
not necessarily bring F (&I closer to a Maxwellian function: 
it  was shown recently that the e-e collision integral can 
be equal to zero also for power-law distribution functions 
that describe, just a s  021, distribution with flows of 
particles and of energy from a ccsource" (c  = 0) to a "sink" 
(c=co). 
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A derivation is given of a dispersion equation from which the spectrum of electrons, light holes, and heavy 
holes can be obtained in the three-band Kane model in which the interaction between the three bands is 
included rigorously but the interaction with the other bands is allowed for by the k-p approximation. 
Overlap integrals governing the Auger recombination rate are calculated. The overlap integral between the 
conduction and heavy-hole valence bands is zero for threshold values of the particle momenta if the 
interaction with the higher bands is ignored. Consequently, the preexponential function in the expression 
for the Auger recombination rate has a different temperature dependence from that obtained in the case of 
simple parabolic bands. This theoretical calculation is in good agreement with the experimental 
recombination time reported for InSb at 300'K. 

PACS numbers: 72.20.Jv, 72.80.Ey, 7 1.25.C~ 

1. INTRODUCTION 

The  Kane model[" allows r igorously f o r  t h e  interac-  
tion between the  s and p bands, w h e r e a s  t h e  interaction 
with higher  bands i s  included by the k. p approximation. 
However, in  the  case of narrow-gap semiconductors ,  
such  as InSb or Hg,-,Cd,Te, t h e  spin-orbit splitting is 
l a r g e  compared with the band gap E ,  a n d  the spectrum 
of electrons and ho les  c a n  be  determined using just the  
three-  band approximation, i.e., by making r igorous  al- 
lowance for  the interaction with the conduction band 

with the  light- and heavy-hole valence bands. T h e  inter-  
action with the spin-orbit-split band c a n  also b e  in- 
cluded within t h e  f ramework  of t h e  k. p approximation. 
T h i s  m a k e s  it  possible  to allow simultaneously fo r  the 
band nonparabolicity and t h e  cor ruga ted  n a t u r e  of the 
constant-energy surfaces.  

Allowance f o r  t h e  band nonparabolicity i s  essen t ia l  in 
the calculation of the rate of t h e  Auger recombination of 
e lec t rons  and holescz1 within t h e  f ramework  of t h e  Kane 
model. The  expression f o r  th i s  rate includes overlap 
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integrals, whose initial estimatesc2] have been refined 
repeatedly.cs-gl The overlap integrals a re  calculated 
for the threshold momenta of the particles participating 
in the recombination process. However, in the Kane 
model, the integrals of the overlap between the wave 
functions of electrons and heavy holes vanish for the 
threshold momenta of the particles if we ignore the in- 
teraction with higher bands. This i s  due to the fact that, 
in this model, the wave functions of heavy holes a re  
orthogonal to the wave functions of electrons or light 
holes if the momenta of the latter particles a re  parallel 
to the momentum of a heavy hole, which i s  true at the 
threshold. The fact that the threshold overlap integrals 
vanish has led to the view that the Kane model i s  unsuit- 
able for estimating these integrals. c4' We shall show 
that, in calculating the Auger recombination rate i t  i s  
essential to know the behavior of the overlap integral 
near the threshold. This behavior modifies the temper- 
ature dependence of the recombination time, a quantity 
which i s  a product of the power function of the t empera  
ture T and an exponential function. In the case of semi- 
conductors described satisfactorily by the Kane model, 
the power function is proportional to T~~~ if T/E, 
>> (m,/m,)', where m, i s  the mass  of an electron a t  the 
bottom of the band and m ,  i s  the mass  of a heavy hole, 
whereas, in the case of purely parabolic bands, the 
power function i s  proportional to P I 2  (Ref. 2). An esti- 
mate of the time constant of the auger recombination in 
InSb gives a value close to the experimental result. 

2. ENERGY SPECTRUM OF ELECTRONS AND HOLES 
IN THE THREE-BAND KANE MODEL 

In the three-band Kane model for a narrow-gap semi- 
conductor, we shall include rigorously the matrix ele- 
ments of the Hamiltonian H between the wave functions 
of the conduction band, which have the s symmetry at 
the point r (u, = St ,  u,= St) ,  and the wave functions of 
heavy and light holes, which have the p symmetry: 

u3=2-"(Xf  t Y )  t ,  US-i .6-  ' [ ( X f i Y )  4-2Zt], 
u,=(i- '[ ( X - I Y )  f +2ZC],  ue='.2-'"(X-LY) 1. 

The Hamiltonian i s  a 6 X 6 matrix whose nonvanishing 
elements are[71: 

H,,=H,- XJ, [ i (y , ' -y2' )  k.k. - 
ma 2 

Here, 

i s  the matrix element of the momentum; k i s  the wave 
vector; k , = k , + i k , .  The constants m:, y;, yi, and yi 
differ from zero only if allowance i s  made for the inter- 
action with higher bands. 

The system (1) includes only the elements above the 

diagonal because the other elements can be found from 
the condition that the Hamiltonian i s  self-adjoint. The 
Hamiltonian is described by the system (1) in such a 
way a s  to show its relationship to the Luttinger Hamil- 
t~n ian . '~ '  The Luttinger constants y,, y,, and y, a r e  
related to J,, y;, and yi by 

The mass  of an electron at the bottom of the band i s  

The eigenvalues of the Harniltonian (1) can be found 
from the roots of the cubic equation 

AZk2 h2kZ hlk2 
[ E  + K ( y , f - 2 7 2 ' )  ] { ( E : E ~ - - )  [ E f -(711+ 27;) ] 

2mc 2m0 
h" AZk' 2 

[ - ( y i . + y . )  ( E - E # - ~ )  A b ~ a ]  -0, 
3 mo 

where 
(3) 

In the spherical approximation, when yL='yi= y ' ,  the 
roots of Eq. (3) can be found explicitly: 

Eh ( k )  =-ch(k)  =-k2/11/2m,,, I/ml=y,'-2y1, 

where E,  and E ,  a r e  the energies of heavy and light 
holes; E, is the energy of electrons. Equation (3) can 
be used to obtain all the approximate formulas for the 
electron and hole energies in different parts of the de- 
pendence of E on k a r e  (given-for example-in 
Madelung's book[g1), provided (E , E,) << A, where A is - 
the spin- orbit splitting energy. 

3. AUGER RECOMBINATION RATE 

According to  eatt tie,"] ten different transitions a r e  
possible between three bands under Auger recombination 
conditions. However, the recombination processes in- 
volving two electrons and a heavy hole or two heavy 
holes and an electron followed by the conversion of a 
heavy into a light hole have the lowest threshold ener- 
gies. We shall consider the processes in which two 
electrons and a heavy hole participate. Processes of 
the second type mentioned above may be important in 
p-type semiconductors. 

The overlap integrals occurring in the expression for 
the Auger recombination probability can be expressed 
conveniently in terms of the operators of projection on- 
to the electron states h','(k) and onto the heavy-hole 
states A '' '(k) : 

The projection operators appear after summation over 
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two possible electron and hole states with a given wave 
vector k 

The Auger recombination rate can be written in the 
form~2'5.101 

+e.(k - '/,kt,) +eh(k,-2k) -e, (k,) I 
x{I kl-k-'/2klz I-'B4"'(k,, k+'/2kll)B"" (k-1/zk12, 2k-kc) 

- Ikt-k-'/zk,lI-z(k,-k+'/zk,,)-'D(k-ll,k,, kt, k+1/2k12; 2k-kt)). 

Here, 
(6) 

D(qt, 9s' q) =SP ~"'(q,)~"'(q~)A"'(qs)A'h'(q), 
B'" (qt, qr) -Sp A"' (%)A'"' (qz), e,=E.-E,, 

f, = &3(2nm,~)9/2exp(-~c/~) is the distribution function 
of the electrons present in a density n, x i s  the permit- 
tivity, e is the electron charge. The law of conserva- 
tion of momentum is allowed for in Eq. (6). The mo- 
menta of a recombining electron and a heavy hole a re  
k - $kl, and k, - 2k, whereas an electron whose mo- 
mentum is k +  ik12 acquires an additional momentum k, 
as a result of recombination. The second interference 
term appears because the wave function of electrons 
participating in the recombination process is, in accor- 
dance with the Pauli principle, antisymmetric in re- 
spect of the electron coordinates. 

It follows from the law of conservation of energy 
that the threshold energies and momenta in the Auger 
recombination a re  

where CY = X ,  y, z. The system (7) i s  derived ignoring 
the contribution of higher bands to the dispersion law 
for electrons and regarding the terms associated with 
the heavy holes as  corrections. It follows from the 
system (7) that, after recombination, the electron 
energy is of the order of E,, whereas before recombina- 
tion the electron and heavy-hole energies a re  small 
compared with E,. Therefore, in all the terms of the 
system (7) except for the exponential function in f,(k,), 
we shall utilize the smallness of the electron energy 
before recombination and the smallness of the heavy- 
.hole energy (compared with the electron energy) after 
recombination. For example, in the expression 

B'"'(kI, q,) - (2[Et+'lP(ktq,) 1-2E,[E~(k,) 
+El(ql) l+El(kt)B(qi) t'lr+Jlzk,-zqi-'(k~qi)'I) 

x(EP+~/S'~,')  -'" (E,t+'l,Pzq;z) -'& (8) 

we can ignore the quantity q, =k+ ik12 compared with 
k,. Moreover, we find that ec(q,)<< E ,  Therefore, in 
the first term inside the braces in Eq. (6), we can 
assume that 

However, in the expression for the overlap integrals 
of the electron and heavy-hole bands 

where q, = k - ih,, we cannot assume that q, = 0. 

In the calculations of Beattie et all the over- 
lap integrals a r e  assumed to be constants which can be 
calculated for the threshold values of the particle mo- 
menta, whereas it follows from Eq. (10) that the inte- 
gral representing the overlap of the electron and heavy- 
hole bands vanishes if the threshold values of the mo- 
menta a re  substituted in Eq. (10). This vanishing of 
the overlap integral at  the threshold values of the mo- 
mentum i s  due to the fact that the wave functions of a 
heavy hole in the Kane model a re  orthogonal, if the 
interaction with higher bands is ignored, to the wave 
function of an electron o r  a light hole provided the 
momenta of the latter particles a re  directed parallel 
to the heavy-hole momentum. This, in fact, i s  respon- 
sible for the modified temperature dependence of the 
preexponential factor in the expression for  the Auger 
recombination rate. Similarly, we can show that the 
quantity D in Eq. (6) also vanishes for the threshold 
momenta. This follows from the fact that, in the Kane 
model without allowance for interaction with higher 
bands, the product of the relevant matrices i s  

if the value of qllk, i s  arbitrary. Estimates obtained by 
the sum rule[4*51 give incorrect results if the integrals 
of the overlap between the wave functions of heavy 
holes and higher bands a re  ignored. Beattie andSmithC"l 
give three different estimates of the overlap integrals 
in the Kane model. All of them proceed from the as- 
sumption that the integral of the overlap of the electron 
and heavy-hole wave functions is a constant quantity 
with small temperature-dependent corrections. The 
first estimate is based on the sum rule.c4951 The sec- 
ond estimate relates the overlap integral to the absorp- 
tion coefficient and the third is obtained by direct cal- 
culation of the matrix element of the momentum related, 
according to Eqs. (17) and (18) in the paper by Beattie 
and Smith,cl'] to the overlap integral. However, al- 
though the formulas for the absorption coefficient of 
light and the Auger recombination rate can be written 
so that both contain the matrix element of the momen- 
tum, there are  considerable differences between them. 
In calculating the absorption coefficient of unpolarized 
light, it i s  necessary to average over all the polariza- 
tions, whereas in the calculation of the Auger recombi- 
nation rate the matrix element i s  evaluated for the mo- 
mentum parallel to that of a heavy hole if we ignore the 
small electron momentum. This also follows from Eq. 
(18) in Ref. 11. On the other hand, a transition from the 
heavy-hole to the conduction band can be described by 
an oscillator localized in a plane perpendicular to the 
rn~mentum.~'~' Therefore, a s  pointed out above, the 
matrix element of the threshold momentum vanishes 
in the expression for the Auger recombination rate. 

Since q, << k,, k << k,, Pq, << E,, it follows that Eq. (10) 
can be expanded in terms of the small quantities 

We shall expand the second term in the braces of Eq. 
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(6) in terms of the same small  quantities. It follows 
from Eq. (11) that only terms of the second order in k 
and k,, should be retained in the expansion: 

D(k-'likix, kt, k+'/zk,z; 2k-ki)aAmo(ki) (kak~-Ll ,k lak tZo) ,  (13) 
where 

I as 
A . P ( ~ I ) =  -- D(q ,  kt, q ;  -kt) I*-0. 

2 aq.a(l0 

The expansion (13) does not include a t e rm of the 
k,k,, type because the coefficient in front of it is 

The validity of the above expression follows from the 
fact that we cannot form an antisymmetric tensor from 
the component of the vector k,. It is clear from Eqs. 
(10) and (11) that D(q, k,, q; -kl) = O  if qllk, and the 
value of q is arbitrary. Consequently, the tensor in 
question should be 

We shall not give here the derivation of the expression 
for the function F(kf), which is 

F (k,') = 
p%c(ki) 

E: (E,'+'lsP2k,z) '" ' 

because-as shown below-the t e rm in Eq. (6) contain- 
ing D vanishes in the approximation adopted here. I t  
follows from Eqs. (13) and (14) that 

We shall find the expression for the Auger recombina- 
tion rate for the case when Be>> T. Therefore, we 
shall substitute in Eq. (6) a l l  the quantities calculated 
for the threshold values of the parameters, with the 
exception of the exponential function in f,(k,), in which 
we shall include a correction associated with the mass 
ratio. In the 6 function, we shall expand the energies 
in terms of the momenta and assume that the deviations 
from the threshold values a r e  small: 

After integration on the assumption of an isotropic 
parabolic dispersion law for heavy holes, we obtain 

where k=mc/mh. 

We can use the same approximation to calculate the 
Auger recombination rate for the spectrum of heavy 
holes, allowing for the corrugations of constant-energy 

surfaces. To include these corrugations, we have to  
find from Eq. (3) the value of ch corresponding to k,, 
= 2ti"(m,~,)"~, substitute it in the exponential function, 
and average over the angle. We finally obtain 

6 2 " ne'm T ''1 Es a/' ( )  ( )  e x ~ ( - ~ ) j d m j d e ~ n 0  o @ 

We shall now compare the calculated value of G with 
the experimental data for  InSb a t  T = 300°K (Ref. 13), 
when the Auger recombination process predominates. 
We shall assume the following parameters of InSb: 
Eg=0.167 eV (Ref. 9), E,=2mflRa=21.2 eV, y;=3.6, 
yi = -0.47, yj = 0.70 (Ref. 14), and 1(. = 16.8 (Refs. 9 and 
15). 

A calculation carried out using Eq. (18) in the approx- 
imation of a spherical heavy-hole band gives, for y' 
=$(2y,'+3y,') (Refs. 16 and I?), the recombination time 
T A ,  = n / 2 ~  = l o 4  sec. Equation (19) gives .practically 
the same value of T,,. The experimental value i s  rAi  
= 2 x lo-' sec  (Ref. 13). Thus, Eq. (18) gives a recom- 
bination time close to the experimental values without 
the use of additional adjustable parameters. 

4. INFLUENCE OF CORRECTIONS FOR THE 
INTERACTION WITH HIGHER BANDS ON THE AUGER 
RECOMBINATION RATE 

The formulas for the overlap integrals in Sec. 3 a r e  
obtained ignoring the interaction with higher bands. 
The main reason for the modification of the temperature 
dependence of the preexponential function can be ex- 
pressed in the form A'c'(o)A'~'(-~,) = 0. The corrections 
due to higher bands may give a nonvanishing value of 
A~c ' (o)A'~ ' ( -~ , )  and thus restore the original tempera- 
ture dependence of the preexponential function.c21 How- 
ever, in the spherical approximation, even the inclu- 
sion of corrections due to higher bands gives 
~ ' ~ ~ ' ( 0 ,  -kl)= 0. A finite value of ~ ' ~ ~ ' ( 0 ,  -kl) is only 
obtained if allowance is  made for the corrugations of 
constant-energy surfaces. If such corrugations a r e  
strong, it i s  found that ~ ' ~ ~ ' ( 0 ,  -kl) -(mc/mh)2, and the 
original preexponential temperature dependence appears 
only for (m,/mh)2> T/E,. If the corrugations a r e  weak, 
we find that ~ ' ~ ~ ' ( 0 ,  -k,)<< ( m , / ~ , ) ~ .  

A calculation of B'CC', B'c~', and D for the threshold 
values of the particle momenta is given in the Appendix. 
Substituting these quantities in Eq. (6), we find that 

XI; fd8 sin f~[%s(X, )  -96s'(L,)+ti3k,-'(~,.k,~k,,)~]esp 
0 0 

432 2  ne'm,) T 5 E ~ ~ ( ~ 1  ~ ( T ~ ' - - Y ~ o ' ( ~ )  e v [ - ~ ( 1 + 2 1 1 )  T 1. (20) 

This formula is valid for (m,/t~z,)~> T/E, ,  if the degree 
of corrugation of the constant-energy surfaces of the 
heavy holes is of the order of unity. If i t  i s  less than 
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unity, the range of validity of Eq. (20) is even narrower. 
An estimate obtained for In% at T =  300% shows that 
the expression in Eq. (20) represents -0.005 of G, cal- 
culated using Eq. (18). 

The author is grateful to V. I. ~vanov-omski; and 
I. N. Yassievich for valuable discussions. 

In the expansion, the second derivatives a r e  calculated 
in accordance with Eqs. (10) and (l6), ignoring higher 
bands. The results of calculations of the separate 
terms in Eqs. (A.7) and (A.8) a r e  a s  follows: 

APPENDIX 

To determine the overlap integrals corresponding to 
the threshold values of the particle momenta, we shall 
obtain relationships valid in the lowest nonvanishing 
order: 

A'" (0)  A'" (-k,)A(" (0 )  ='/IB(*) (0, -kl)-i") (O), (A.1) 
fi' 

B'*) (Orkl) -2 {C (k , )  - - I,'k:]' - (h'k.X.'-fz'mo-l)z 
2m, 

Here, ~ " ' ( 0 )  represents a diagonal matrix in which the 
first  two diagonal terms a r e  equal to unity and the 
others vanish. Equation (A.2) is derived using the Vieta 
equalities relating the roots of Eq. (3): 

E. (k )  +El (li) +Eh(k) =E,+h2k2/2m.'-A'y(lr'lm., (A.4) 
E.El+EtEn+E&'.=3 (ka/m,) '8 ( k )  (yrf2--fr") h' 

It follows from Eq. (A.2) that only allowance for the 
corrugations of constant-energy surfaces gives a finite 
value of ~ ' ~ ~ ' ( 0 ,  -k.k Since E,>> kiii2/mh, we can ex- 
pand Eq. (A.2) in terms of small parameters y,', y,', 
and yj: 

The relationships (A.l), (A.3), and (A.6) a r e  then used 
to expand the expression in the braces of Eq. (6) in 
terms of a small quantity k,: 

-- ae,(k ) a 
a r (k l )  a a*) (q, -k t )  l q-a- ( k I '~ ,h1 )  - ' [ k t  x -&-I . 

ak,. aq. 
(A.11) 

-- aen(kl)  a D(q, k,, q; -kt)  I,,, 
ak,, aq. 

8 -% aen(k,) a 
E : + ~ P X ~ , ~ )  [ k1x -1 ak, - (A-12) 
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