solution in the commensurate case q=O. The rep- 
resentation of the Green's function in the form (21) 
makes i t  possible to take into account the change that 
occurs in the spectrum of the system a s  a result of the 
appearance of the order parameter. In fact, a t  small A 
we expand in the perturbation-theory ser ies  not the 
Green's functions of Eqs. (22), but the mass operator. 
In the investigated case this i s  extremely important, 
since the magnetic state is the result of just the spin 
splitting of the bands. It can be shown that a formal ex- 
pansion of the Green's functions in the usual perturba- 
tion-theory ser ies  leads to impossibility of a ferromag- 
netic state even in the homogeneous case, but this con- 
tradicts the result of Ref. 1. 

The determination of the magnetic solutions of the 
system (23)-(24) is an even more complicated problem 
than in the case (9). We consider therefore the nonmag- 
netic solution A+= (A- ( = A,. It can be shown that a t  vFq 
>> As we have 

A,'=i,SA,,(A,,-i.324n). (25) 

For  comparison we note that the solution of the system 
(9) a t  A+= I A- ( = A, and As << vpq is of the form 

A,'=An~(A.,-1.324n). (26) 
Comparison of solutions (25) and (26) shows that (25) is 
favored. As to the line of the transition to the magnetic 
state, a t  small  As the difference between (25) and (26) is 
insignificant, and the analysis of Sec. A remains in 
force. 

In contrast to the exponential solution (8), in which 
the modulus of the order parameter remains a homo- 
geneous and isotropic quantity, when the solution takes 

the form (20) the modulus of the order parameter varies 
in space. This means that the distribution of the elec- 
tron density is also spatially inhomogeneous and the 
system breaks up into domains. We assume that in the 
case of doping the positive charge of the ions is uni- 
formly distributed, s o  that the fluctuations of the elec- 
tron density disturb the local electroneutralitp. The re- 
sultant electric fields prevents inhomogeneous distribu- 
tion of the electrons, s o  that a t  a certain value of A and 
a t  qmi, << A/v, the noncommensurate of the system be- 
comes energywise unprofitable. With further increase 
of A (or decrease of n)  a phase transition takes place 
from an inhomogeneous to a homogeneous state. There 
exists thus a mechanism that limits the domain growth 
and is due to violation of the local electroneurality of 
the system. The region of existence of inhomogeneous 
magnetic solution will be bounded out a t  lower and 
higher impurity concentrations. 

C. Energy spectrum at a fixed order-parameter phase 

The analysis of the spectrum of single-particle ex- 
citations in a noncommensurate state of an excitonic di- 
electric leads, in the case when the order-parameter 
phase is not fixed, to relation (16). At a fixed phase of 
(20), when it is impossible to obtain an equation in 
closed form for the Green's functions and the order pa- 
rameter, the energy spectrum can be determined by a 
somewhat different method. We introduce the effective 
Hamiltonian of the system 

H = H ~ U . + A  (r )o . ,  (27) 

where Ho = -V:/2m - E,; a, and a, a r e  Pauli matrices. 
We write the wave function of the system in spinor form: 

where the subscripts 1 and 2 pertain to the conduction 
and valence bands of the excitonic dielectric, respec- 
tively. For  the wave function (28) we can write the ef- 
fective Schradinger equation 

An equation similar to (29) was used in Ref. 5 to in- 
vestigate the inhomogeneous state of a Peierls  dielec- 
tric, and in Ref, 9 to find the excitation spectrum of the 
electrons of a semiconductor in the field of a standing 
electromagnetic wave. 

We a r e  interested in the form of the energy spectrum 
near the Fermi surface, so  that (29) with Ipl-p, can be 
simplified (p, is the Fermi  momentum). Recognizing 
furthermore that A is given by (20) and choosing the z 
axis of the system in the direction of the vector q, we 
easily obtain 

where v, is the projection of v, on the z axis, 5 =p2/2m 
- E p ,  while cp, and cp, a r e  the slowly varying parts of the 
wave function 

\ Y I . 2 = e s p ( i ~ r ) p , . ~ ( r ) .  (31) 

A system similar to (30) was solved in Refs. 8 and 9. 
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We present therefore only the final results  of the solu- 
tion. 

At A<<u,q the system (30) can be solved by the weak- 
coupling method. The energy spectrum acquires a t  f 
=&2v,q a gap of magnitude 2A. In addition, microgaps 
with size on the order of A2/vFq appear in the spectrum 
at  5 = 2v, qn(n = 0, *2). We note that these results  can be 
obtained also from an analysis of the system (22) for the 
Green's functions. 

At A>> v,q Eq. (30) is solved by the tight-binding 
method for  141 <<A. The energy spectrum breaks up in- 
to se ts  of allowed and forbidden minibands. The posi- 
tions of the midpoints of the allowed bands is given by 

En=(2Aquzn)'2(EnzaA2, n=O, 1, 2.. .). (3 2) 
The width of the allowed bands i s  exponentially small  

a t  small E n  and is of the order of (v,q~)'/~exp(-A/v,q). 
With increasing n the width of the allowed bands in- 
creases, and the width of the forbidden bands decreases. 
At 141 >> A the spectrum becomes continuous (E 5). 

In accord with the statements made in Sec. B, the 
case A >> v,q can be realized a t  q > qmh in a bounded re- 
gion of q. Although the relation A(r) = A cosq . r i s  not 
strictly justified in this case, the general character of 
the spectrum, i.e., the presence of minibands a t  IE 1 
<< A, remains nevertheless correct. ~ ~ k h n e [ " ]  has 
shown that for any sufficiently slowly varying potential, 
in the quasiclassical approximation, the results deduced 
above remain in force, and that a t  IE 1 << A the width of 
the allowed bands, as well a s  the distances between 
them, do not depend too strongly on the type of the po- 
tential. 

For real  system, the representation of ~ ( r )  in the 
form (20) is, of course, only approximate. The form of 
A(r) depends essentially on the symmetry of the con- 
crete structure, and the Coulomb interaction that hin- 
de r s  the inhomogeneous distribution of the electrons 
must be taken into account consistently from the very 
s tar t  of the calculation. It appears that such a problem 
can be solved only numerically even for the simplest 
structures. 

83. MAGNETIC ORDERING AND LONG-WAVE 
MODULATION IN A PUMPED EXClTONlC DIELECTRIC 

When an excitonic insulator with gap 2A and with a 
high energy Ew, of the Debye phonon is pumped, the dis- 
tribution function of the excitation can take a quasi-Fer- 
mi form.[21 In this case, the state with q=O is unstable, 
a t  sufficiently low temperatures, to long-wave modula- 
tion of ~ ( r ) . [ ~ '  The phase of the order parameter A(r) i s  
not fixed in the nonequilibrium system under considera- 
tion, and we seek therefore a solution in the form (8). 

specifying the frequency 52 = 2 ~ / f i  of the high-power 
monochromatic source.c21 We shall not consider this 
case specially, but note that in contrast to an equilibrium 
with a fixed chemical potential, a nonequilibrium sys- 
tem can have magnetic solutions a s  well a s  a saturation 
of the magnetic state, something not realized in the non- 
magnetic state of a pumped excitonic dielectric. We 
note also that in the case of a pumped system the num- 
ber of electrons is equal to the number of holes, s o  that 
the condition of local electroneutrality is preserved, in 
contrast to a doped system. Another fundamental differ- 
ence between the solutuions obtained for pumping and for 
doping is that even in the presence of two nonzero order 
parameters As and A,, no summary magnetic moment i s  
produced by pumping, since the moment of the electrons 
above the gap is cancelled by the moment of the hole be- 
low the gap. In the case of doping, on the other hand, 
the magnetic moment is due to the presence of excess 
carr iers  of like type (electrons o r  holes). 

Following Ref. 2, we write down a system of equations 
fo r  the order parameters A,: 

Although the equations for the Green's function and for 
the order parameters in the case of a pumped excitonic 
dielectric (33) is outwardly similar to that for  a doped 
excitonic dielectric (9), the solutions (33) and (9) differ 
substantially. The functions G ( r )  in (33) a r e  defined a s  
follows: 

where r : have the same meaning a s  in (10). The sub- 
stantial difference between the functions (34) and (10) is 
due to the fact that in the case of doping there is a sin- 
gle Fermi level p of the electrons and holes, whereas 
in the case of pumping there a r e  respectively two Fermi 
quasilevels kp for the electrons and holes. 

The condition that the excitation concentration n be 
specified differs considerably from the condition for the 
doping problem, that the density difference be given. 
The cause of this difference i s  the band "overlap" in the 
case of sufficiently large Q>A. In the case of doping, 
when the concentration difference of the electrons and 
holes is specified and i s  governed only by the impurity 
concentration, the number of electrons that go from the 
valence to the conduction band a s  a result of the "over- 
lap" is equal to the number of produced holes, so  that 
the "overlap" does not influence the form of Eq, (11). 

Assume that an external source excites quasiparticles In the case of pumping, the total number of electrons in 
and quasiholes having a fixed concentration n, and that the conduction band i s  equal to the sum of the number of 
the positions of the Fermi  quasilevels (+p for the quasi- electrons n injected into the band by the external source 
particles and -@ for the quasiholes) a r e  determined and the number of electrons due to the overlap. What i s  
from the condition that the excitation density be given, fixed is not the total number of electrons, but only the 
In principle i t  i s  also possible to realize another situa- number injected by the source. Therefore the connec- 
tion, wherein the Fermi quasilevels *p  a r e  fixed by tion between n, p ,  and A takes the form 
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Q A-= 
7 (r++) -T (r-?) -T. (K)) + --@{T ( r + - ~  -7 ( F - - ]  -T (L)! I A - I  

where 
~ ( r )  - 0 ( r - i )  [r(rz-i)'h-Arch(r) I. 

In (351, y(Q/A,) is the number of electrons with spin 
*1/2 produced in the conduction band by the overlap. 

To construct the phase diagram of a pumped excitonic 
dielectric we must solve the system (33)-(36) numeri- 
cally. Besides the second-order phase transition into 
the state with A,#  0 (or (As# 0), there is also a first-or- 
der transition line, on which A, and A, appear jump- 
w i ~ e ~ ~ '  We confine ourselves to obtaining the  equations 
for the second-order transition lines. An analysis sim- 
ilar to that of O 2 leads to the following system: 

At p, < A,: 

In contrast to the corresponding expressions of 5 2, the 
line of transition into the "magnetic" state lies always 
in the region A, > A, (we assume that singlet pairing 
was realized in the system in the nonmagnetic phase). 
An analysis of (37) and (38) shows that the second-or- 
der transition lines shift towards an increase of the re- 
gion of existence of "magnetic" solutions with long-wave 
modulation, compared to the case without modulation. 
The line of first-order phase transition into the metallic 
phase also seems to shift towards an increase of the re-  
action of coexistence of A$ and A, compared with the 
case q = 0. 

S4. LONG-WAVE MODULATION IN THE LASER 
REGIME 

We consider a broadband semiconductor that is sta- 
ble, under equilibrium conditions, to electron-hole 
pairing. When pumped by an external source of elec- 
trons and holes with frequency 51> E,, a quasi-Fermi 
distribution of the nonequilibrium ca r r i e r s  can be e s  - 
tablished in the system, and population inversion takes 
place. If the extrema of the conduction and valence 
bands of the semiconductor coincide in momentum 
space, a simultaneous Bose condensation of electron- 
hole pairs and photons takes place into a state with non- 
zero frequency, meaning that the system goes over in- 
to a lasing regime. Since the doping makes the electron 
and hole densities unequal, singlet and triplet electron- 
hole pairings can coexist. The combined magnetic mo- 
ment is then different from zero, just a s  in the case of 
a doped excitonic dielectric, i.e., the resultant state 
will be ferromagnetic. 

To describe the laser  system we can use Eqs. (9)- 
(12). In this case IJ. must be taken to mean the Fermi  
quasilevel shift due to doping, and E, to mean the quan- 
tity (51 -E,)/2. The transition to such a representation 
is effected by a known unitary tran~formation.~"' 

The difference between the considered problem and 
the equilibrium one is that the long-wave modulation, 
which is characterized by the quantity Q, is determined 
by external conditions (by the choice of the resonator 
parameters etc.), and not by minimizing the energy as 
in the equilibrium case. In addition, the phase of the 
order parameter is not fixed in the nonequilibrium sys-  
tem, and the solution can be represented in the form (8) 
for the entire range of variation of the interaction con- 
stants and of the concentrations n. We note that repre- 
sentation of the solution in the form (8) corresponds to 
the regime of a traveling wave in a l a se r  (the standing- 
wave regime would correspond to a representation in 
the form (20)). 

An analysis similar to that in § 2 leads for small 
Q (Q<< n) to the following line of phase transition to the 
magnetic state: 

where 0 ( @ / n 2 )  is a small  positive increment. Thus, a t  
Q#O the region of existence of the magnetic solutions 
expands compared with the case Q =O. This result is 
not valid at excessively small dampings in the system, 
when the single-mode traveling wave regime turns out 
to be unstable.CsJ This instability is due entirely to the 
disequilibrium of the system and is the cause of a trans- 
ition into a multimode lasing regime. 

95. CONCLUSION 

Much attention is being paid now to the investigation 
of the mechanism of ferromagnetic and antiferromag- 
netic ordering of band electrons. The antiferromagne- 
tism model proposed by FticeC31 has made i t  possible to 
explain such an important property of chromium a s  the 
noncommensurability of the magnetic period with the 
lattice period, the transition from the noncommensurate 
state into a commensurate one in CrMn alloys when the 
Mn concentration is changed, and finally the appearance 
of a strain wave in chromium and i t s  alloys. The latter 
has been interpreted by a number of Japanese authorsCl2l 
as magnetostriction due to the onset of higher harmonic 
component of the CDW against the SDW, the CDW period 
being double to SDW period. In addition to chromium 
and i t s  alloys there a r e  two other substances in which 
the antiferromagnetism is apparently described by the 
Rice model, viz., the alloys y-FeMn (Ref. 13), P-Mn 
(Ref. 14), and possibly NiS (Ref. 15). One cannot ex- 
clude, however, the possibility that the long-wave de- 
formation in compounds of this type is due to the mech- 
anism proposed in the present paper. Namely, a CDW ap- 
pears against the background of an SDW, has the same 
period, and their beats manifest themselves a s  a strain 
wave. In this case there may be no total magnetic mo- 
ment in the system, long-wave fluctuations of the mag- 
netic moment exist in the simple, and the chemical unit 
cell of the material in this phase is approximately dou- 
bled. The phases of the CDW and SDW a r e  shifted by 
r/2 in this case. 

In a number of compounds, such a s  Sc,In and ZrZn,, 
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a transition to a ferromagnetic state is observed. These 
substances a r e  apparently well described by the exciton- 
ic-ferromagnet model,['] s o  that i t  is possible to apply 
to them (of course, only qualitatively), the results  ob- 
tained above. When the phases of CDW and SDW having 
the same period coincide, the summary magnetic mo- 
ment of the sample is not equal to zero and a domain 
structure is produced. It is of interest to investigate 
such systems near the temperature of the transition to 
the ferromagnetic state, a s  an attempt to observe in 
them long-wave oscillations of the density and of the 
magnetic moment. A theoretical calculation with a two- 
component order parameter and a t  finite temperatures 
is a rather laborious task even in the homogeneous case, 
and will therefore be the subject of a separate paper. 

Interest in the investigation of phase transitions in 
nonequilibrium system is stimulated by the search of 
means of raising the critical superconducting temper- 
ture. We have shown here that under the influence of a 
pump source the magnetic ordering due to collective ef- 
fects of coexistence of singlet and triplet electron-hole 
pairings turns out to be inhomogeneous (modulated), 
with a period that is determined by the pump intensity. 
This effect can be observed in experiment by magnetic 
measurements. 
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Susceptibility and Knight shift in one-dimensional disordered 
spin systems with isotropic antiferromagnetic interaction 
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A one-dimensional model of ctassical spins with n = l,2, and 3 components (Ising, planar rotator, and 
Heisenberg models) and with random antiferromagnetic interaction J of the nearest neighbors is 
considered. In such a system, the average thermodynamic value of the spin at a site is different from zero 
in a magnetic field. The value of s is random, and its distribution is described by a function /,(x). An 
integral equation is obtained for A(%) in weak magnetic field, assuming the distribution function fJ(x) to 
be given. The moments of the distribution of s are calculated as functions of the type of function fJ(x) 
and of the temperature. Conditions under which the susceptibility of the system x increases as T+O are 
analyzed. It is shown that if the susceptibility X-+m as T+O, then the distribution of s becomes 
symmetrical as T+O, and the most probable value i of s tends to be zero. The results are used to 
interpret the experimental data on the temperature dependence of the paramagnetic shift of the NMR in 
quasi-one-dimensional Qn(TCNQ), crystals. 

PACS numbers: 75.10.Hk, 76.60.Cq 

1. WTRODUCf ION one-dimensional TCNQ sal ts  with asymmetric cationsc11 
and of magnetic polymers such a s  polymetalphos- 
phines.[21 

This article is devoted to a theoretical investigation 
of the properties of one-dimensional spin systems with The class of magnetic polymers has not yet been in- 
random exchange interaction. Interest in  these systems vestigated in  great  detail. All that is known is the tem- 
is due to the experimental investigations of the quasi- perature dependence of the susceptibility of two repre- 
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