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The principal mechanisms of the nonadiabatic escape of particles from a trap are considered-stochastic 
instability and universal Arnold instability. The boundaries of the regions of existence of these inshbilities 
are investigated. It is shown that the results of numerical calculations of the limits of the adiabatic 
behavior of the particles agree with analytic estimates that follow from stochasticity theory. It is observed 
in experiment that introduction of azimuthal inhomogeneity of the magnetic field can lead to a decrease of 
the nonadiabatic losses. 

PACS numbers: 52.55.Ke, 52.35.P~ 

Processes that control the dynamics of particles in 
magnetic t raps  can be connected, besides the global 
diffusion due to the scattering by the residual gas, with 
the universal Arnold diffusion and with stochastic in- 
stability.[ll In particular, it was s u g g e ~ t e d ~ ~ . ~ ~  that 
the nonadiabatic decrease of the particle lifetime with 
increasing relative cyclotron radius X = p/R, (R, is the 
radius of curvature of the force line), which is ob- 
served in linear t raps  with mirrors ,  is due to the 
Arnold universal instability. To  understand the reason 
for the nonadiabatic behavior of the particles it is nec- 
essary to determine first  the l imits of the regions 
where the proposed instability mechanisms operate. 
The present paper is devoted to a determination of 
these limits and of the form of the instability respon- 
sible for the nonadiabatic departure of a particle from 
a dipole trap. The questions considered here, which 
touch upon the general physical problem of the investi- 
gation of very subtle and universal inter action mechan- 
i sms of resonances that control stochastization pro- 
cesses, are of great  interest, for example, in the in- 
vestigation of singularities of the spatial distribution of 
the high-energy part of the spectrum of the charged 
particles in the magnetic t raps  of the earth and of 
Jupiter, etc. 

1. The change of the adiabatic invariant in multi- 
period systems is due to the interaction of nonlinear 
resonances, for example, resonances between fast 
Larmor rotation and higher harmonics of slow oscilla- 

tions between the magnetic mirrors.  In the vicinity of 
the separatrix of each resonance there appears the so- 
called stochastic layer, which constitutes a certain re- 
gion of unstable In the case of axial sym- 
metry of the field (two-dimensional motion) the thin 
stochastic layers of different resonances do not inter- 
sect  on the phase plane, and the instability is therefore 
localized within the confines of a single stochastic 
layer, and causes only bounded oscillations of the adia- 
batic invariant and of the frequencies. If the parameter 
X is large enough, the stochastic layers  broaden to the 
dimensions of their  resonances, neighboring resonan- 
ces  in phase space overlap, and strong stochastic in- 
stability results. 

The boundary of the stochastic instability, determined 
by the criterion of overlap of the nonlinear resonances, 
can be represented, according to Ref. 4, in the form 

Ap/p*n'"S?/?o, (1 

where & is the orbital magnetic moment of the particle, 
w is the cyclotron frequency, and 52 is the frequency of 
the oscillations between the reflection points. We rec-  
ognize that in a dipole magnetic field the period of the 
oscillation of the leading center between the reflection 
point is given by C 5 3  

T ~ = ~ R . T  (a) l v ,  O<a<n/2, (2) 

where v is the particle velocity, Re is the radius of the 
force line in the median plane, T ( a )  = 1.3-0.56 sin a, 
and a is the angle between the velocity vector and the 
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force line in the median plane. We can then write in 
place of (1) 

where pe = p(w = ~ / 2 )  is  the "total" cyclotron radius. 

The formulas given in the literature for the exponen- 
tially small value of Ap differ mainly in the pre-expo- 
nential factor, since the exponential itself is universal 
in form.t61 The exact expression for the exponential 
was cited by one of us, ["and an approximate expression 
was obtained in Ref. 8. To determine Ap one starts 
with the equationt8 

where v,, and v, are the parallel and perpendicular com- 
ponents of the velocity vector relative to the field H, s 
is the length of the force line measured from the me- 
dian plane, s, and s, are the turning points, qpo  is the 
phase of the particle, He is the magnetic field in the 
median plane at a the distance Re at which the pole and 
the saddle point coalesce. For example, the relation 

~ ~ ' l Z R - c o n s t = p ~  

is used in Ref. 8 to reduce the integral in (4) to r func- 
tions. We shall integrate directly the initial equation 
(4) with allowance for the coalescence of the singulari- 
ties, making use of Ref. 9. Expanding the integrand of 
(4) in powers of s, confining ourselves to second-order 
derivatives, and recognizing that near the zero S of the 
function H(s) the expansion takes the form 

H % H . " ~ ( S - - S ) ,  ~=--i(2HdH?), 

and that 
H/-$)H./R;, R."(s-0) =2IR., 

we obtain 

( I  f I / s z e H e )  ds 1 exp (-- 3r2/2"'~.p. ,] 
[ l  - 1'' ( I  + H:ssCHe)]" _ ir (5) 

Here v, and v,, pertain to the equatorial plane, q = sic2 
CYvS =S+r .  

Taking into consideration the standard integraltg1 

-exp (-zt') I-&=in ex*(-e'z) [ l -@(- iez")  1, 
-- t-e 

where iP (u) is the Fresnel integral, Re& = 0, Im& 3 0, 
z >O, we obtain the following asymptotic approximation 
of the integral (4) 

where 

of (7) practically coincide with the corresponding values 
obtained by numerical methods. 1101 

At  17 >> 1 the pre-exponential factor in (7) takes the 
form 

A,=-5.18 sin-' a cos c p ~ .  (9) 

The corresponding value obtained in Ref 8, with an 
arithmetic error corrected, is 

A r ~ - 3 . 6 2 ( R ~ / p ~ ) " *  sin-' a cos cpo, (10) 

which is very close to (9). Thus, allowance for the 
coalescence of the singularities leads to a more comp- 
licated analytic dependence of A on CY and eliminates the 
dependence on pe/Re. 

Substituting (7) in (3), we obtain the stochasticity 
condition in the form 

The solution of (11) is shown in Fig. 1 (curve 1) and is 
compared with the results of numerical calculations 
(curves 2 and 3) of the limits of the adiabatic behavior 
of particles in a dipole and the experimental 
adiabaticity limit.c121 The boundary between the stable 
and unstable initial conditions was determined numer- 
ically in Ref. 11 as a function of the parameter 5 = v y v 2  
and of the normalized energy. The boundary of the 
stable motion was approximately defined by the equation 

p'/R.'=0.012f. (12) 

It is  seen from Fig. 1 that, first, the motion-stabil- 
ity limit that follows from stochasticity theory and from 
Eq. (11) agrees with the numerical results represented 
by Eq. (12), and, second, the experiments in the dipole 
trap were performed under conditions far from the re-  
gion of stochastic instability. It is interesting that the 
instability limits come closer together with decreasing 
angle CY. At values o! 5 30" the stochasticity condition 
might be attained a t  x 5 3 ~ ,  (where X, i s  the critical 
value of the adiabaticity parameter [12' as  determined 
by curve 3 of Fig. 1. 

2. At n 2 3 degrees of freedom (say in the presence 
of asymmetry in the magnetic trap), then the system 
of the fundamental resonances is  determined by three 
frequencies (the frequency of the azimuthal drift is  
added). The stochastic layers intersect in this case and 
form a single extended net over which the so-called 
Arnold diffusionc1s1 is possible. This diffusion makes 
it possible to explain the observed effect, albeit quali- 
tatively, in accordance with the following scheme.c11 

FIG. 1. Instability limits: 
l-theoretical limit of sto- 
chasticity; 2-stochaetici- 
ty limit obtained by numer- 
ical methods; 3-experi- 
mental nonadiabaticity re- 

The values of the function A p / p  obtained with the aid 
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The residual gas  in the t rap  gives r ise  to global diffu- 
sion, which brings the system to the nearest stochas- 
tic layer, followed by faster Arnold diffusion along the 
stochastic layer, which takes the particles into the 
loss cone. 

The existence of weak instability (Arnold diffusion) in  
the absence of overlap of the resonances was proved 
with the aid of numerical experiments using the simp- 
lest model of two linear oscillators with linear coup- 
ling.[13 Under the realistic conditions of laboratory 
traps, this diffusion should depend not only on the 
parameters of the particle and on the degree of symm- 
etry of the field, but also on the pressure of the r e s -  , 

idual gas. A dependence on the pressure in the non- 
adiabatic region can actually be traced in the results  
of a number of studies. C3* 14] 

Arnold diffusion in the presence of field asymmetry 
(which apparently is always present in r ea l  traps) is 
possible in principle at all values of the parameter X. 
A semi-qualitative theory of this instability yields the 
following estimate for the diffusion coefficient[21: 

where BZ = (AH'/H), is the axial asymmetry of the mag- 
netic field, and E KX. If the adiabaticity parameter i s  
small enough, the characteristic diffusion time is so 
long that it is impossible in practice to distinguish 
stable motion in a symmetrical field from unstable 
motion in an asymmetrical field. 

With increasing X,  the situation can change radically 
because of the doubly exponential dependence of the co- 
efficient D, on the adiabaticity parameter. Because of 
this circumstance we can speak of a rough estimate of 
the instability limit. According to (13), this limit is 

From the experimental data (Fig, 1, curve 3) it follows 
that k - 0.08. From the upper bound['51 of the Arnold 
diffusion it follows that the system stays close to the 
initial position for a time 

t-erp (ill-"), (14) 

where 

Here o i s  an arbitrarily small quantity and n is the num- 
ber  of degrees of freedom. In our case n= 3; l / a =  16; 
M = exp($~,/p, ). Equation (14) yields k - 0.06, which 
overlaps the experimental value and is close to it. 

3. To estimate the influence of the field asymmetry 
on the particle diffusion, we measured the electron 
containment time in the previously describedCU1 dipole 
trap a s  a function of the azimuthal inhomogeneity. The 
field asymmetry was produced by an iron appendage in 
the form of a segment with a spherically concave base. 
Appendages with different base diameters were con- 
structed. The maximum value was 11 cm when the 
sphere (which served a s  the source of the magnetic 
field) had a 16 cm diameter. The appendage was 

FIG. 2. Magnetic field in- 
tensity along the radius Re: 
1-initial magnetic field; 
2-deformed dipole field; 

placed on the surface of the sphere symmetrically 
relative to the median plane. The injector and detec- 
tor were placed on the opposite side of the spnere on 
the leading force line with Re = 21 cm at an angle -20" 
from the median plane. The electrons were injected 
in the median plane with initial angle values a,= 90°.' 
Figure 2 shows the maximum change of the field as  a 
function of the distance Re in the presence of the lar- 
gest appendage. It is seen from Fig. 2 that the particle 
drift shell is deformed in such a way that it approaches 
a spherical surface on the appendage side. In the dis- 
torted part  of the field, on the drift trajectory with 
isoline He- 25 Oe, the value of V H is smaller than for 
the dipole field. 

The measured lifetimes of the electrons in the t rap  
with the magnetic field shown in Fig. 2 a re  given in 
Fig. 3. The result of the measurements is at f irst  
glance unexpected: the asymmetry increases somewhat 
the particle lifetime T and the critical value X, of the 
adiabaticity parameter. This means that in this case 
the value of T i s  determined mainly by the value of the 
parameter X ,  and not by the asymmetry of the field: 
the decrease of the effective value of x on account of 
the decrease of the field gradient in  the distorted part 
leads to an increase of T. That the roles played by the 
parameter x in the field asymmetry and in the particle 
diffusion a r e  unequal follows also from the theoretical 
estimate (13). It is seen from this estimate that the 
diffusion depends much more strongly on the adiabat- 
icity parameter than on the azimuthal inhomogeneity of 
the magnetic field. The instability limit itself, accord- 
ing to (13), depends very little (logarithmically) on the 
asymmetry of the field, in qualitative agreement with 
experiment. 

The experimental and calculated data show thus that 
the most probable mechanism responsible for the ob- 
served nonadiabatic effects in the dipole trap[l4l is the 
mechanism of universal instability of the multidimen- 
sional (n> 2) Hamiltonian system (the Arnold diffusion). 
The particle containment time depends relatively little 

- 
c, sec 

FIG. 3. Plots of ? (z) : 0- 

symmetrical field, 0- 
asymmetrical field, resid- 
ual gas pressure p - 2 
- lo-'' Torr. 
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on the asymmetry of the magnetic field and is deter- 
mined mainly by the effective value of the parameter x 
on the drift shell. 

The authors thank B. V. Chirkov for a discussion and 
for useful remarks. 
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The distribution function and the mean values are obtained for a system of noninteracting electrons 
situated in a strong electric field, whose momentum is scattered by ionized impurities (in semiconductors) 
or ions (in a plasma) and whose energy is dissipated as a result of extreme inelastic scattering at E > E ~ >  T, 
E, (where E, is the characteristic energy of the electron-ion interaction and depends on the model and on 
the cutoff radius r, of the Coulomb scattering cross section). It is shown that the dependence of the 
averaged quantities (the conductivity u, the average energy E, and others) on E and on the parameters of 
the material is determined by the value of E, and by the form of the "Coulomb logarithm" AWE,). For 
a quite realistic form of A ( E / ~ )  and not too small E,, the conductivity and the average energy have 
power-law dependences on e , , S a ~ : ' ~  and La&:'2, with both u(E) and WE) constant. For some cutoff 
models it is shown that the dependence of the conductivity of the nonequilibrium electrons on the ion 
concentration N and on the longitudinal magnetic field intensity H can differ noticeably from the standard 
relations. The relations obtained for u(E, N, H) are in satisfactory agreement with the available 
experimental data. 

PACS numbers: 72.20.Dp, 52.20.F~ 

1. INTRODUCTION. FORMULATION OF PROBLEM 

It i s  known that the calculation of the transport scat- 
tering cross section ut,(&) and of the pair-collision fre- 
quency T~-'(&) in the case of Coulomb scattering of elec- 
trons by ions (in a plasma) or  by randomly distributed 
ionized centers (in semiconductors) encounters a char- 
acteristic difficulty, namely the logarithmic divergence 
of utr(&) and T*- ' (E)  at  small scattering angles. This 
difficulty is avoided by assuming that the Coulomb po- 
tential acts only up to  distances r<r,, so that i t  is  pos- 
sible to introduce a minimal scattering angle B,,,(c, r,) 
that depends on r, and on the energy &. This yields 

a,,(.,-+ (f)' " ( ' + C Q ' ~  "" ) 

( x i s  the permittivity). This relation is valid in both 
classical and quantum theory, except for the different 
connection between 6,- and Y ,  (Ref. 1). Different val- 
ues a re  chosen for the Coulomb-potential cutoff radius 
r, frequently on the basis of intuitive physical consid- 
erations, e.g., the Debye radius X,, the Larmor radius 
r ,  (in the presence of an external magnetic field), o r  
half the average distance between the ions $ N ~ "  (N i s  
the ion con~entra t ion) ."~ '  In all the foregoing cases 
the logarithmic factor (hereafter designated A(&)) which 
enters in utr(tz) and rfl(&) can be represented a t  & 2 &, 

in the form 

where v>> 1 and &, is a quantity on the order of the en- 
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