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An analysis is made of the photogalvanic effect in semiconductors and metals in the case when the 
frequency of light is i n ~ ~ c i e n t  for impurity-band and band-band transitions. It is shown that the 
photocurrent appears because of the asymmetry of the scattering of electrons (holes) by impurities, 
phonons, and electrons (holes) in the field of a light wave, and that the magnitude of this photocurrent is 
proprotional to the me!Xcient of absorption of light. The order of magnitude of the photocurrent 
normalized to the absorption coefficient is the same as that for band-band optical' transitions. 

PACS numbers: 72.40.+w, 72.20.D~. 63.20.Kr, 71.38.+i 

1. INTRODUCTION trons E, and their distribution function f,. The change 

The photogalvanic effect is the appearance of a static 
photocurrent in a homogeneous noncentrosymmetric 
crystal under the action of homogeneous illumination: 
i t  has been observed in several   experiment^.^"^' The 
microscopic theory of the effect is proposed in Refs. 
4-6. However, this theory i s  limited to the case of 
impurity-bandc5] and band-bandc6] optical transitions. 

The microscopic mechanism of the photogalvanic ef- 
fect in noncentrosymmetric semiconductors is dis- 
cussed by Genkin and ~ e d n i s ~ ~ . ~ ]  in the case when the 
photon energy is insufficient for  band-band optical 
transitions. Genkin and Mednis allow for virtual optical 
transitions of an electron to other bands of a semiconduc- 
tor, which results  in the asymmetry of the renormaliza- 
tion of the electron dispersion law in the case of elliptically 
polarized light. However, this asymmetry does not give 
rise to a static photocurrent. The photocurrent J can 
be  found by integration with respect to the quasimomen- 
tum k: 

Illumination a l ters  both the dispersion law of elec- 

in the function f, due to illumination is ignored by Gen- 
kin and ~ e d n i s . ' ~ " ]  This change i s  due to intraband 
electron scattering processes. In the principal ap- 
proximation, we find that f, remains the Boltzmann dis- 
tribution function even if allowance is made for  scatter-  
ing but this  distribution function is now coupled to an 
asymmetric dispersion law. In this approximation, the 
photocurrent (1) vanishes since the total derivative in 
respect of the quasimomentum k occurs in the integral 
(1). The formal mechanism responsible fo r  the vanish- 
ing of the p h o t o c ~ r r e n t ~ ~ ~ ~ '  i s  discussed in the present 
paper. 

We shall be concerned with the photogalvanic effect 
due to free ca r r i e r s  in noncentrosymmetric semicon- 
ductors and metals. 

We shall  obtain an exact expression for the tensor of 
the photogalvanic effect (photogalvanic tensor) p,,, using 
the Keldysh diagram techniquecQ1 (analog of the Kub,o 
formula) and consider various mechanisms of electron 
scattering by impurities and phonons and the electron- 
electron scattering in metals in the presence of a light 
wave. The scattering a ~ ~ m m e t r $ ~ ]  in noncentrosym- 
metric crystals  i s  responsible f o r  the appearance of a 
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current. The use of the diagram technique makes i t  Here, Go i s  the f r ee  Green function and C i s  the mass  
possible to demonstrate clearly the contributions of operator. Substituting Eq. (5) in Eq. (6), we obtain 
various scattering mechanisms to the photogalvanic ef- -e 6 2  
fect. ' i l n = ~  SP ( p i  (G6(E lwEnwq)  GI + ) IEu-o. (7) 

2. GENERAL RELATIONSHIPS In specific applications, i t  i s  convenient to write  Eq. 
(7) in  the bas is  of the Bloch functions of a crystal  and The photocurrent j i s  a quadratic function of the field 

intensity of a light wave: t o  adopt the energy representation of the Green func- 
tions: 

ji=Q,lnEluEn".. (2) - 
Since the photocurrent i s  real ,  i t  follows that@,,=@,,,, 
i.e., the part symmetric in respect  of the indices In 
i s  real  and the antisymmetric part  i s  imaginary: 

j i = p i : . ~ I ~ ~ + i g i , ' [ ~ x ~ ~ , ,  

pJn=i/r(piin+$w.j), $ir'=-'/,i?i.se.b,. 
(3) 

The sign of the current  j changes a s  a result  of spatial 
reflections but the value of E,E,* does not change s o  
that the tensor b,,, differs  from ze ro  only fo r  noncen- 
trosymmetric crystals ,  a s  pointed out by Genkin and 
~ednis . [ '*  

Time inversion a l te rs  the sign of the current  and the 
value of E,E,*becomes EfE,, i.e., the tensor CI;,, 
changes i t s  sign a s  a result  of time inversion but there 
i s  no change of sign in the case  of iP,,. Time inversion 
also a l te rs  the sign of the dissipative constants,') s o  
that Ern becomes an odd function of the dissipative con- 
stants, and f l ,  becomes an even function. The mech- 
anism of the photogalvanic effect contributing to the 
antisymmetric part of the tensor ,t?I,nwas discussed 
ear l ie r  by the The present method f o r  cal- 
culating the tensor pi,, i s  based on the exact expression 
for  the nonlinear response (2). Instead of the standard 
Kubo formula, we shall obtain an exact expression fo r  
the photogalvanic tensor P,,, using the Keldysh diagram 
technique,cg1 which reveals  effectively the characteris-  
tic indeterminacies of the 0/0 type, typical of problems 
of this kind.*' The stat ic  cur rent  can be  described by 

Here, p i s  the single-particle density matrix; f i s  the 
four-dimensional current  operator; 52 i s  the four-di- 
mensional averaging volume; e, m,, and p a r e  the 
charge, mass,  and momentum of an electron; A i s  the 
vector potential of the electromagnetic field. In the 
Keldysh technique, a single-particle density matrix 
p(tr ,  t) i s  identical with the Green function G'(tt, t ) ,  so  
that the photogalvanic tensor p,,, i s  given b f '  

The expression (5) fo r  the tensor pi,, i s  valid in the 
cp = 0 gauge of the electromagnetic field; in this  case,  
the invariance under time inversion ensures that the 
contribution of the te rm (e2/nzoc)A to the current  also 
vanishes. Moreover, we shall use the fact that the 
time-average Green function G' depends on the product 
E,,E:,, rather  than on the separate factors El, and E L .  
We shall transform Eq. (5) employing the relationships 

ac ac-I - - - G - G ,  G-'=Go-i+Z. 
a a  a a  

Here, n and n' a r e  the band numbers and i t  i s  assumed 
that the quantities GZ,, corresponding to E, = 0, a r e  di- 
agonal in respect  of the band numbers. Equation (7) 
gives the relationship between the mass  operator  C and 
the tensor piln, i.e., the graphs fo r  the mass  operator 
containing a photon line correspond to a fully determin- 
ate contribution to Fir,. The simplest  graphs a r e  shown 
in Fig. 1. We shall have to calculate that contribution 
to the tensor Pi,,, which is diagonal in respect  of the 
band number. We can show that, in calculating expres- 
s ions of the (GCG)' type, we cannot substitute in Eq. (8) 
the f r ee  Green functions fo r  an electron because the de- 
nominator then vanishes. It i s  sufficient to use the ex- 
act form of the Green functions G in the special case  
when the distribution function of the electron quasimo- 
mentum i s  the energy distribution function f,rf,,; in  
this  case,  we have 

Here, A,, represents  the renormalization of the disper- 
sion law and r,, i s  the damping frequency. This renor- 
malization and the dependence of l?,, on c a r e  unimpor- 
tant in the treatment given below 

Here, 

The f i r s t  two t e r m s  in Eq. (10) behave in the same way 
a s  r;', whereas the second two t e r m s  a r e  regular  in 
the limit r,/&, - 0 and can be dropped if the f i r s t  t e rms  
do not contain an additional small  number. However, i t  
i s  not possible to calculate the values of C* f rom the 
perturbation theory because there i s  a sequence of 
graphs in Fig. 2 which a r e  of the same o rde r  of magni- 
tude. We can show that the inclusion of these graphs 
reduces (to within F,/E,) to the substitution C, - Ci, in 
Eq. (10); here,  CZ! does not contain external enveloping 
dashed lines. The f i r s t  two t e rms  in Eq. (10) then ac- 
qui re  a factor  r,/l?:, where rf is the characterist ic  

FIG. 1. Simplest graphs for the mass operator contributing to 
the photogalvanic effect. The wavy line represents photons and 
the dashed line phonons. 
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FIG, 2. Graphs of the same order in the pemrbation theory FIG. 3. Feynman graphs to the re- 
series for 8.  normalization of the dispersion law. 

all the contributions to C, and applying the sum rule 
isotropization frequency. For  example, in the case of which follows f rom the commutation relationship [xi, p,] 
an isotropic dispersion law and scattering by impur- 

= ib,,. It should be noted that a fairly rigorous analysis 
ities, we have has to be applied to the diagonal (in respect of the band 

T k -  ~ k r . 6 ( ~ t - e r ' ) d k ' ,  number) contribution to the current made by the graphs 
in Figs. 3a  and 3b; in this case, the last  term in Eq. 

(11) (10) makes a contribution and this i s  equivalent to the 
inclusion of the intraband scattering processes. 

Finally, the diagonal contribution to the photogalvanic Since all  interband processes (for example, those re- 
tensor Bit, becomes presented by Fig. lb )  reduce in fact to renormalization 

- e dkCkiek 6 of the electron dispersion law if the energy i s  insuffic- = I -TT 6 (E,E&, ient for rea l  interband transitions, they make no con- 
tribution to the photocurrent. a here fore, we shall only 

Equation (12) represents, in fact, the solution of the discuss intraband processes. 
transport equation for the asymmetric correction to the 
distribution function and the quantity 

((l-f,)~;: +f.z;Ln ) I.-,k 

is the collision integral. 

In the case when the number of quasiparticles i s  
small, i.e., for f, << 1, o r  (1 - f,) << 1, the Keldysh rules 
for  calculating the mass operators simplify and effec- 
tively reduce to the Cutkosky rules for calculating the 
imaginary part of the mass operator in the field the- 
ory.C121 It i s  then sufficient to make a unitacy cut of 
the graph (Fig.. 1); the cut Green functions a re  replaced 
with G*(G') in calculating C*(C-) and, to the left of the 
cut, all the Green functions a r e  taksn to be E C ( ~ ? ,  
whereas, to the right, they are  GC(GC). We can easily 
see that a unitary cut of the graph determines unam- 
biguously the distribution of the indices 1 and 2 between 
the graph vertices. The distribution of the indices 1 
and 2 which do not correspond to the cut then gives r ise  
to a contribution proportional to some power of the 
parameter f, o r  (1 -f,). Equations (8) and (10) allow us 
to obtain any corrections to the transport equation ap- 
proximation. 

3. SCATTERING BY IMPURITIES IN 
NONC ENTROSYMMETRIC SEMICONDUCTORS 

Equations (8), (lo), and (12) reduce the calculation of 
the tensor Bil, to determination of the mass  operators 
Sf,;. Graphs of lower order in the mass  operator are  
given in Fig. 3. The intraband contributions to C, are  
symmetric functions of k (vertex function B&,/ak) and 
do not give r ise  to a photocurrent. The interband con- 
tributions to C, are  odd functions of k for a noncentro- 
symmetric crystal and may contribute to the photocur- 
rent. This i s  the effect considered by Genkin and Med- 
n i~ . ' " '~ '  However, the total contribution made to B,,, by 
the graphs in Fig. 3 cancels out. The physical reason 
for  this cancellation i s  explained in the Introduction. 
The cancellation of the contributions of C, to the photo- 
current can formally be demonstrated by writing down 

The quantities C:; a re  calculated in different ways at 
different frequencies w. If w >> I' (I' i s  the characteris- 
tic collision frequency), the graphs of C a re  of the kind 
shown in Fig. 4. The collision integral calculated for 
these graphs and the cuts included represents the bal- 
ance of probabilities of electron scattering by an impur- 
ity accompanied by the emission and absorption of a 
photon. The graphs in Figs. 4a and 4e a re  symmetric 
and make no contribution to the current. The expres- 
sion for the tensor pi,, in the w >> r case i s  

Here, Vk.,, i s  the matrix element of the impurity po- 
tential between the Bloch wave functions and N i s  the 
impurity concentration. The pole contribution in Eq. 
(13) gives r ise  to the part  of the tensor pi,, which i s  
symmetric in respect of the indices In and the principal 
value gives the antisymmetric part. 

If w << r, additional graphs, similar to those shown in 

FIG. 4. Feynman graphs for the mass operator giving rise to 
asymmetry of the electron scattering by impurities in an elec- 
tromagnetic wave field. Unitary cuts contributing to P i  ,,, in the 
w >> r case are shown. 
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FIG. 5. Corrections to the graphs in Figs. 4g and 4h due to the 
scattering processes important in the w << 1 case. 

Fig. 2, become important. These graphs "clothe" the 
photon vertices and their role in the w << r case re- 
duces to the replacement of r, with r: and r0, in the 
denominators [I?; i s  the anisotropization frequency, 
i.e., (rE)-' is the damping time of the second moment 
of the distribution function]. Typical graphs associated 
with those in Figs. 4g and 4h a re  shown in Fig. 5. The 
result obtained in the w << r case i s  equivalent to the 
solution of the transport equation in the A = 0 gauge 
without allowance for the dependence of the collision 
integral on the electromagnetic field: 

Here, WSPS' is  the symmetric (asymmetric) probability 
of scattering by i r n p ~ r i t i e s . ~ ~ '  

The expression for the tensor Pi , ,  for w <<r i s  [(A)' 
= d.A/de J 

We shall now calculate Eqs. (13) and (15) for the photo- 
galvanic tensor pi, ,  in the case of a nondegenerate 
semiconductor, i.e., we shall assume that the electron 
dispersion law is quadratic: &,= k2/2m. We shall only 
consider neutral impurities (the case of charged im- 
purities will be discussed separately later). The ma- 
trix element of the impurity potential Vk.,, can be re- 
presented by the sum of matrix elements of a sym- 
metric short-range potential and an asymmetric long- 
range potentialc5] (q = k-  kl): 

Here, b is the characteristic length of scattering by 
impurities; d is the dipole moment of an impurity; 
Q,,, is the octupole moment of an imp~ri ty"~ ' ;  co i s  the 
static permittivity. In the case of ferroelectric semi- 
conductors, the photogalvanic effect is due to the sec- 
ond term in Eq. (16), whereas, in the case of nonferro- 
electric noncentrosymmetric semiconductors, the same 
effect is due to the last  (third) term. 

Simple expressions for the tensor Pi , ,  of Eqs. (13) 
and (15) are  obtained in three specific frequency inter- 
vals: w >> T, T >> w >> r, w << I?. The expressions for the 
photogalvanic tensor Pi , ,  are  normalized to the absorp- 

tion coefficient x because the maximum current ob- 
served experimentally i s  governed by the depth of pene- 
tration of light into a crystal, i.e., by the value of x. 
The results of the calculations a r e  given below: 

a) in the interval w>> T, . n T  1 6 ~  rtl.= --(6~i6,.+11(~,6i,+~,6il)) f ~ k ~ k ~ b ' q , ~ . ,  
30 o 

b)  in the interval T >> w >> r, 

c)  in the interval w << r, 

8 e'n 
x = -(2n)"=- 

3 mcrin. ' 

Here, r ,  =4nb2Nk,E/m, kT = ( r n ~ ) " ~ ,  k, = ( r n ~ ) ' ' ~ ;  n i s  
the electron density; n, i s  the refractive index; 
d =  [ebc; c i s  a unit vector along the polar axis of the 
crystal; Q,,= t0eb3qobO, where q,, is a "unit" tensor of 
third rank; 5 i s  the characteristic asymmetry para- 
meter. 

4. SCATTERING BY PHONONS AND PHOTOGALVANIC 
EFFECT IN NONCENTROSYMMETRIC CRYSTALS 

Scattering by phonons in a noncentrosymmetric crys- 
tal  in the presence of an electromagnetic wave is asyrn- 
metric and gives r ise  to a photocurrent. Characteristic 
graphs for the mass  operator a re  given in Fig. 6. In 
all, there a re  24 different graphs o r  impurities (this 
follows from Fig. 4). As pointed out earlier,'61 allow- 
ance for an anharmonic two-phonon vertex i s  essential 
to reveal the asymmetry of the electron-phonon scat- 
tering. 

We shall now estimate the contributions made to the 
tensor Pi, ,  of the graphs in Fig. 6 for the scattering of 
electrons by acoustic and optical phonons. One-phonon 
vertex functions areCG1 

4-te ,,- (r.7 Be =ioq,+ - o ' , , , ~ , ~ . ,  
t - 7 - u  

4-re (r  ' \  =- 0111 

n O:,I - ( i Q q , - ~ ~ , : ~ ,  pq,, 1 .  e ,q-n- 

Here, q i s  the phonon momentum; u i s  the deformation 
potential; d, , ,  i s  the piezoelectric tensor; &, is the 
permittivity; Q is the effective charge of an optical 
mode; a i s  the lattice constant. A two-phonon vertex 
function will be assumed to be symmetric (this does not 
affect the basic nature of the estimates): 

(rqZ,ja,.=o'qz6,,. (rq8'),, ,, = (6 ' /n2)  6 ,  
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FIG. 6. Characteristic graphs for the mass operator of an 
electron describing the electron-phonon scattering in an elec- 
tromagnetic wave field. 

Here, a and 6' are  nonlinear "deformation" potentials. 
The tensor Pi,,  can be calculated using Eqs. (13) and 
(15); in this case, the quantity Im(VQVu,VQ,, transforms 
to 

Here, 51, is the phonon frequency; M is the mass of a 
unit cell of a crystal, Nu is the phonon distribution 
function. Since at low temperatures the photocurrent 
decreases exponentially with temperature, we shall 
only consider the range of T much higher than the De- 
bye t2mperature 8, i.e., we shall assume that Nu 
= (T/Q,) >> 1. 

The angular integrals in Eqs. (13) and (15) a re  quite 
cumbersome, so  we shall confine ourselves to an or- 
der-of-magnitude estimate of the photogalvanic tensor. 
The results of the estimates are: 

a) in the frequency interval w >> T, 

b) in the interval T >> w >> r, 

c) in the interval w << r, 

Here, c, i s  the velocity of sound; 51, is the optical pho- 
non frequency; Y*,, i s  given by the system (17). 

5. PHOTOGALVANIC EFFECT IN METALS 

The photogalvanic effect in noncentrosymmetric met- 
als should be considered a t  fairly high frequencies w 
because low-frequency light does not penetrate a metal. 
We shall confine our attention to the frequency interval 
&,>> w >> T, where &, is the Fermi energy of the inves- 
tigated metal. 

The process of absorption of light in a metal a s  a re- 
sult of scattering of electrons by impurities in the field 
of an electromagnetic wave i s  described by the graphs 
in Fig. 4, whereas the photogalvanic tensor i s  given by 
Eq. (13) because, in this case, the transport equation 
i s  linear in the electron distribution function f,. 

The matrix element of the impurity potential V,., in 
the case when the momenta k and kf lie on the Fermi 
surface can be expanded in terms of the Legendre poly- 
nomials. We shall only retain the lowest polynomials 
contributing to the photogalvanic effect, i.e., the zeroth 
and third-order harmonics: 

V~t~-2nbln1,+~e'b'(q.,,n.n,n. 

-q.~,n.'n,'r~,'+~Bhhr~ll~~bnn-~(I~~~~Pr~~ rzCr), (20) 
n.=k.lh,, n,'=k.'/k, 

Here, b i s  the characteristic length in the case of scat- 
tering by the potential V,.,,; 5 is the characteristic 
asymmetry parameter; gab, and %,, are  the dimension- 
l e ss  third-rank tensors specifying the angular asym- 
metry; m ,  i s  the mass on the Fermi surface: 

Substituting Eq. (20) in Eq. (13), we obtain the following 
estimate of the photogalvanic tensor: 

e2 Nb' ( e q z &  x =  -- 
kc k ,  T o  n. ' 

We shall calculate the contribution of electron-phonon' 
scattering to the photogalvanic effect by expanding the 
electron-phonon vertex functions in terms of the 
spherical functions on the Fermi surface: 

The expansion (22) of the electron-phonon vertex func- 
tions i s  of the same form for acoustic and optical pho- 
nons since the characteristic momentum carried by 
phonons in the w >>0,  case i s  of the order of k,. The 
photogalvanic tensor P,,, can be estimated from Eqs. 
(13) and (22), in accordance with the graphs in Fig. 6: 

- - ec o" edk,' Tk," T r. pPhon -5--.---- 
ttr o T o  Me 8 k n=, 

If w >> O, the electron-electron scattering in metals 
contributes considerably to the photogalvanic effect.'14' 
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FIG. 7. Characteristic graphs for the mass operator of an 
electron describing the electron-electron scattering process. 

Character is t ic  graphs f o r  the m a s s  operator ,  contri- 
buting to this  effect, a r e  given in Figs. 7d-7f. The 

eldctrod-electron (hole) ver tex  function, considered 
allowing f o r  the asymmetry  on the F e r m i  surface,  i s  

Vt,r,t,r,=eZb (l+E (f.s,n,,n,an,,+ . . . +f,a,n;.n,bni,) ) . (2 4) 

The damping r , absorption coefficient x ,  and photo- 
galvanic tensor  P can eas i ly  b e  calculated f r o m  the 
graphs in  Fig. 7.  It  should be  pointed out that only the 
umklapp processes  contribute to the effect because the 
momentum-conserving p r o c e s s e s  cannot produce an 
e lec t r ic  cur ren t  in the electron system. The contribu- 
tion of the umklapp processes  t0 .2 ,~  is due t o  a cer ta in  
domain of integration with respec t  t o  the angular  var i -  
ables  represent ing the momenta k,, k,, and k,. The 
domain of integration with respec t  to  the moduli of the 
momenta k, k,, k,, and k, is l imited by the F e r m i  sur -  
facer14': [k - k F [ i  w/vF.  The singular  6 functions re- 
sulting f r o m  the calculation of the m a s s  opera tors  i n  
Fig. 7 are obtained by  integration over  the angles. This  
analysis  i s  sufficient t o  obtain es t imates  on the b a s i s  
of the graphs in  Fig. 7: 

ec e'bm, LIZ: - - 
hr  RZ xb, 

We shal l  conclude by  noting that  the "efficiencies" of 
the var ious  photogalvanic effect mechanisms,  i.e., the 
photocurrent divided by  the absorption coefficient f o r  a 
given scat ter ing mechanism, are all of the s a m e  o r d e r  
of magnitude and are identical with the photocurrents 
calculated f o r  the interband transitions.c5161 The  main 
contribution to the photocurrent i s  due to  the mechan- 

i s m  with the maximum absorption coefficient. The  con- 

ditions f o r  observing the photocurrent in semiconduc- 
t o r s  and meta l s  are m o r e  s t r ingent  than those for insu- 
l a t o r s  because the res i s tance  of a measuring instru-  
ment  should not great ly exceed the res i s tance  of a c rys -  
tal. 
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