
change interaction of ions in the planes is ferromag- 
netic), whereas the magnetic moments of ions in diff-, 
erent planes are antiparallel (that is, the exchange in* 
teraction of ions belonging to different planes i s  anti- 
ferromagnetic). 

We consider the experimental data obtained at temp- 
eratures above the transition point T,. As i s  seen from 
Fig. 3, above the phase-transition point the nonlinear 
magnetic-moment relation M(H) in weak fields, H < 10 
kOe, disappears, and M(H) i s  sufficiently well des- 
cribed by the expression M(H) = X,(T)H. On increase of 
the magnetic field above 10 kOe, there appears a strong 
nonlinearity of the magnetic-moment dependence. 
characteristic of a "saturating" paramagnet; that is, 
when the magnetic moment M(H) of the paramagnet is 
close to the magnetic moment of the magnetic ion at the 
prescribed temperature. The values of the magnetic 
susceptibility X(T) above the phase-transition point 
T,, presented in Fig. 5, were obtained by processing 
of the linear sections of the M(H) relations of Fig. 3 at 
H< 10 kOe. By processing the magnetic-susceptibility 
data above the phase-transition point, one can obtain a 
Curie-Weiss law with the value 8 = 3 * 1 K. The fact 
that the value of 8 was found to be positive supports 
the assumption that the NaMnC1, monocrystal i s  per- 
haps a quasi-two-dimensional antiferromagnet, in 
which the value of the ferromagnetic exchange inter- 
action in the basal plane, perpendicular to the c axis, 
exceeds the value of the antiferromagnetic exchange 
interaction between the planes. 

Thus the results of the research show that in anti- 
ferromagnetic NaMnC1, at T = 4.2 K, a second-order 
phase transition from the antiferromagnetic to the par- 
amagnetic state occurs in magnetic fields He= 15 kOe. 
In the research, the magnetic-moment dependence 
M ( H )  was investigated with the magnetic field H per- 

pendicular and parallel to the high-order axis of the 
crystal, at various  temperature^. 
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Ferromagnetism of dilute PdNi alloys 
I. Ya. Korenbtit 

B.P. Konstantinov Leningrad Nuclear Physics Institute, Academy of Sciences of the USSR 
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According to the experimental data, in dilute PdNi alloys there exist local moments associated with 
groups of two or three nearest-neighbor nickel atoms in the lattice. A theory which takes into account the 
polarization of the d-electrons on isolated nickel atoms due to the local moments, and the strong 
nonunifonnity of the alloy, has made it possible to explain in a natural way the unique concentration 
dependences of the longitudinal susceptibility, magnetization, and Curie temperature of these alloys. 

PACS numbers: 75.50.Cc, 75.10. -b, 75.30.Cr 

INTRODUCTION Unlike iron or  cobalt atoms, a nickel atom in palla- 
dium does not possess a magnetic moment. Ferromag- 

AlIoys of palladium with c'ckel possess many dis- netism has been reliably observed in alloys with a nick- 
tinctive properties, which make them an interesting el concentration exceeding 2.3 at. O/o.  Near this concen- 
object for study. tration the susceptibility of the alloy and also the elec- 
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tronic specific heat and electrical resistivity have a 
maximum.["21 At concentrations greater than 2.3 at. % 
the Curie temperature and saturation magnetic moment 
decrease rapidly with decreasing concentration. 

It is customary, therefore, to suppose (see, e.g., 
Ref. 2) that a concentration phase transition from the 
paramagnetic to the ferromagnetic state occurs in the 
PdNi alloy a t  a nickel concentration c = 2.3 at. %. The 
point a t  which this transition occurs has been deter- 
mined in theoretical  paper^^^'^] a s  the concentration a t  
which the average (uniform) susceptibility becomes in- 
finite. 

However, in Ref. 5, in which the angular dependence 
of the cross section for diffuse scattering of neutrons 
in PdNi alloys with c >  3 at. % was measured, i t  had a l -  
ready been shown that the magnetization of the alloy is 
strongly nonuniform and that the concentration of mag- 
netic centers in it is considerably smaller than the con- 
centration of nickel atoms. The magnetic centers a re  
surrounded by large clouds of polarized d electrons of 
palladium. The polariyation in a cloud falls off with 
increasing distance Y from the magnetic center like 
Y- 'eVfR;  the radius R x 7 A. The authors of this paper 
put forward the hypothesis that the magnetic centers 
a r e  pairs of nearest-neighbor nickel atoms in the lat- 
tice. Owing to the strong interaction of the nickel 
atoms in a pair ,  a local magnetic moment arises.  

It was shown subsequently that magnetic centers also 
exist a t  nickel concentrations less than 2 at. % (Ref. 6). 
According to Ref. 6, clusters consisting of not less than 
three nearest -neighbor nickel atoms in the lattice pos - 
sess  magnetic moments. But in this case,  as in alloys 
of the PdFe type, a t  T =  0 magnetic order should exist 
in the alloy at any nickel c~ncentration.'~' Magnetic or-  
de r  ar ises  in the system of local magnetic moments 
(groups of two or  three nickel atoms); the indirect ex- 
change interaction between them is due to correlated d 
electrons of palladium (and of isolated nickel atoms). 
Of course, at small values of c the concentration x  of 
magnetic centers, proportional1' to c3, may turn out to 
be s o  small that the magnetic -ordering temperature be- 
comes practically equal to zero. 

The indirect-exchange interaction potential V(r) due 
to the strongly correlated electrons has ferromagnetic 
sign and decreases exponentially with the distance be- 
tween the local moments, i f  this distance is not too 
great. At large distances the ferromagnetic potential 
is replaced by an oscillatory Ruderman-Kittel poten- 
tial."] Therefore, in PdNi alloys a concentration phase 
transition is possible from a spin-glass state, when, 
over the average distances between magnetic centers, 
an oscillatory potential is dominant, to the ferromag- 
netic state, when the dominant potential over these 
distances is the ferromagnetic potential. Owing to the 
large range of the ferromagnetic part of the exchange 
potential it is evident that in PdNi alloys this transition 
occurs a t  a very small nickel concentration, less than 
2 at. %. Henceforth we shall assume that the concen- 
tration of nickel atoms is above the critical concentra- 
tion of the spin-glass - ferromagnetism transition and 

discard the oscillatory part  of the potential. 

Since, for c 5 2 - 3 at. W, the average distance be- 
tween local moments is considerably greater than the 
range of the exchange potential, the spatial fluctuations 
of the exchange interaction and magnetization a r e  
large. Therefore, the model of an almost uniform weak 
band ferromagnet that was postulated in Ref. 7 a s  the 
basis of a theory of the ferromagnetism of PdNi alloys 
is scarcely applicable to these alloys. 

The principal difference between a PdNi alloy and 
alloys of the PdFe type is that in PdNi there a re  al- 
most-magnetic nickel atoms near which the d electrons 
a r e  correlated more strongly than in the matrix. 
Therefore, the average susceptibility of the alloy a t  
small concentrations increases with increasing con- 
centration of nickel. At the same time, the radius R 
of the polarized clouds around the magnetic centers 
also increases, and the number of isolated nickel atoms 
whose d electrons a r e  appreciably polarized by the 
molecular field of a magnetic center increases rapidly. 
As a result, the average susceptibility of the alloy 
reaches a maximum at a certain nickel concentration 
c* .  The radius of the polarized cloud also reaches a 
maximum at  concentrations close to c  *. 

The Curie temperature T c  of the PdNi alloy, like that 
of alloys of the PdFe type,['] increases exponentially 
rapidly with increase of x l f 3 - c .  If we take into account 
that for c  < c  * the radius R also increases with c  , the 
increase of T c  will turn out to be still faster. There- 
fore, for c  < c * ,  T c  is extremely small, but, in a nar- 
row range of concentrations c - c  *, i t  attains compara- 
tively large values. The magnetic moment of the alloy 
also increases rapidly (more rapidly than c 3 )  with nick- 
e l  concentration. 

Thus, the model proposed in this paper, which takes 
into account both the formation of the local moments 
and the strong magnetic nonuniformity of the alloy, 
makes it possible to explain in a natural way the prin- 
cipal properties of PdNi alloys with c - c  *. 

1. SUSCEPTIBILITY OF THE ALLOY. EFFECT OF 
LOCALIZED SPINS 

We shall consider a strongly paramagnetic metal A 
(Pd) with impurities B (Ni), with impurity concentra- 
tion c  << 1. The Hubbard Hamiltonian of the strongly 
correlated d electrons of such an alloy has the form 

Here &, is the energy of the d electrons with momen- 
tum k; a' and a a r e  electron creation and annihilation 
operators, respectively; I ,  and I ,  a r e  the correlation 
energies of the d electrons on the matrix atoms (Pd) 
and impurity atoms (Ni}, respectively, with I ,  > I A ;  
p ,  = 1 a t  si tes I occupied by nickel and p ,  = 0 at  the other 
sites. 
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In the Hartree-Fock approximation the longitudinal 
magnetic susceptibility X(ll ')  is determined by the fol- 
lowing Dyson equation 

where A = I, -I,, and x0(r, ,*) ' x0( ( rz - r l r  1 ) is the sus - 
ceptibility of pure palladium, which depends exponen- 
tially on r: 

xo (r) -r-'e-"%. (3) 

The range R o z  a / ( l +  r)>> a ,  where a is of the order of 
the lattice constant and r is the exchange scattering 
amplitude of the electrons. In palladium 1 + I?- 0.1. 
The formula (3) is valid for r >> R,. At small r the sus - 
ceptibility should tend to a certain constant: x0(r = 0 )  
G X .  Iterating E q .  (2) and averaging each term over the 
distribution of impurities, we obtain a graphical ser ies  
(see Fig. 1 )  determining the average susceptibility 
r ( r , , # ) .  Here, a s  usual, a solid line corresponds to the 
susceptibility x 0  of the pure matrix, each dashed line 
to the perturbation energy A, and a cross  with k out- 
going lines to a polynomial P , ( C ) . ~ ~ I  Assuming that 
c << 1, in P,(c)  we keep only the leading terms in c , 
i.e., we replace P,(c)  by c .  Taking into account the 
exponential dependence of the susceptibility x0(r) on r ,  
it is  easy to show that crossed graphs a r e  smaller, in 
the parameter cR /a << 1 ,  than uncrossed graphs with 
the same number of dashed lines, and, therefore, they 
can be discarded. As a result we obtain the following 
series for y(r, , a ) :  

Here, the single-impurity scattering matrix 

to=2A/ ( 1-?AX). (5) 

The local susceptibility X is almost independent of the 
correlation of the electrons; therefore, we shall neg- 
lect the effect of the impurities on it. Vanishing of the 
denominator in this expression means that a localized 
moment is formed on the impurity atom. For nickel 
atoms in palladium, 1 - AX << 1, (Ref. 10).  i.e., the is- 
olated nickel atoms a r e  almost magnetic. 

In order to go over to the Fourier transform in ( 4 )  i t  
is convenient to replace all intermediate susceptibili- 
ties x,(r, ,), not containing the indices 1 and Z', by 
xo(r,,) -X. After this, in ( 4 )  we can sum over all si tes 
without restriction, and for the Fourier transform 
~ ( q )  of the susceptibility we obtain 

where 

z-ct,/(l+ct,X). 

The expressions ( 6 ) ,  (7) for ~ ( q )  are  internally consis- 
tent in the sense that they do not contain superfluous 
graphs,c111 and for c << 1 they describe the behavior of 
x fairly satisfactorily. At a certain concentration F 
the denominator of ( 6 )  vanishes. However, the expres- 
sion (6) is valid only a t  concentrations smaller than F. 
The point i s  that, a s  c approaches F and ~ ( q )  increases, 
the localized magnetic centers that ar ise  on groups of 
three nearest-neighbor nickel atoms in the lattice be- 
gin to play an ever greater role. Because of the ran- 
dom disposition of the impurities, such groups of three 
a r e  always present in the alloy. The polarization of 
the alloy due to the local moments leads to a decrease 
of the susceptibility. Therefore, the average suscep- 
tibility, a s  will be seen from the following, never be- 
comes infinite. At small q i t  follows from iu) ,  (7) that 

where x p  i s  the Pauli susceptibility, 

and x o  is the uniform susceptibility of pure palladium, 
i.e., xo=xo(q= 0 ) .  

As the concentration of nickel atoms increases, the 
radius of the polarized cloud around the magnetic atoms 
increases. The polarization of the d electrons leads 
to a decrease of the local susceptibility X and, corres- 
pondingly, to an increase of the denominator of the t - 
matrix ( 5 ) .  Since 1 - 2AX << 1, even a small decrease 
of X strongly decreases t .  As a result, the effect of 
the nickel atoms on the susceptibility of the matrix i s  
decreased. Therefore, with increase of nickel concen- 
tration the susceptibility and the radius of the polar- 
ized cloud pass through a maximum. Of course, the 
magnetic centers polarize the d electrons not only at 
those sites at which nickel atoms a r e  situated but also 
on palladium atoms. But the polarization of the palla- 
dium d electrons i s  less  important, since the correla- 
tion on the palladium sites i s  smaller than on the nickel 
sites. Evidence for the weak polarization of the pallad- 
ium d electrons is the strong nonuniformity i n  the dis- 
tribution of magnetic moment in the alloy, observed in 
Ref. 5.  Therefore, in the following we shall take into 
account only the polarization of the d electrons on nick- 
el atoms. Because of the strong magnetic nonunifor- 
mity of the alloy the degree of polarization of the nickel 
atoms, and, consequently, the single-impurity matrix t ,  
depend on the configuration of the impurities about the 
localized spins. Therefore, the ser ies ,  equivalent to 
(4). for the unaveraged susceptibility now has the form 

Here, t ,  is the diagonal element of the T-matrix for a 
nickel impurity at the site n7. 

If the magnetization of the d electrons i s  small, i.e., 
1, -= In,+ -?zml ( << n ,  where IZ,, i s  the concentration of 
electrons with spin a a t  the point ~ I I  and rz i s  the total FIG. 1. 
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electron concentration, the correction to X that ar ises  
from the spin splitting of the d electrons is propor- 
tional to (nm+ -nmO2, s o  that 

In Appendix I i t  is shown that b = i. The average sus - 
ceptibility is obtained from (10) by averaging both over 
the configurations of nonmagnetic nickel impurities and 
over the configurations of localized spins: 

The angular brackets denote the averaging over the 
configurations of localized spins, which, according to 
(1 I ) ,  reduces to averaging over the distribution of the 
magnetization c(, of the d electrons at si tes occupied 
by nickel atoms. 

2. POLARIZATION OF THE ELECTRONS AROUND A 
MAGNETIC IMPURITY 

If a magnetic impurity is placed at a point r, in a 
metal, the polarization of the electrons a t  the point r 
is proportional to the susceptibility ~ ( r , ,  r): 

According to (3), the polarization of the electrons 
around a magnetic impurity in pure palladium decreas- 
e s  exponentially, with a characteristic range R,, with 
increase of the distance r from the impurity. 

We shall examine how the nonmagnetic nickel impur- 
ities affect the polarization of the  electron^.^' For 
this we shall investigate the dependence of the suscep- 
tibility ~(11') of a PdNi alloy on the mutual disposition 
of the sites. We iterate Eq. (2) and consider a general 
term of this series: 

Let r,,. >> R. Since x,(r,,) depends exponentially on r,, 
(to within a pre-exponential factor r;:, which is unim- 
portant in the present case), the principal contribution 
to  the sum (14) is given by those of i ts  terms for which 
the length of the path from I to I), equal to r tm+rm,+r ,  
+ ... + r,., exceeds the shortest distance r,,. by not 
more than R .  The contribution of the other terms is 
exponentially small. It is easy to see  that impurities 
satisfying this requirement a r e  disposed within a cyl- 
inder of base radius of the order of ( ~ r , , o ) ' l ~  and length 
r,,* (Fig. 2). Consequently, the number of impurities 
in it is of the order of Rr:,.cS1-', where Ci is the volume 
of the unit cell. If the distance r,( from the localized 
spin to the point I' is small, s o  that Rri,. c0-' << 1, in 
most cases only the shortest path from I to z', on which 
there is not a single nickel impurity, is oppmal. 
Therefore, the susceptibility at the point I is the same 
a s  in pure palladium. But i f  Rr:,, cQ-I >> 1, the number 
of optimal paths is large and the susceptibility a t  the 

U 
FIG. 2. Section of the cylinder inside which the optimal paths 
from the point 1 to the point 1' a r e  situated. The solid lines 
a re  optimal paths and the dashed lines nonoptimal paths, the 
circles indicate the positions I and 1' of the impurities, and 
the points denote the positions of the impurities over which the 
summation in (14) is  performed. 

point I' depends weakly on the actual disposition of the 
impurities, i.e., i t  coincides with the susceptibility 
averaged over the configuration of impurities (X(r)). 

Thus, the polarization of the d electrons falls off with 
increasing distance from the localized center in accor- 
dance with the law 

(r) -xo(r) -r-'e-''", R.arc(P/cR,)~, 
p (r) -z(r) -r-'e-'IR, rW (Q/CR)'~, 

where R is determined by the expression (9). At not 
too large concentrations of localized spins, most of 
the isolated nickel atoms a r e  situated far away from 
the nearest magnetic impurities, and, therefore, their 
magnetization is determined by the average suscepti- 
bility (15). 

Assuming that T << Tc o r  (for T 2 Tc) that the alloy 
is in a strong magnetic field, aligning the localized 
spins, we have 

where I is the integral of the exchange interaction of the 
d electrons with the localized spin S; q m =  1 at  si tes 
occupied by a magnetic impurity, and q m =  0 at  the other 
sites. 

Using the relation (1 5) i t  is not difficult to understand 
how the nickel impurities affect the indirect exchange 
interaction V(r) of two localized spins. This interac- 
tion, a s  is well known, is proportional to the suscep- 
tibility of the d electrons. Consequently, the interac- 
tion between localized spins separated by a distance 
r<< ( Q / C R ) ~ I ~  is the same a s  that for spins in pure pal- 
ladium; i.e., ~ ( r ) - r " e ~ l ~ o .  

But i f  r >> ( Q / C R ) ~ / ~ ,  then ~ ( r )  -x(r)  -r"e'IR. Since 
r >> R , even a small increase, due to the nickel impuri- 
ties, of R a s  compared with R, strongly increases the 
interaction energy between the localized spins. 

3. CONCENTRATION DEPENDENCE OF THE 
POLARIZED-CLOUD RADIUS, CURIE TEMPERATURE, 
AND MAGNETIZATION OF THE ALLOYS 

We shall calculate the susceptibility (12) for large 
r,,. >> R . In this case, the nickel impurities that lie on 
optimal paths (Fig. 2) a r e  located, in most cases, far 
apart; therefore, the molecular fields at these impuri- 
ties a r e  produced by different localized spins and can 

296 Sov. Phys. JETP 48(2), Aug. 1978 I. Ya. Korenblit 296 



be arammetl to be independent. Consequently, 

where (t,) E (t) , obviously, does not depend on the index 
m. Substituting (17) into (12), we obtain for X(r,,a) a 
series that differs from (6) only by the replacement of 
to by (t), s o  that the radius is given by 

The quantity (t) itself depends on R ,  and, therefore, the 
expression (18) is an equation for R . 

The expression (16) for the magnetization is analo- 
gous to the expression for the molecular field in a sys-  
tem of localized spins whose exchange interaction is 
V ( r ) - ~ ( r ) .  The distribution function of the molecular 
fields in such a system was studied in Ref. 12, in which 
it was assumed that V(r) - e7IR. Since at large dis - 
tances r >> R the pre  -exponential factor r - I  in r (r )  is 
unimportant in comparison with the exponential depen- 
dence, we can represent r ( r ) ,  like V(r), in the form 

2 (r) =xe-r'n. (19) 

The distribution function of the magnetization p, in 
this approximation coincides with the molecular -field 
distribution function from Ref. 12, s o  that 

Here, 

The magnetization distribution function 

where 

1 

D 0.) =is>. J dz In3 ax""; 

here, v = 4/3nNe3 = V,(R /R,)~, where N is the number of 
localized spins in unit volume. 

Together with (20) - (22), the relation (18) is a self- 
consistent equation for the determination of the radius 
R. The integral (20) can be calculated analytically in 
two limiting cases. 

1) The magnetization F on a given nickel impurity is 
produced by one localized spin (the nearest to it). It 
follows from (16) and (19) that, in order that the mag- 
netization a t  the given site not exceed E ,  the nearest 
localized spin should be situated at a distance not 
smaller than r ( F )  =~ln;- l .  The number of spins in a 
layer of radius r ( P )  and thickness R ,  producing approx- 
imately the same magnetization p ,  is 4nr2RN= 3vln2;-l. 
If 3vlngjZD1 << 1,  the magnetization at the given site is 
produced by one spin. Therefore, w(;) can he found by 
replacing the distance r i n  the Poisson nearest-neigh- 
bor distribution function w(r) = 4sr2N exp( - 4/3nNr3) by 
r (F) ,  i.e., 

It follows from the foregoing that the applicability of 
this expression i s  bounded from below by the inequali- 
ty 3v ln2g'<< 1. In addition, since one localized spin 
cannot produce a magnetization greater than unity, the 
formula (23) is inapplicable for 1?> 1. 

Substituting (23) into (20), putting the upper limit in 
(20) equal to unity in accordance with what has been 
said, and integrating by parts,  we obtain, to within 
small terms of order am', 

The principal contribution to this integral is given by 
the region - a-I << 1. Since v ln2p-' < 1 ,  in this region 
the function exp ( - v ln3P-') varies very slowly with jZ 
and can be taken outside the integral a t  the point j? 
= ff -I, SO that 

This formula is applicable if 3v ln2a << 1. Substituting 
(25) into (18) we obtain the following equation for  z 
=R/R,: 

where v,= 4nNRz/3. Since the polarization of the elec- 
trons in the given case is due entirely to one local spin, 
the orientation of the other spins is unimportant. 
Therefore, Eq. (26) is also applicable in the paramag- 
netic phase. The solution of this equation has a maxi- 

':-% mum at a nickel concentration c that can be determined 
from the condition 

In particular, i f  x -c3, the relation (27) reduces to 
v,z3 ln3ff = $. Since ff >> 1, the inequality 3v ln2a << 1 is 
still fulfilled a t  the point of the maximum, i.e., Eq. 
(26) describes the dependence R(c) in a broad range of 
concentrations, including the value of c a t  which R (c) 
has the maximum. 

2) At large concentrations of localized spins the in- 
equality 3v ln2a >> 1 is valid, i.e., the magnetization 
jI - I /a! at the given site is produced by several loca- 
lized spins. Since in the region v ln2&-l>> 1 the distri-  
bution function W ( & )  falls off with more rapidly than 
by a power law,[I2' the principal contribution to the in- 
tegral (20) in this case is given by values of P >> &-', 

so  that in the denominator of the integrand in (20) we 
can discard unity in comparison with p2ff2. The inte- 
gral that remains is calculated in Appendix 11. 

For (t) we obtain 
to n" exp (-2C.) 

<t)=-  
2 * 2  

(ev ) .  " P { ( ~ )  (28) 

where C,= 0.5772 is Euler's constant. We recall that 
v = v,(R /RJ3. In the concentration region in which for- 
mula (28) i s  valid, the radius R decreases with in- 
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crease of c . 
If the magnetic impurities a re  groups of three nickel 

atoms, the average distance between them is 
7,- Q'/~C-' >> (QR-'c-')'/~. Consequently, the interac - 
tion energy of localized spins separated by a distance 
of the order of the average distance is equal to V(Y) 
-,--I~-TIR (see above). This means that the concentra- 

tion dependence of T, is determined by the relationc8] 

Tc-NX exp (-0.891RiVh}, (29) 

where the concentration of magnetic impurities is rela- 
ted to c in the following wafB1: 

Since, for small c ,  not only N but also R increases with 
increase of c ,  T, increases very rapidly with increas- 
ing concentration of nickel. On further increase of c 
the radius R begins to decrease, and the growth of T, 
 slow^ down. 

The saturation moment M of the alloy is the sum of 
the moments of the localized spins and of the polarized 
clouds of d-band electrons that surround them. The 
moment of each cloud is - Sp(r)d3r. Therefore, accor- 
ding to (15) we have 

' M-zR:, p>R ln (RplR.'), p- (QlcR) ", 
M-zRpe-PIR, R a p c R  ln (RpIR.') , 

M-zR', Rbp.  

The last inequality is fulfilled when the number of nick- 
e l  atoms in a volume of radius R is greater than unity, 
s o  that, for all Y ,  the function p(r) -X(Y) -r-le-?lR. 

It follows from (31) that for small c the moment 
grows with nickel concentration like c3; then the rate 
of growth increases, and, finally, a t  large c , when R 
decreases with increase of c ,  the moment increases 
with c more slowly than c3. 

4. THE UNIFORM SUSCEPTIBILITY 

According to (10) the uniform longitudinal suscepti- 
bility of the alloy is 

where J is the number of si tes in the lattice. Since 
xO(r) decreases exponentially with increase of Y ,  in 
each term of the series (32), with exponential accuracy, 
the principal contribution is given by groups of impuri- 
ties concentrated in small regions with linear dimen- 
sions of the order of R. The polarizations of the elec - 
trons on all the impurities of such a group almost co- 
incide. Therefore, when averaging the ser ies  (32) over 
the configurations of the magnetic impurities we can 
replace averages of the type (t,t, .... t,), containing f 
factors, by (tf,). Averagingd(32) next over the config- 
urations of the nonmagnetic impurities, we obtain 

We recall that x0=x,(q = 0). 

The magnetization distribution function W(%), by 
means of which the averaging in (33) must be per- 
formed, depends now on the character of the range R ,  
determining the decay of the polarization with the dis- 
tance from those localized spins whose "sphere of in- 
fluence" contains groups of closely spaced nickel im- 
purities. In the calculation of R , ,  as in the derivation 
of (33), all  the t, in each term of the ser ies  (12) can be 
assumed to be the same. Therefore, R,- fi, s o  that 
the relation (33) constitutes the following equation for 
x: 

where p = ff-'[l -ct0k0 - X ) ] .  Denoting x/x,'Y, we ob- 
tain from (34) 

y - l  - CtoXo erp(-vy" In' p-") 
1-cto (xo-X) 

' for voy3121n2@'112<< 1, and 

for I-112>> 1. It follows from (35) and (36) 
that y (c) has a maximum at v, y3121n2@-112 = 1. We note 
that Eq. (35), like (26), is also valid in the paramag- 
netic phase (or in the spin-glass state). 

5. COMPARISON WITH EXPERIMENT 

The equations for the radius R and uniform suscep- 
tibility x contain three parameters: t , ~ , ,  t,X, and f f 2 .  

In principle the parameter t&, can be determined if we 
know the susceptibility for very small c ,  since 
x-l&/dcb, ,= t&,. However, there a r e  no reliable data at 
sufficiently small c. We shall take the value t&, = 70, ob- 
tained from an analysis of the experimental data in 
Ref. 4. According to Ref. 13, x,* 7x,. Assuming 
thatc4] 2Ax,= 0.3, we obtain 1 - 2AXm 0.03; t,X= 35. 
The concentration dependence of the uniform suscepti- 
bility x and radius R ,  obtained with the above values of 
the parameters for two values of f f 2  ( a 2 =  20 and f f 2 =  40), 
is shown in Figs. 3 and 4. It can be seen that x and R 
a r e  not very sensitive to the value of the parameter f f2 .  

Figure 3 shows the experimental values of the sus-  
ceptibility, obtained in Ref. 1 at  T < 2 K and in a mag- 
netic field greater than 20 kOe, when all  the localized 
spins a r e  aligned parallel to each other. The calcula- 
ted susceptibility agrees well with the experimental 
susceptibility. 

The experimental values of the ratio R/R, given in 
Fig. 4 were found from the data of Ref. 5, with R, 
= 4.3 A from Ref. 8. The agreement between the theor- 
etical and experimental results must be regarded a s  
satisfactory, i f  we take into account the uncertainty in 
the determination of R associated with the fact that the 
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FIG. 3. Concentration dependence of the uniform longitudinal 
suscepttbility. The values of the parameter a2 are shown in 
the figure. The experimental points are taken from Ref. 1. 

linear dimensions of a magnetic cluster a r e  smaller 
than R by a factor of only 2 ,  approximately. Changing 
the parameters slightly (e.g., increasing a2 or  t 0 X ) ,  we 
can easily achieve better agreement. 

Figure 5 shows the theoretical dependence of the sa t -  
uration moment on the nickel concentration, calculated 
for a2=  4 0 .  The solid curve is plotted from formula 
( 3 1 c )  and the dashed curve from formula ( 3 1 a ) .  Al- 
most the same dependences art? obtained for a2=  2 0 .  
The experimental points, taken from Refs. 1 and 6, lie 
satisfactorily on the dashed curve for c < 2 at. % and on 
the solid curve for c  2 2 at. %. The crossover from one 
dependence to the other at c  s 2 at. % seems to be en- 
tirel! reasonable, i f  we take into account that R = 8 
- 9  A. 

Figure 6 shows the theoretical dependence of Tc, 
calculated from formula ( 2 9 )  for values of R obtained 
from !he solution of Eq. ( 2 0 )  ( a2=  41)) and with R ,  
= 4 .3  A. Since, generally speaking, Eq. ( 2 0 )  is appli- 
cable only when the spin orientations a r e  parallel, the 
values of R found from ( 2 0 )  can differ appreciably from 
the true values at T = T, in the concentration region 
3v ln2a! > 1 (c  2 0 . 0 3 ) .  Therefore, the dependence of Tc 
on c obtained in this way has only qualitative meaning. 

The Curie temperature of PdNi alloys has been mea- 
sured in Ref. 14 for c >  2.5 at. O/o and in Ref. 2 for c 
> 2.3  at. %, the values of T, obtained in the first of 
these papers being considerably higher than those ob- 
tained in the second. The character of the concentra- 
tion dependence of T, on c in Fig. 6 is close to the ex- 
perimental dependence given in Ref. 2 .  There is, how- 
ever,  one substantial quantitative discrepancy. The 
steep r ise  of T, on the theoretical curve begins at 

FIG. 4 .  Dependence of the radius of the polarized cIoud around 
a localized spin on the nickel concentration. The values of the 
parameter a2 are shown in the figtlre. The experimental re- 
sults are from the data of Ref. 5. 

FIG. 5. Dependence of the saturation moment (in arbitrary 
units) on the nickel concentration. The solid curve is plotted 
from formula (31c) and the dashed curve from formula (31a). 
The experimental points are taken from Refs. 1 and 6; a 2 = 4 0 .  

c  = 1.6 at. O / o ,  whereas in Ref. 2 the rapid growth of T, 
begins a t  c = 2 .3  at. %. This discrepancy can be ex- 
plained, f irst ,  by the fact that the values of R used for 
the calculation of Tc a r e  too low, a s  already noted, 
when c 2 0 . 0 3 .  Moreover, i t  is not ruled out that for 
c  2 0 .02  the oscillatory part  of the exchange potential 
already substantially decreases the energy of the ex- 
change interaction of localized spins over the average 
distance, and, consequently, also decreases Tc. 

APPENDIX I 

We introduce the susceptibility 

where a= t ,  4. The longitudinal susceptibility is 

If in the palladium there is one nickel impurity, located 
a t  si te 1 ,  then 

The system (1 .3)  can be divided into two systems of 
equations for x t  + ( 1 l 1 ) ,  X +  +(111)  and X +  + ( l l r ) ,  X +  t ( l l ' ) .  
Solving these, substituting the solutions into ( I . 2 ) ,  and 
taking into account that xot + =xO( + ,  we obtain 

c, at.% 

FIG. 6. Dependence of the Curie temperature (in arbitrary 
units) on the nickel content; a2= 40. 
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Assuming the splitting of the d-band of palladium to be 
weak, we can neglect the difference between X: and 
x:, everywhere except in the last factor in this expres- 
sion. Then, 

and in the same approximation, 

where 

Since the denominator in this expression is symmetric 
in the indices 4 ,  +, the correction due to the spin split - 
ting at  the point 1 is proportional to (n (1) - n , (1)). 
In the calculation of x a ( l 1 )  = C,x&(q) we can confine 
ourselves to the free-electron model, since the prin- 
cipal contribution in the integral over q is given by 
large values of q and the electron correlation is unim- 
portant. Simple calculations lead to the formula (1 1) 
with b=f. 

APPENDIX II 

We shall consider the integral 

Using the representation - 
i/pa -- j e s t  dt, 

* 

we obtain 

According to Ref. 12, the inner integral in (11.2) is 
equal to e-D"t), so  that 

Since v << 1, the principal contribution to (II.3) is given 
by t >> 1. The asymptotic form of D(it) a t  large values 
o f t  is (cf. Ref. 12) 

D (it) -=vlnJ ~+BC,V In1 t+ . . . m.4) 

Substituting (11.4) into (11.3) (we put the lower limit in 
(11.3) equal to unity) and changing to the variable x 
= ln t , we obtain 

This integral is calculated by the method of steepest 
descents. Finally, we obtain 

nIh exp (-2CE) 
A -  

2 " 2  

I)~enceforth we shall assume for definiteness that nickel clus- 
ters containing not less  than three nickel atoms possess a 
magnetic moment, 

2 ) ~  magnetic impurity in a PdNi alloy, a s  already noted. is  a 
cluster of three nearest-neighbor nickel atoms in the lattice. 
In this case it is possible to speak of a point of spin localiza- 
tion only so  long a s  the characteristic distances in the prob- 
lem are  large compared with the size of the cluster. 
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