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The equations of motion of the vortices produced in the supertluid component of helium I1 and interacting 
with its normal component are used for the analysis of the self-acceleration of a decelerating vessel with 
helium or of a pulsar. It is shown that in this case the vortices transfer the angular momentum to the 
vessel gradually, during the course of their motion to the walls, a process that ends in annihilation of the 
already "exhausted" vortex; the annihilation speeds up sharply immediately before the acceleration, but 
its integrated value is small. Computer experiments have refined the detail of this process, and confirmed 
as well as the Khalatnikov formula for the width of the irrotational region in a uniformly rotating vessel. 

PACS numbers: 67.40.V~ 

1. In Tsakadze's experiments,['] a freely suspended s, = (2~-) ' /~),  b -s is the effective radius of the vor- 
vessel with helium 11 underwent, against the background tex and a - 3  cm i s  the radius of the vortex core. 
of weak damping of the rotation, a number of spontan- In  addition to the behavior of the vortices a s  they a re  
eous accelerations. The interpretation of this phenome- slowed down, we investigate also the situation in a 
non is connected with the dependence of the equilibrium uniformly rotating vessel and show that the Khalatnikov 
number Of On the w~ of the formula (2a) is more accurate than formula (2b) (see 
uniform rotation'' Sec. 8). 

(m is the mass of the helium atom and R is the radius 
of the vessel). In the case of decelerated rotation, No 
should decrease. However, in view of the tendency of 
helium 11 to preserve nonequilibrium regimes of motion 
for a long time (see, for example, the reviews in Refs. 
2 and 4), it is assumed that the superfluous vortices 
continue to exist for some time, after which they decay 
in relatively large groups and transfer the corresponding 
angular momentum (and energy) to the vessel. On the 
basis of these assumptions, it was proposed that the 
considered phenomenon is the possible cause of the ac- 
celeration of superfluid neutron stars-pulsars (see 
also Ref. 6). It will be shown below that a more detailed 
quantitative analysis, confirming in general the pro- 
posed interpretation of the self-acceleration of a super- 
fluid liquid when it is decelerated, reveals somewhat 
unexpected qualitative features of this phenomenon (see 
Secs. 7 and 9). 

2. When a superfluid liquid rotates uniformly, the 
vortices a re  distributed in it with an equilibrium densi- 
ty close to the value nzwo/nti determined by formula (I), 
but not over the entire cross  section of the vessel. 
Near the walls, an irrotational region of width d=R - R, 
(R, is the radius of the circle containing the vortices) 
is produced and is determined, according to Khalatni- 
k ~ v , [ ~ ]  by the formula 

and according to Staufer and ~ e t t e r ~ ' ]  by the formula 

3. Returning to the case of retarded motion, we note 
f i rs t  that it does not admit to a quasi-equilibrium analy- 
is. In fact, if the slowing dawn of the vessel (w = w(t)) 
were accompanied by a corresponding deceleration 
of the rotation of the normal component (v,= w x r), of 
the averaged rotation of the superfluid component ((v,) 
= w x r), and of the rotation of the vortices themselves 
(v,  = w x r), then the distances between the vortices in 
the region where they exist should increase (s cc w-'I2). 
However, according to formula (2) the width of the ir- 
rotational region d should increase a s  well, and this is 
incompatible. 

4. A more realistic although not fully justified (see 
Sec. 10) is the following idealization. In the case of 
weak slowing down of the rotation, the normal compo- 
nent follows the vessel: 

(we are  using the polar coordinates r and a). As to the 
motion of the vortices, i t  i s  assumed that they remain 
straight, and that the vessel is cylindrical and infinite- 
ly long (along the rotation axis) or, equivalently, that 
free slippage of the vortices over the bottom and top of 
the vessel is permissible. Then the flow of the super- 
fluid component and the motion of the vortices can be 
fully calculated (in principle) without any other simpli- 
fying assumptions, on the basis of the following equa- 
tions. The vanishing of the sum of the forces acting on 
each of the vortices is, in the case of straight vortices, 
of the formLQ1 

where s=  (nE/mwo)'12 and is according to (1) of the or- + ~ ; , ~ ~ ~ k ~ ( v , - v ~ . ) = O ,  2~ (4) 
der of the distances between the vortices (in an ideal 
triangular lattice the distance between the vortices is where the f i rs t  term is the Magnus force, and the next 
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two comprise the force of the mutual friction between 
the vortex and the superfluid component, ro= 2rii/m is 
the circulation quantum, k is a unit vector along the z 
axis (w = kwJ0 = kr,); BL and B', are  the coefficients of 
the mutual friction; v, and v, a re  the velocities of the 
superfluid and normal components at a vortex point 
moving with velocity v,. Equation (4) is valid both in 
nonequilibrium situations and under equilibrium rota- 
tion when v,=v,=vL= w x r. 

5. Under the same assumptions (i.e., independently 
of the equilibrium of the rotation, but only for planar 
low, when the vortices are  straight), the following 
equation is valid and determines the velocity of the su- 
perfluid component a t  the j-th vortex point (with the ex- 
ception of the contribution of the j-th vortex): 

where w is the complex potential of the flow of the su- 
perfluid component. In the absence of mutual friction 
(in a fully superfluid or  in a classically ideal liquid) 
formula (5) determines the velocity of the vortex di- 
rectly (vij)= v:"). In equilibrium rotation, this formula 
yields vjf)= 0, v:;)= w o r j  (see, for example, Ref. 10 and 
also Sec. 8 of this article). In the general case, the 
motion of the vortices is determined jointly by formulas 
(4) and (5). In a cylindrical vessel we have 

where zk=  r, exp(ia,) are  the coordinates of the vortices 
and z f =  exp(iak)R2/rk a re  the coordinates of their re- 
flections (inversions). 

Substituting v, in the form 

"2 =&,/at, vii' =r,daddt 

and substituting (3) in (4), we obtain a system of vortex- 
motion equations corresponding to our assumptions: 

rj &/at-or,=A, (v:' --orj) -A,v!!' , 
(7) 

& ~ d t = A ,  (v.? --orj) +A,v!:" 

(two equations for each vortex). The coefficients A, 
and A, can be easily expressed in terms of the coeffici- 
ents B ,  and B',, which in turn can be expressed in 
terms of the more frequently employed coefficients of 
mutual friction between the superfluid and normal com- 
ponents B and B1 (for the relations between B, B1, and 
BL , BL see Ref. 9): 

6. In the case of a freely suspended vessel, the sys- 
tem (7) must be supplemented by the equation of motion 
of the vessel with the liquid, which we express in terms 
of the moments 

We have taken account here of the fact that the angular 
momentum of the superfluid component, due to the j-th 
vortex, is equal to p,ro(R2 - < ) ~ / 2  (Ref. 2), where H is 
the height of the vessel, Iyw is the moment of the ex- 
ternal friction force experienced by the vessel, is the 

damping, I, = npp2H/2 is the moment of inertia of the 
superfluid component, and I is the sum of the moments 
of inertia of the vessel and of the normal component. 
We write out also the formula for the angular moment 
of the superfluid component: 

which we shall need below. 

The system (7) (9) with Eqs. (5) and (6) solves com- 
pletely the problem of the motion of the vortices and of 
the vessel itself, and determines the time variation of 
rj, aj, and w. 

7. According to the second equationof (7), the vortex 
is at  equilibrium if v:f= orj and moves towards the wall 
or  away from it, depending on the sign of the difference 
v:;) - wr,. The decrease of w leads to the appearance of 
a positive velocity drj/dt. Exceptions can occur for  
vortices whose initial positions a re  not in equilibrium 
and can therefore have a velocity lower than wrj, and 
move towards the axis of the vessel. I t  is easy to veri- 
fy, however, that with decreasing w any vortex should 
ultimately move towards the wall. Simultaneously with 
r,, a change takes place also in a Consequently, the 
vortices move along a spiral  to the irrotational region, 
where at equilibirum their presence is forbidden, but 
at v:L)> or, they penetrate deeper and deeper into this 
region.2) 

We consider the concluding stage of this process, in 
which the vortex is much closer to the wall than to an- 
other vortex or to the center of the vessel (R - rj<< R, 
R - r,<< s). Then the principal contribution to the sum 
(5) and to Eqs. (7) and (9) is made by a reflected vor- 
tex, and this contribution tends to infinity as r j -R:  

The quantities da  j/dt and w/dt also increase without 
limit. Consequently there a re  no equilibrium (quasi- 
equilibrium) positions for a vortex that approaches the 
wall. I t  must annihilate. 

The singularity in drj/dt(dw/dt) of the type (11) leads 
to the following singularities in the quantities r j ,  w, 
and L: 

where to is the instant of annihilationof the vortex with 
i ts  reflection. The formulas a re  valid at to - t (at to - t 
<< m~~/A, i i ) .  

Formulas (13) and (14) show that a t  infinite rates of 
change of the quantities w and L these changes them- 
selves a re  quite insignificant during the period immedi- 
ately preceding the annihilation. The vesselvelocity has 
a small maximum, and the angular momentum of the 
superfluid liquid has a small minimum with kinks on 
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the w(t) and L(t) curves (see also Sec. 9 and Figs. 3 and 
4). The point is that the contribution of this vortex to 
L decreases mainly not during the period when (to - t) 
is small, but earlier,  a s  r, increases from i ts  initial 
value. The vortex arrives at the wall already "ex- 
hausted, " and i ts  annihilation should possibly more cor- 
rectly be called "extinction." Thus, the initial idea that 
the "decay of metastable vortices" causes the self-ac- 
celeration i s  developed in greater detail by the concept 
of gradual transfer of the angular momentum of the su- 
perfluid component to the vessel as a result of the mo- 
tion of the vortices to the wall. The self-acceleration 
occurs in this case when a definite group of vortices 
approaches the wall (these vortices lie all on a single 
circle), the momentum transfer is already small, and 
the process is accelerated without limit. Therefore 
the "jump" of the velocity of the vessel (w,, - w,,,) 
does not make it possible to estimate directly the num- 
ber of "decaying" vortices (see also Sec. 9 and Fig. 3). 

8. A more detailed calculation of the considered 
phenomena, on the basis of Eqs. (7) and (9), calls for 
the use of a computer. We have performed preliminary 
numerical calculations to determine the equilibrium po- 
sitions of the vortices. The rotation velocity w, was 
specified and maintained constant, and the vortices, to 
which certain initial positions were assigned, were al- 
lowed to move in accordance with Eqs. (7) until their 
velocity became equal to zero. In some cases, simul- 
taneously with the motion of the vortices, we varied al- 
so the rotation velocity of the vessel (even before all 
the drj/dt, w - dctj/dt, dw/dt reached zero values). Fi- 
nally, we used also a method in which we solved the 
system of algebraic equations obtained by equating to 
zero the right-hand sides of Eqs. (7). The initial posi- 
tions of the vortices were specified to be either the lat- 
tice points of a triangular lattice with a spacing in- 
creased enough to fill the entire cross section of the 
vessel, or  else by three random radii of circles with 
six vortices on each. The results were the same in all 
the variants. 

Figure 1 shows the equilibrium (in the sense of sta- 
ble immobility in a rotating coordinate frame) config- 
urations of nineteen vortices and sixty-one vortices, 
The points of the grids marked on the figures corre- 
spond to positions of the vortices in the triangular lat- 
tice at a corresponding speed of rotation. The vortices 

a re  displaced relatively little from these positions. 
The displacement increases from the center towards 
the boundary r = R, of the irrotational region, where 
the density of the vortices, which heretofore was close 
to the density determined by formula (I), vanishes 
abruptly. These calculations constitute a computer ex- 
periment aimed at a determination of the width of the 
irrotational region d and confirm Khalatnikov's formula 
(2a) even when the initial configuration and of the velo- 
city a re  chosen by the formula of Staufer and Fetter, 
which corresponds to formula (2b): N = No(l - 5 / a 0 )  
(Ref. 8), where No is determined by formula (1) and N 
is the actual number of the vortices. These are  pre- 
cisely the cases shown in Fig. 1. At w,= 56.25R/m~~ 
the computer experiment yields d/s = 2.2, and a t  w, 
= 115ti/mR2 it yields d/s = 2.1, whereas formulas (2a) 
and (2b) give also values that depend little on w,, and 
range accordingly, when ln(b/a) is varied in the range 
12-15, from 2.4 to 2.6 according to (2a) and from 1.4 
to 1.6 according to (2b). Staufer and Fetter have sug- 
gested that their results should be more accurate, since 
they have stipulated that the velocity be continuous at 
r = R, . Khalatnikov purposely neglected this stipulation, 
having in mind a small jump in the velocity. Actually, 
however, vortices a re  present on a circle r= R, and the 
smoothed-out picture with a continuous distribution of 
the velocities is also approximate. The results of our 
calculation show that Khalatnikov's approximation is a 
rougher one.=' 

9. Figures 2-4 show the result of acomputer calcu- 
lation of the time variation of the quantities r ,  w, and 
L in a successive departure, from a decelerating ves- 
sel, of eighteen vortices that have occupied at the initial 
instant of time equilibrium positions shown in Fig. l a ,  
at an initial velocity w(O)= 56 .25 t i /m~~.  The vortices 
are  grouped on three circles with radii r,, r,, and r,. 
The central vortex remained immobile (as shown in 
Ref. 3) i t s  position is unstable a t  w < F i / m ~ ~ .  

Contributing to the emergence of the vortices from 
the vessels a re  the "notches" on Figs. 3 and 4. Atten- 
tion must be called to the difference A,w between the 
successive maximal values of the angular velocity (Fig. 
3), and also to the difference A,w between its maximal 
and the preceding minimal values. The former depends 

FIG. 1. Equilibrium configuration of vortices in a cylindrical 
vessel at wo=56.25 Zi/mRZ (a) and at wo=115 E / ~ R ~  @). The 
grid corresponds to a triangular lattice of vortices in an in- 
finite liquid at the same rotational velocity. 

FIG. 2. Variation with time ( r = m ~ ~ / @  of the radii of three 
circles carrying six vortices each, whose initial configuration 
is shown in Fig. la .  Curve 1 corresponds to the outer circle. 
and curves 2 and 3 to the following two; y =  0.5 Zi/mR2 (Id1 
= 0.5;  Ai = 0.94; A,= 0.2). 
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FIG. 3. Change with time (r=mR2/Q of the angle of velocity 
of the vessel (Q = w (fi/m~~)") at different dampings: 
y=K/mR2 (curve I ) .  y=0.5ti/mR2 (curve 2) .  y=0.25 fi/mR2 
(curve 3). The initial state corresponds to Fig. l a ,  (Zs/I=(i.5; 
A ~ =  0.94; At= 0.2). 

strongly on the damping (on the moment of the external 
friction force). This means that not only the entire con- 
sidered process, but also the states produced at the 
end of each self-acceleration, are not in quasi-equili- 
brium, for otherwise Alw would depend only on the num- 
ber of departing vortices. Actually the vortices aver- 
take the quasi-equilibrium process in the case of weak 
damping and lag this process in strong damping. The 
smallness of the ratio A ~ W / A ~ W  in Fig. 3 is a measure 
of the fraction of the angular momentum transferred by 
the vortices to the vessel prior to the start of the self- 
acceleration. If the start of the self-acceleration 
(w = w,,,) were the instant when the "vortex decay" be- 
gin, then the ratio b,w/(A1w+ A,W) would be Z,/Z (in our 
case 1,/1=0.5). Figure 2 also offers evidence that it is 
precisely in the self -acceleration process that a strong 
nonequilibrium state is produced, as a result of which 
the vortices are sometimes even directed towards the 
axis of the vessel, deceleration of the latter notwith- 
standing. 

FIG. 4. Change with time (r=rn~'/@ of the angular momentum 
of the superfluid component ( I  = ~ , ( 2 l ~ / r n ~ ~ ) - ~ )  in the process 
shown in Fig. 3 (curve 2) and Fig. 2. The region of the in- 
stantaneous shock that accompanies the departure of the vor- 
tices from the vessel is shown in enlarged scale (IdI= 0.5; 
A i =  0.94; Az= 0.2). 

Thus, the results agree fully with the preliminary 
analysis made in Sec. 7, and provide additional qualita- 
tive information. The slowing down of the vessel leads 
to a nonequilibrium situation, in which the vortices 
move towards the walls, constantly interacting with the 
normal component and with the vessel, and in the period 
of the self-acceleration the exchange of the angular mo- 
mentum of the motion is  relatively small, but is ef- 
fected quite rapidly. It can be stated that at instants 
of time to there occurs an infinitely strong instantaneous 
shock ( d ~ , / d t =  -w) with zero transfer of angular mo- 
mentum (L, and Zw do not experience a jump). 

10. It is natural to raise the question of the extent to 
which the idealization used in our calculation corre- 
sponds to real processes in helium 11 or  in pulsars. 
Unfortunately, the number of vortices close to those 
obtained in the experiments of Dzh. and S. Tsakadze or  
in pulsars is too large for  the computational techniques 
available at our disposal. Therefore a direct quantita- 
tive comparison of the available data with our curves on 
Fig. 3 is impossible. However, some conclusions are 
possible also via a qualitative comparison, and call for 
a discussion. 

A rough agreement is in fact observed: On the lnw(t) 
curves one can see a number of self-accelerations at 
unequal time intervals. In a more detailed comparison, 
however, there is a striking difference between the 
character of the experimental and calculated curves, 
particularly on the left side of the "notch." On the cal- 
culation curve the spike begins smoothly and ends 
abruptly, while on the experimental curves it begins 
more abruptly and ends smoothly. It seems to us that 
the reason for this discrepancy, as well as  the weakest 
point of the idealization used by us of real phenomena, 
is  the neglect of the pinning of the vortices by rough- 
nesses on the bottom and on the top of the vessel (con- 
cerning the slipping of the vortices, which is  never per- 
fectly free, see, for example, the reviews in Refs. 2 
and 4). A vortex that is partially pinned on its ends will 
bend, and one result of this fact will be an effective 
decrease of the contribution of (11) to Eq. (9), in which 
it is assumed that the distance from the vortex to the 
wall is the same over the entire length H. Then the de- 
rivative dw/dt wil have, during the self -acceleration, 
not a singularity of the type (to - t)"I2 but of the form 
(to(t) - t)'lI2x(t), where ~ ( t )  is a dimensionless quantity 
connected with the relative length of the vortex segment 
that interacts most strongly with the wall at the instant 
of time to. This quantity becomes different from zero 
when the increase of X(t) is bounded, since the already 
annihilated segment i s  eliminated from the interaction, 
and x(t) again becomes equal to zero by the instant when 
the annihilation i s  completed. If in the concluding stage 
of this process ~ ( t )  tends to zero more rapidly than 

(to - t)'I2, then the limiting value of dw/dt will be not in- 
finity but zero. 

In addition, the bending of the vortices, the propaga- 
tion of elastic waves and Tkachenko waves along the 
vortices, and the difference between the slippage coef- 
ficients on different sections of the solid surfaces 
should inevitably produce a nonuniformity of the dis- 
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placements of the vortices towards the vessel wall, 
thus eliminating from the curves of lnw(t) the smooth- 
ness demonstrated in Fig. 3 but missing from the ex- 
perimental curves.4' 

The assumption that the angular velocities of the ves- 
se l  and the normal component is more justified, espe- 
cially for pulsars, where the normal charged liquid is 
additionally linked with the core by the magnetic field. 
However, during the periods of the abrupt change of the 
rotation velocity, even this assumption may not be cor- 
rect. The moments of the internal-friction force which 
must be introduced in this case, will also contribute to 
the smoothing out of the "notches" and the turbulence, 
if it does appear, complicates the phenomena in ques- 
tion even more. 

Summarizing the foregoing, we can apparently con- 
clude that the model developed in this article, for  all 
its incompleteness, nevertheless describes accurately 
the main features of the self-acceleration phenomenon. 
The remarks on the shortcomings of the model do not 
pertain to cases when it is used to determine the equili- 
brium configuration. 

11. By smoothing out the details of the distribution 
of the velocities produced by the vortices and deter- 
mined by the complex potential (6), we can calculate us 
by starting from the equality of the circulation r, over 
a circle of radius Y to the sum of the circulations of the 
vortices contained in it: us,= 0, us, = r,/2ar. These 
equations a re  accurate enough and can be used to deter- 
mine the v:" velocities of the superfluid component at 
the vortex points, provided only that there is no other 
vortex or  wall next to them (in the general case v,,#O 
and the proximity of a vortex, including a reflected one, 
creates a large difference between the local values of 
us, and its value averaged over the contour, as a result 
of which r, #2nrvs,. Assuming the possibility of such 
an approximation and recognizing that r, does not 
change with changing number of vortices in the given 
circle, we obtain v:: = w,,/~,,/Y,, where Y,, is the initial 
position of the vortex at the initial rotation velocity w,, 
when the density of the vortices is determined by for- 
mula (1). Equations (7) then take the form 

These equations practically coincide with those obtained 
by ~ r a s n o v . ~ l l '  It follows from the second of them, a s  
noted in Ref. 11, that the function ~ ( t )  5 $/<, does not 
depend on j .  We note that the same property is posses- 
sed also by a(t)  = a]: 

The situation is more complicated with the equation 
for w .  In the course of its derivation in Ref. 11, an 
expression was obtained for the angular momentum, 
L,(t) = ~,,/0(t), which contradicts formula (10) since the 
latter means that s o  long a s  the number of the vortices 
in the vessel remains unchanged, the variation of L ,  
with time should follow the law L,(t) = C, - ~ , 0 ( t ) ,  where 
C, and C, are  constants. The calculation of the values 

is possible if the sum in (10) is replaced by an integral 

where R , , = R , / ~  is the equilibrium value of the ra- 
dius Rf of the boundary of the irrotational region (it is 
assumed that it has not yet approached too close to the 
wall). 

Substitution of (17) in the equation ~dw/dt+ dL,/dt 
= -yw for the moments yields the expression 

which differs f romEq.  (20) of Ref. 11. The system of 
Eqs. (16) and (18) can be used at a fixed number of vor- 
tices, and also before and after the number changes, 
for example, in the case of small changes of the vessel 
velocity during the initial o r  concluding stages of a pro- 
longed but slow change. The assumptions on which the 
derivation of this system is based a re  violated every 
time (at least for  some of the vortices) that vortices 
leave the vessel o r  enter in it.5' 

On the other hand, if the process i s  initiated by an 
abrupt jump of the vessel rotation, a s  in the experi- 
ment considered in Ref. 11, where, simulating a star-  
quake, Dzh. and S. Tsakadze increased the velocity 
from w,= 5 sec" to w(0) = 5,66 sec-l, then i t  cannot be 
described by the smoothed equations at all. In addition 
to the already mentioned causes, in this situation it 
would also be wrong to assume that the normal compo- 
nent is fully dragged. 

For  one reason or  another, the experimental curve 
in i ts  initial part  diverges strongly from the solutions of 
these equations (the curve constructed in Ref. 11 was 
obtained by empirically fitting the parameters, and not 
by substituting the experimental parameters into the 
theoretical expressions for the coefficients). The em- 
pirical values of the initial slope and of the argument 
of the exponential differ from those predicted by the 
theory by approximately two orders of magnitude. Only 
the final slope of the w(t) curve, which is established 
approximately 100 seconds after the initial jump, is in 
satisfactory agreement with the predictions of the theo- 
ry, which in this asymptotic limit a r e  identical for Eqs. 
(16), (18), and the operations of Ref. 11 . 

"1n Eq. (1) we neglect the presence of the irrotational region 
(see Secs. 2 and 8). Its accuracy increases with increasing 
w,  (Refs. 2 and 3). 

2 ' ~ h e  idea of the possibility of quantitatively considering the 
phenomenon of spontaneous acceleration as a result of the 
emergence of the vortices from the vessel (and not of the 
process somewhat incorrectly called ('decay of metastable 
vortices") was advanced by Yu. K. Krasnor. In the discus- 
sion following his paper, however, it turned out that the 
equations used by him (see Sec. 11) cannot serve as a basis 
for such an investigation. Self-acceleration was hence not 
considered in Ref. 11, and we have therefore undertaken the 
work reported in the present article. 

3'~n this connection, to estimate the equilibrium number of 
vortices N at a velocity w e ,  a preferable estimate is the one 
based on formula (2a), N=No(l-9,4v'2Po), where No is de- 
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termined by formula (1). 
4 ) ~ h e  authors are  grateful to S. Dzh. Tsakadze for the oppor- 

tunity of becoming acquainted with new as yet unpublished 
experimental curves that contain a large number of succes- 
sive self-accelerations, a s  well as  data used in Sec. 11. 

5 ) ~ n  our computer experiments, rj/rjo is initially the same for 
all j, but a s  the outer vortices approach the wall i t  becomes 
more strongly dependent on j. The relationL,=Zswd8(t) is  
obtained by replacing in 07) the upper limit of the integral 
by R ,  i.e., when 8(t) loses its meaning of the universal ratio 
rj/rjo. 
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germanium 

A. V. Polyaninov, K. P. Gurov, and V. A. Yanushkevich 

A. A. ~aikov Metallurgy Institute. USSR Academy of Sciences 
(Submitted IS February 1978) 
Zh. Eksp. Teor. Fiz. 75, 617-627 (August 1978) 

We investigate the relaxation of the electric conductivity of n-Ge after the passage of shock waves 
generated by laser pulses. The initial concentration of the structure point defects and the probability of 
electron capture by donor impurity center are determined. Two models are considered in the discussion of 
the experimental results: narrowing of the forbidden band under uniaxial compression, and ionization of 
Shockley-Read traps. Residual effects are also considered. 

PACS numbers: 62.50. + p, 72.80.Cw, 72.20.Jv, 79.20.D~ 

1. INTRODUCTION 

Investigations of the influence of a shock wave (SW) on 
the electrophysical properties of germanium and silicon 
are of considerable interest to modern microelectronics. 
The most convenient and easily controlled method of 
producing SW in materials is to act on them by a laser 
pulse. A laser can be used to generate SW of small am- 
plitude without damaging the material. 

The action of SW excited by ruby-laser radiation of 
pulse duration 50 nsec and energy flux density lo8-lo9 
'w/cm2 on the electric conductivity of germanium and 
silicon whisker crystals is described in Ref. 1. At a 
SW pressure in the front 1.2-4.8 kbar ((1.2-4.8) x lo8 
pa), the resistance of n- and p-type silicon decreased 
by a factor of 2; the corresponding decrease in german- 
ium was by a factor of 2 for n-type and by more than an 
order of magnitude for p-type. Similarly, the relaxa- 
tion times of the excess conductivity in silicon of both 
types were comparable in magnitude, whereas in n-Ge 
the relaxation time was smaller by approximately one 
order of magnitude than in n-Ge. Thus, from the sci- 
entific point of view, particular interest attaches to a 
detailed study of the electrophysical properties of ger- 
manium. 

We report here a detailed investigation of the influ- 

ence of SW on the conductivity of n-Ge, as  well as of 
the relaxation and residual effects. In addition, the fol- 
lowing particular question was posed: are the observed 
effects properties peculiar to whiskers? 

2. EXPERIMENTAL PROCEDURE 

The bombardment procedure is described in Ref. 1. 
The laser pulse duration was 30 or 50 nsec, and the flux 
density range from 1.8 to 4.4 x lo8 w/cm2. 

In contrast to Ref. 1, the samples were prepared by 
the traditional procedure, in the form of parallelepi- 
peds of area 1.2 X 3.6 mm and with variable thickness 
from 0.25 to 1.4 mm. The material used was commer- 
cial n-type germanium with resistivity 40 a-cm. Elec- 
tric contacts of tin with antimony admixture were de- 
posited on the end faces and checked for linearity of the 
current-voltage characteristic. The samples were 
glued to a quartz substrate and a copper foil was 
glued on their top surface to protect them from the di- 
rect action of the laser radiation. An estimate of the 
depth of SW formation, using the formulas of Refs. 2 
and 3, has shown that in our experiments copper foil 55 
pm thick was sufficient. The germanium single-crys- 
tal samples were so oriented that the SW propagated in 
the [ I l l ]  direction, which was perpendicular to the di- 
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