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It is shown that the Landau-Lifshitz equations admit the existence of self-localized solutions of the 
magnetic solution type if allowance is made for the dissipation and internal magnetic fields in the presence 
of a magnetizing field parallel to anisotropy axis and an external magnetic field rotating in a plane 
orthogonal to this axis. 

PACS numbers: 75.10. - b 

1. The existence of self-localized states of the mag- 
netic moment in uniaxial ferromagnets has been demon- 
strated in several These states a r e  charac- 
terized by the localization of the magnetic moment in 
respect of the polar angle 0 and precession in respect 
of the azimuthal angle cp. The problem is essentially 
similar to that of a domain structure in an effective ex- 
ternal magnetic field directed along the anisotropy axis 
and governed by the precession frequency of the mag- 
netic moment w .  In more thorough studies of the prop- 
erties of such situations, it is necessary to solve the 
problem of excitation of self-localized states of the 
magnetic moment. 

We shall show that, in a spatially one-dimensional 
case, the Landau-Lifshitz equations admit the existence 
of self-localized solutions if allowance i s  made for in- 
ternal magnetic fields, dissipation, and an external 
magnetic field rotating in a plane orthogonal to the an- 
isotropy axis. 

If the dissipation is ignored, the problem of self-lo- 
calized (along the easy magnetization axis) states of the 
magnetic moment admits exact solution if allowance is 
made for internal magnetic fields: the problem then 
reduces essentially to one of a domain structure in an 
effective magnetic field whose component along the an- 
isotropy axis i s  governed by the pump field frequency 
w and the component orthogonal to this axis is detef- 
mined by the amplitude of the pump field It,. 

In the (w, I a J  plane, the range of existence of self-lo- 
calized states of the magnetic moment is bounded by the 

magnetic moment in the case of small-amplitude solu- 
tions is governed by the frequency and amplitude of the 
pump field. The exact solutions of the Landau-Lifshitz 
equations corresponds to self-localization in respect of 
the polar angle 0 and absence of a phase shift between 
the homogeneous precession of the magnetic moment 
and rotation of the magnetic vector of the pump field. 

If allowance is made for the damping, self-localized 
solutions a re  characterized by a phase shift between the 
azimuthal angle cp,  which determines the spatially in- 
homogeneous precession of the magnetic moment, and 
the angle of rotation of the magnetic vector of the pump 
field. There is a threshold of the amplitude of the 
pump field (Fig. 1). In the absence of damping, the 
Landau-Lifshitz equations have the first integral. If 
allowance i s  made for the damping and pump field, the 
derivative of the "first integral" has a variable sign. 
It is this circumstance that is responsible for the re- 
tention of self-localized distributions of the magnetic 
moment. 

2. The Landau-Lifshitz equations for a uniaxial 
ferromagnet in an external magnetic field rotating in a 
plane orthogonal to the anisotropy axis have the follow- 
ing form if allowance is made for the spatial inhomo- 
geneity of the magnetic moment dong this axis: 

-e (cos 9 -cos 0,)sin Of  h, cos (9-ot)cos 9, 

curve 
08'8+h*2=1 

Here, cu i s  the damping parameter; w and h i a r e  the 
(1.1) frequency and amplitude of the magnetic pump field; 

(the pump field frequency is in units of the character- 
istic frequency of precession in the anisotropy field and w 
the pump field amplitude is expressed in terms of the 
anisotropy field). It should be noted that a similar 
curve bounds the range of existence of a domain struc- 
ture in an inclined external magnetic field.c41 Small- 
amplitude localized states of the magnetic moment ap- 
pear in the vicinity of the boundary curve (1 .1) shown FIG. 1 

in Fig. 1. Well inside the region bounded by the curve 
(1.1), the amplitude of the self-localized solution in- 
creases and the characteristic size of the spatial local- 
ization region decreases. It i s  important to note that 
the characteristic size of the spatial localization of the 
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c =~~TM:/K, i s  the parameter of the magnetic medium 
(M, is the saturation magnetization and K, is the uni- 
axial anisotropy energy constant); the spatial variable 
z is expressed in terms of the characteristic size of a 
Bloch- Landau domain boundary which is (A/K,)"~ (A 
is the exchange energy constant); the temporal variable 
t is expressed in terms of the reciprocal precession 
frequency in the anisotropy field. The Landau-Lifshitz 
equations (2.1) a re  derived on the assumption that the 
internal magnetic fields in the adopted geometry of the 
problem are given by 

h'j'=-e (cos 0-cos 0.) ,  (2.2) 

where 8, is the integration constant defined below. The 
transformation 

reduces the system (2.1) to 

+o sln 0+h, cos 8 cos 0Le  sin 0 (cos 8--cos 0.) .  
ao a 

sin 0.1?_8+asin10 - = - -h, sin 8 sin t)+ao sin' 0. (2.4) at dt  az 

One of the features of the system (2.4) is the absence of 
an explicit time dependence, which allows us to identify 
the exact solutions 

In this case, the spatial distribution ( 6 ,  a) is given by 
the system of equations 

3'0 ,- [ i t  (;)'I sin 0 cos a+. sin 0+h,cos @ cos 0 

-e (COS 0-cos 0,) sin 0-0, 

a a @ - (sin' 0 -) -hl sin 8 sin 0+ao  sin' 0-0. a~ az 

A consequence of the system (2.6) is the relationship 

in which 

d- (:)'+ ($)'sin2 +sin2 ~ + e  (cos 0-cos 0,)' 

-20 cos 0+2h, cos 0 sin 0. (2.8) 

In the absence of damping ( a  =O), Eq. (2.8) gives the 
first integral of the system (2.6): 

If we identify the integration constant 8, with the polar 
angle governing the orientation of the magnetic moment 
in the spatially homogeneous case, we find that, for 
spatially homogeneous states, the polar angle 8, and the 
phase shift between the rotating pump field and the 
azimuthal angle cp, of the magnetic moment a re  given by 
solutions of the system 

o sin 0. 
cos 0.- 

sin 0.-h, cos 0. ' 
. sin @.=- - s ~ n  0.. 

h, 

Eliminating a,, we obtain 
o sin 0, 

cos 0.= sin 0.-[hl2- (ao)'sin2 0,l" ' 

Equation (2 .lo) correponds to the algebraic equation of 
the fourth degree 

[i+ (ao)2]~os40,-2wcos'  0 ,  
+[o2+hl2- l -  (ao)']cos2 0,+2w cos 0.-o'-I. (2.11) 

It should be noted that the degree of this equation re- 
mains the same in the a = O  case. 

In the absence of damping, we have a = O  and the 
phase shift 3, vanishes. In this case, an analysis of 
Eq. (2.10) demonstrates the existence in the (w,h,) 
plane of the curve (1 .l) bounding the permissible values 
of the pump field parameters for which self-localized 
states of the magnetic moment can exist. In other 
words, the boundary curve (1 .l) encloses the region of 
existence of the separatrixsolutions (magnetic solitons). 
The situation is then fully analogous to the problem of a 
domain structure in a field of arbitrary orientation, 
described by Landau and L i f s h i t ~ . ~ ~ '  If, in addition to 
a rotating pump field, there is also a static magnetic 
field h, along the anisotropy axis, the equation for the 
boundary curve becomes 

Thus, in the absence of damping, the problem of 
self-localized (along the anisotropy axis) states of the 
magnetic moment reduces to an analysis of singular 
phase trajectories (separatrices) for the first integral 

a- (!!).'-sin2 0+e (ms  0 - c a  0,)1-20 cos 0+2h, sin 0-const, (2.13) 

in which 8, satisfies 

o sin 0, 
cos 0.= -- . 

sin 0,-h, 

The merging of a pair of roots of Eq. (2.14) in the 
phase plane corresponds to merging singularities of 
the saddle and center type. This occurs on the boundary 
curve (1.1) or  (2.12) if the static magnetization field is 
not zero. 

If there is damping, the phase shift 3, no longer van- 
ishes and an analysis of Eq. (2.10) demonstrates the 
existence of a pump threshold. If Iz,/aw >> 1, which 
corresponds to a considerable excess above the thresh- 
old, the boundary curve is always close to that given by 
Eq. (1.1), which describes the range of existence of 
self-localized states of the magnetic moment. However, 
at a given pump field frequency, h,, the amplitude of 
the pump field cannot be less than the value given by 

In the (w,h,) plane, Eq. (2.15) represents a figure-of- 
eight curve, shown in Fig. 1. For h,/aw>> 1, the range 
of existence of self-localized states is, in the first  ap- 
proximation, represented by the area under the curve 
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(1.1) except fo r  the area  bounded by Eq. (2.15). The 
permissible range of values h, and w is shown shaded in 
Fig. 1. Thus, at a given pump field frequency w, the 
amplitude of the pump field has upper and lower bounds. 

In the presence of damping, an important feature en- 
suring the retention of self-localized distributions of 
the magnetic moment (of the soliton type) is the possi- 
bility of a change of the sign of the derivative of the f i rs t  
integral (2.8), which is associated-according to Eq. 
(2.7)-with a change in the sign of the spatial derivative 
of the phase shift. The establishment of a constant 
phase shift in the homogeneous magnetization region, 
namely, the condition 

corresponds to 

lim %=-sin2 8.-2w cos 0.+2h, cos Q ,  sin 0.. 
lII-- 

Consequently, a self-localized state of the magnetic 
moment should satisfy the condition 

It should be noted that the above type of self-localized 
solution corresponds to the conservation of the projection 
of the total moment along the anisotropy axis: 

We shall conclude by mentioning that the possibility of 
excitation of magnetic solitons by a traveling external 
magnetic field was considered by Akhiezer and 
B0rovik.c 51 
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The experimental dependences of the circular dichroism are used to calculate the optical-anisotropy 
parameter and the number of turns of the helix of the planar texture of cholesteric liquid crystals (CLC) 
of the homologic series of cholesteryl alkanoates. The dependence of the orientational order of CLC on 
the temperature and structure of the mesogen molecule is investigated and it is shown that this order 
decreases regularly with increasing length of the alkyl chain of the ester. A section is found, not predicted 
by the theory, where the optical-anisotropy parameter drops jumpwise in the vicinity of the 
cholesteric-smectic-A phase transition. The temperature dependences of the relative change of the 
translational order of the CLC are obtained, the growth of the order being accompanied by untwisting of 
the cholesteric helix. 

PACS numbers: 61.30.Eb, 78.20.Ek 

INTRODUCTION 

One of the least investigated problems of liquid- 
crystal physics is the structural ordering of the mole- 
cules in the cholesteric mesophase. In particular, one 
cannot regard a s  finally settled s o  very important an 
aspect of the hypomolecular structure of cholesteric 
liquid crystals (CLC) a s  the quantitative character- 
istics of the orientational ordering, the onset of 
translational order near the cholesteric -smectic-A 
transition, a s  well a s  the effect exerted on the struc- 
tural ordering by macroscopic inhomogeneities of the 
planar structure. 

Orientational ordering in the cholesteric mesophase 
can be naturally described with the aid of the orienta- 
tional-order parameter q = (P,(cos B ) ) ,  where 0 is  the 
angle between the long axis of the molecule and the 
axis of the predominant molecular orientation (direc- 
tor), and P, is a Legendre polynomial. The presence 
of the helical twist makes it inconvenient to use for 
CLC most of the experimental methods employed to 
determine q in nematics. The theoretical q(T) tempera- 
ture dependence was verified experimentally a number 
of times on nematic liquid crystals (NLC) (see, e.g., 
Refs. 1-3), and a connection was established between 
the subtle features of the structure of mesogenic 
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