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Longitudinal magnetoresistance depends on the ratio of the distance between the Landau levels to the level 
width due to the interaction of the electron with the phonons and the impurities. If the level width exceeds 
the distance between the levels, resonance effects are impossible and the corresponding terms are 
exponentially small. The quantum corrections that determine the longitudinal magnetoresistance turn out 
to be analytically (quadratically) dependent on the magnetic field. The method of translationally invariant 
kinetic equation makes it possible to calculate these corrections for different scattering mechanisms. In 
scattering by ionized impurities, owing to the slow decrease of the Coulomb potential with distance, the 
order of magnitude of the magnetoresistance increases and it is determined by the classical theory, while 
its sign turns out to be negative. 

PACS numbers: 72.15.Gd, 72.20.My, 72.10.Fk 

According to ordinary kinetic theory, application of 
a magnetic field does not change the resistance along 
the direction of the magnetic field. The magnetic field 
is regarded to be applied along a symmetry axis of the 
crystal, s o  that no resistance change due to crystalline 
anisotropy takes place. The magnetoresistance i s  zero 
because the action of the magnetic field on the electron 
system is taken into account only classically-via the 
Lorentz force. According to quantum mechanics, a 
system of Landau levels i s  produced in a magnetic 
field and the longitudinal magnetoresistance of the elec- 
trons that have a discrete spectrum does not vanish. 
It was investigated for the case of extremely strong 
(quantizing) magnetic fields by Adams and Argyres.[ll 
They have noted that when electrons are scattered by 
ionized impurities, the longitudinal magnetoresistance 
can be negative in a definite range of magnetic fields. 
In the limit of nonquantizing magnetic fields, allowance 
for the quantum corrections yields a nonzero longitu- 
dinal magnetroesistance. A r g y r e ~ , [ ~ ]  considering the 
scattering of electrons by acoustic phonons, reached 
the conclusion that a region of negative magnetoresis- 
tance exists. However, the order of magnitude and the 
dependence on the magnetic field, which were deter- 
mined in Ref. 2, turned out to be incorrect, as was 
demonstrated by ~ubinskaya. [~ '  

According to  ArgyresC2l and ~ u b i n s k a y a , ~ ~ ]  the mag- 
nitude and sign of the magnetoresistance a r e  deter- 
mined by the resonant behavior of the state' density and 
of the collision frequency in the vicinity of the Landau 
levels. This point of view implies tacitly that the sys-  
tem of Landau levels is well defined, i.e., the distance 
between the levels, 0, which is equal to the frequency 
of revolution of the electron in the magnetic field, ex- 
ceeds their smearing, which is of the same order as 
the reciprocal relaxation time l/r,. It can be assumed 
that at 52 < 1/rP the resonance effects a r e  strongly 
smeared out. Thus, despite the fact that the consid- 
ered effect is longitudinal, it depends essentially on 
$2 rp. A theory of magnetoresistance for a small  S2 7, 
was developed next. 

In the f i rs t  part  of the present paper we determine, 
in the Landau-number representation, the magnetore- 
sistance in the case of elastic scattering of electrons 
by acoustic phonons. It is shown that the t e rms  that 
might be resonant, a r e  small  for small  S2 7, like 
exp(-s/$2 rp), and the density of states and the relaxa- 
tion time can be regarded as smooth functions of a. 
At a small  rat io of the distance between the energy 
levels to  the average energy, the relaxation time, and 
the state density, meaning therefore also the magneto- 
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resistance, all depend quadratically on the magnetic 
field. In the second part are  considered other scatter- 
ing mechanisms, by a procedure made possible by the 
use of the method of translationally invariant kinetic 
equation, developed by ~ e v i n s o n . ~ ~ ]  It turns out that 
at small S2 r, all the scattering mechanisms lead to a 
quadratic dependence of the magnetoresistance on the 
magnetic field. Scattering by ionized impurities is 
special because of the rapid increase of the ma t rk  
element of the potential with decreasing momentum 
transfer. The total scattering cross section diverges in 
this case and turns out to be finite only when screening 
is taken into account. Since the magnetoresistance de- 
pends precisely on the total scattering cross section 
rather than on the transport cross section, the order 
of magnitude of the magnetoresistance increases. The 
Planck constant is cancelled out in this expression, 
i.e., the magnetoresistance is determined by classical 
theory and its sign is negative. 

1. Consider the self-energy part of the retarded 
Green's function Z(E, n,p, , )  in the Landau-number rep- 
resentation: 

G'd=[~-hQ(n+'lz)  -p,,%m-I:(&, n, p,,) I-', (1) 
m is the isotropic effective mass, the symbols ( 1  and I 
indicate the projections of the momentum on the direc- 
tion of the magnetic field and on the perpendicular di- 
rection. In the lowest-order approximation in the 
coupling constant we have 

Z(e,  n, P, , )  

M ,(p,, p,') a re  known matrix elements of the exponen- 
tial in the Landau-number representation. In expres- 
sion (2) we substituted the total Green's function, i.e., 
all the non-intersecting Feynman diagrams were 
summed, so that formula (2) is an integral equation. 
Here C, is the matrix element of the deformation inter- 
action of the electrons with acoustic phonons. The 
quantity Ic, l 2  is proportional to the wave vector q, 
whereas for the phonon number N we substitute the 
Rayleigh-Jeans distribution function, which is inverse- 
ly proportional to the phonon frequency. Consequently, 
in the elastic high-temperature limit, V,, I C, J 2 ~ ,  = R 
does not depend on q, making it possible to simplify 
(2) significantly. Replacement of summation with re -  
spect to the longitudinal component q shows that Z does 
not depend on p , , ,  and the summation over the perpen- 
dicular components reveals that C is likewise not de- 
pendent on the number n, and is a function of only the 
energy variable E. Since the latter is not a variable of 
the summation in (2), this summation becomes pos- 
sible. 

For the Green's function in (2) we use the integral 
representation 

The integration contour goes from zero to below the 
real axis in a positive direction, and circles the singu- 
lar points of the integrand on the real axis from below. 
It is convenient next to transform the integral along 
such a contour into an integral along the imaginary axis 
in the upper Z,(E) half-plane and into a sum of residues 
on the real axis C,,(E): 

~ ( E ) = B ( E ) - ~ A ( E ) ,  (5) 

( 2 m y 0 ~  j i d [ t 
A 1 ( e ) = - -  -- e - l c - B < < , l l  

4 n 3  tH dt sh(hQt/2) 
cos l ( e ) t ]  dt. (6)  

The energy shift B,(E) is proportional to the highest 
power of the coupling constant, so that this term can 
be neglected. The level width A,(&) is a smooth func- 
tion of the energy variable, and C(c) can be taken to be 
zero in its calculation. We present an expression for 
the level width in the quasiclassical limit E >>tin: 

We turn now to the contribution from the sum of the 
residues 

if we let Z(E) tend to zero in this expression, then we 
can see that at E("'= EQ(n + $) this expression diverges 
like (E-E("')-"~, a fact that determined the result in 
Refs. 2 and 3. What distinguishes fwrnula (9) from 
this resonant expression is the exponential cutoff 
factor. For medium electron energies E >> AS2 the argu- 
ment of the exponential turns out to have n/SZ T,, so that 
at S2 r,<< 1 each term and the entire series as a whole 
a re  exponentially small. Comparison of (9) with (5) 
shows the difference between the parameters of the 
expansion of the smooth and resonant parts of A (E) and 
the possibility of taking into account the small quantum 
correction in A ,  (E) when A ,, (E) is exponentially small. 
At low energies E - tiS2 both parts of A (E) are  of the 
same order, and this complicates the analysis of the 
quantum corrections to the conductivity in the region 
of classically strong magnetic fields. 

The use of the self-consistent equation (2) calls for 
estimates of the discarded terms corresponding to 
other Feynman diagrams. We calculate the expression 
corresponding to a diagram with intersecting phonon 
lines, in which the Green's functions (1) and (2) are  
substituted : 

ma(QR)%(-1)" 
z ' ~ '  ( e ,  n. p,,) = i  (10) 

where 

after which expression (2) is transormed into 
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1 1 ) ] %  R,, . R,, , , 
~ - [ z , z ~ z ~ ( $ + ~ + ~  sin-m-sm- 2 * 

The main contribution is made by the points where the 
integrand is maximal: the maximum at the origin de- 
termines the smooth part analogous40 (6), whereas the 
maxima at dkL' = 2n(k + $)/ti52 make a contribution sim- 
ilar to (9). The smooth part again turns out to be a 
function of An/&, whereas the resonant part contains 
an exponential dependence on A (E)/ASZ. Thus, at 
52 7, << 1 all the terms of the perturbation theory have 
the exponential smallness of the resonant terms. On 
the other hand, the proportionality to a higher degree 
of the coupling constant makes it possible to  disregard 
the corrections to (2). 

For electron scattering by acoustic phonons it is 
easy to calculate the longitudinal conductivity, since 
the arrival terms in the collision operator vanish. We 
do not take into account anywhere the spin of the elec- 
tron, and assume the spin phenomena to  be completely 
separated from the orbital phenomena; therefore 

1 de 
X 

[e-hR ( n t ' l , )  -p l l ' /2rn]~+A2(e) '  (2%)'' (11) 
f,,(~) is an equilibrium electron distribution function. 
In the derivation of formula (11) we have assumed that 
the action of the electric field on the electron reduces 
to the Lorentz force in the kinetic equation, and have 
neglected the influence of the electric field on the 
electron-phonon collision act, since the latter is small 
for nonquantizing magnetic fields. 

We separate in (11) the analog of the state density 

In the state density we can separate the smooth and 
oscillating functions of the energy. The latter is equal 
to 

The expression for the smooth part i s  given here in 
the quasiclassical limit: 

Integrating with respect to E' in (13), we arrive at the 
usual expression for the conductivity in the form of an 
integral of the relaxation time with respect to a l l  the 
quasiparticle energies. The main contribution i s  made 
by the average energies E the temperature T (in the 
case of Boltzmann statistics), and the chemical poten- 
tial p (in the case of Fermi statistics). Here 

Just as  in (9), the oscillating part of the state density 
gives here an exponentially small contribution at 
0 r, << 1. Consequently, we a re  left with only the 52 -de- 
pendent quantum corrections to both the relaxation 
time and to the state density. 

This leads to a simple expression for the magneto- 
resistance. Its dependence on the magnetic field is 
quite different than in Refs. 2 and 3- namely, quadra- 
tic. For Boltzmann statistics, the integral with re -  
spect to energy at 52 squared diverges logarithmically 
at the lower limit. The cutoff of the integral at low 
energies is connected with two circumstances: at 
energies on the order of 652, the quasiclassical expan- 
sions of A (E) and ~ ( c )  a re  not valid, and at energies on 
the order of E/T,(E) the level width becomes comparable 
with the energy, a fact that must be taken into account 
when integrating with respect to E' in (13). Which of the 
circumstances manifests itself depends on the value of 
the magnetic field and on the ratio of two small quanti- 
ties: C2 rp and the kinetic-equation parameter A/r,T. 
At 1 >> A/r,T >> SZ 7, we have 

C is the Euler constant. At 1 >> $2 r, >> E/T,T we have 

where a is a constant that could not be determined 
analytically. If no attention is paid to the logarithm, 
then the dependence on the magnetic field is analytic. 
This is natural, since the dependence on the magnetic- 
field intensity vector should in fact enter in the form of 
the square of the absolute value. The origin of the 
logarithm will be illustrated by the following nonrigo- 
rous arguments. Irnagiile that the integrand in the 
usual classical formula 

depends on the changed energy 
€ = [ ~ ~ + ( b f i ~ ) ' ] ' ~  

(b is a constant); we assume that this change takes into 
account effectively the discrete character of the levels. 
Since T,(E) decreases with energy like E'"~, expansion 
in powers of AS2 results in a logarithmically diverging 
integral. It can be assumed that for another scattering 
mechanism with a different T,(E) dependence there is no 
logarithm, since the quadratic dependence on the mag- 
netic field at 52 T, << 1 is a general phenomenon. This 
will be proved later on. On the other hand, for scatter- 
ing by acoustic phonons the theory, a s  we see, gives a 
positive magnetoresistance. 

2. It is of interest to consider other scattering mech- 
anisms, but this i s  difficult to do in the Landau-number 
representation. We shall use the method of the trans- 
lationally invariant kinetic equation for the density 
matrix in the Wigner repre~entation.["*~'  The density 
matrix f, depends on the kinematic momentum p and i s  
a generalization of the distribution function: 
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cP = P/2m is the dispersion law of-the electron, E and H 
are  the intensities of the external electric and magne- 
tic fields, Uq is the Fourier component of the potential 
of the randomly disposed impurities, and N i s  the total 
number of impurities. For scattering by phonons, in 
the elastic approximation and neglecting the spontane- 
ous emission of phonons by electrons. NU:  must be 
replaced by 2 ( C q  I'N,.  

According to Refs. 4 and 5, Eq. (21) is valid at any 
external-field strength. It i s  seen, however, that it 
does not take into account the finite width of the levels. 
This may turn out to  be a shortcoming for problems 
in which an important role i s  played by the resonant 
behavior of the collision operator in the vicinity of the 
Landau levels. As already shown, when the longitudi- 
nal magnetoresistance in weak fields is calculated, 
such terms yield an exponentially small contribution, 
So that Eq. (21) i s  necessary and sufficient for the 
problem in question. 

In the classical limit we can neglect the influence of 
the external field on the collision act, after which (21) 
takes the form of an ordinary kinetic equation. Being 
interested in the response to a weak electric field, we 
linearize (21) in the electric field. In nonquantizing 
magnetic fields, the action of the electric field on the 
collision can be disregarded, so  that the electric field 
remaim only in the left-hand side of the equation. This 
term appears as an inhomogeneity, since the density 
matrix in it i s  replaced by the equilibrium value, which 
itself depends on the magnetic field. For Boltzmann 
statistics, according to Ref. 4, it is equal to 

Integration of the function (22) over all the momenta 
gives the total concentration no of the conduction elec- 
trons. For Fermi statistics, in accord with Ref. 5, 
we have 

The magnetic-field corrections of interest to us are  
now obtained by expanding the simplified equation (21) 
in powers of H. The change of the density matrix con- 
sists in this case of two additive parts: first, of the 
solution of the ordinary kinetic equation, in whose 
homogeneous term allowance i s  made for the change 
of the equilibrium density matrix in the magnetic 
field; second, of the solution of a kinetic equation in 
which the inhomogeneity is due to the change of the 
collision integral in the magnetic field. Accordingly, 
two increments are  added to the electric conductivity. 

Expressions (22) and (23) ShWitW the f i l l s t  incre- 
ment to the distrihtion.funttion is proportional t o  
(EL?/?)'. The corresponding imrement to the electric 
conductivity i s  obtained in the same manner ss the ex- 
pression for the electric conductivity in the absenee of 
a magnetic field. The quantity AU''), just as de- 
pends onsthe scattering mechanism, a fact.that we take 
into account by assuming the relaxation time to"& 
proportional to the s-th,power of the electron energy. 
In the case of scattering" acoustic phonons (16) we 
have s = - 1/2, in the case of scattering by optical 
phonons and phonons thdt interact piezoelectrically 
with the electrons we have s = 1/2, while in the case of 
scattering by ionized impurities we have s = 3/2. Thus 

The relative change of the longitudinal resistance i s  
equal in magnitude but opposite in sign to the relative 
change of the electric conductivity. 

Proceeding to the calculation of the second incre- 
ment to the density matrix, we note that the distribu- 
tion function, which is the solution of the zeroth ap- 
proximation- the classical kinetic equation- is sub- 
stituted into the inhomogeneity, which i s  the expansion 
of the collision operator in powers of the magnetic 
field. In the equation for this increment, the expansion 
of the operator denominators gives rise formally to 
terms of first order in the magnetic field. But these 
make no contribution to the longitudinal electric con- 
ductivity, and we must continue this expansion to the 
second ~s*. It is easily seen that thie increment to 
the dis t r iwion function i s  proportional to 
The calculations of A I J ( ~ )  are simple in concept but ex- 
ceedingly cumbersome. This change of the conductivity 
depends substantially on the nature of the scatterers, 
i.e., on the matrix element. It is expressed not in 
terms of the transport scattering cross section of the 
electrons, which enters in the relaxation time, but in 
terms of the total scattering cross section, which de- 
termines the "departure" time T,, of the electron. 

In scattering by acoustic phonons, using the usual 
expression for the relaxation time (16), we get 

A -=--I ( / iQ)= (---- 1 df,  d2f, ) d E ,  
o ' o ~  24M e de de- 

dfo 
(2 5) 

M= J e ,  -de,,  fo=[e'c-~'lr+i]-'. 
del 

For Fermi statistics, AU(') is negative and exceeds 
AD(') in absolute magnitude; the longitudinal magneto- 
resistance is positive. In the case of Boltzmann sta- 
tistics, the integral in (25) diverges logarithmically. 
This divergence was discussed earlier. The results 
(17), (la), and (25), which were obtained by different 
methods, are  in agreement. 

The potentials of piezoelectric electron-phonon inter - 
action and of the interaction of electrons with optical 
phonons have similar momentum dependences. There- 
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fore the relative change of the conductivity for these 
scattering mechanisms is the same. Our calculation 
is model dependent, since we have neglected the in- 
elasticity, a step permissible for optical phonons only 
at high temperatures, and neglected also the aniso- 
tropy, a step difficult to apply to the piezoelectric 
interaction. For these interactions the lifetime, in 
contrast to the relaxation time, diverges logarithmi- 
cally and i t  is necessary to take into account the 
screening of the electron-phonon interaction. The sta- 
tic screening cuts off the divergence at momenta at the 
order of E/rP, where r, is the Debye radius. We 
have 

In the calculation the Coulomb logarithm L = ln[2rD- 
(2nzdlf2/~]  was assumed to be large, and this made it 
possible to dispense with determining more exactly the 
number under the logarithm sign. It was also assumed 
that ~ , (2t lz&) ' /~/E~> 1, which holds true for semiconduc- 
tors. In this case 

The contribution of a u c 2 )  to the magnetoresistance is 
negative, and one can see that the magnetoresistance 
has a tendency to be negative in the case of scattering 
mechanisms with s > 0. 

We consider now scattering by ionized impurities. 
For these, it i s  necessary to take into account the 
screening of the Coulomb potential. The total scatter- 
ing cross section, and with i t  also the lifetime, diverge 
in power-law fashion, and their finite values a re  due to 
screening. We have 

For the change of conductivity, this quantity is multi- 
plied, a s  before, by ( E ~ / c , ) ~ .  In this product, how- 
ever, the Planck constant cancels out, thus demon- 
strating that this result should follow from the classi- 
cal theory. In the classical limit, the collision term 
of the kinetic equation (21) can be simplified (cf. Ref. 

Allowance for the action of the magnetic field on the 
collisions leads to a nonzero longitudinal magneto- 
resistance, which is determined by the classical theory. 
In this theory, the magnetoresistance i s  a function of 
the ratio of the Debye radius r, and of the Larmor r a -  
dius r, = ( 2 ~ ) ' ~ ~ / 0 n 2 ' ~ ~ .  When their ratio is small we 
have 

&J'=) 11 rD2mQ2 1 A 11 rD2mQZ 1 
-=- - 

0 120 ( *L ) (B)7 T=E(T)  ( F )  

(30) 
This contribution exceeds parametrically the contribu- 
tion of A d 1 )  i f  Awp,/&<l(w,, is the plasma frequency), 
a s  is usually the case in semiconductors. Expression 
(30) corresponds to negative magnetoresistance. When 
r, becomes comparable with r,, the explanation of 
Eqs. (21)-(29) is, of course, not valid and the change 
of the resistance becomes large in this sense. But 
when r, becomes much smaller than r,, the difference 
between u(H) and do) is small- it consists in the fact 
that in the Coulomb logarithm, which enters in o'O), 
the Debye radius is replaced by the Larmor radius.c71 
This singles out a magnetic-field interval in which 
there exists a negative magnetoresistance determined 
by the classical theory. The presence of such an inter- 
val agrees qualitatively with the experimental data ob- 
tained with tellurium.181 
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