
the liquid metal in the irradiation zone. On increase 
in the absorbed intensity up to I ,= 10 IvIw/cm2, the 
temperature of the overheated liquid lead in the irradi-  
ation zone approaches the spinodal, where the state of 
the metastable phase becomes absolutely unstable. 
Measurements of the recoil pressure under such con- 
ditions can give new information on the behavior of the 
metastable state of the overheated metal in the near- 
critical region. Information on the rate of "decay" of 
the metastable phase is essential, particularly in the 
interpretation of experiments on the evaporation of 
shock-compressed metals.c171 When laser radiation 
acts o'n condensed matter, metastable states may only 
appear when the recoil pressure in the irradiation zone 
does not exceed a certain critical value p,. This can be 
used to determine the critical pressure of metals. 
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Structure of tails produced under the action of 
perturbations on solitons 
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The asymptotic structure of "tails" produced by perturbations acting on solitons and also the evolution of 
the solitons themselves are studied by a perturbation theory based on the inverse scattering method. A 
detailed analytic description of the structure of the tail during the first stage of its formation (short times) 
is presented. A qualitative picture of the tail structure is given for sufficiently long times after switching 
on the perturbation. In particular, it is shown that the part of the tail adjoining the soliton has the shape 
of a plateau at both short and long times. The condition that the perturbation operator must satisfy if tail 
formation is not to occur is derived. Soliton deformation induced by a perturbation is studied in first 
order. 

PACS numbers: 1 1.20.Dj 

1. INTRODUCTION of formation of such tails is generally rather compli- 
cated. The method developed in Ref. 1 contained an ele- 

It has been shown previously[1] that one of the results ment of averaging at some stage, a s  a result of which 
of the action of a continuously operating perturbation an "averaged" tail was obtained. The contribution of 
(for example, dissipation) on a soliton is the formation such an averaged tail to tQe momentum, energy, and 
of a "tail"-a wave packet of small amplitude-following other quantities that are  conserved in the absence of 
the soliton; the length of the tail increases with time. the perturbation is equal to  the contribution of the real  
The detailed description of the structure and dynamics tail, a s  has been pointed out.C11 Thus, from the point 
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of view of all the infinite set  of conservation laws, 
which a re  modified to account for the presence of a per- 
t u r b a t i ~ n , ~ ~ ]  the averaged and real tails a re  equivalent. 
Along with this, there is interest in the study of the 
asymptotic structure of the real tail formed under the 
action of the perturbation, for comparison with numeri- 
cal and laboratory experiments. 

The evolution of the tail and the soliton itself are  inti- 
mately connected with one another. Therefore, by ob- 
taining information on the dynamics of tail formation, 
we can draw certain conclusions on the character of the 
deformation of solitons under the action of the pertur- 
bation, on their lifetimes and s o  on. We shall consider 
this circle of questions using a s  examples the three 
most important types of solitons, described by the per- 
turbed Korteweg-de Vries equation (KdV), the modified 
KdV equation (MKdV), and the nonlinear Schriidinger 
equation (NSE): 

Here R is the perturbation operator, and E is a small 
parameter.'' 

The dynamics of processes in the presence of the per- 
turbation is determined by the relation between the two 
times t, and tp. Here t, is the so-called soliton time, 
equal, for example to the time of passage of the soliton 
over a distance of the order of i t s  length, and t, is a 
characteristic time connected with the perturbation, for 
example, the time of significant evolution of the soliton 
under the action of the perturbation. Here ts/tp- E (in 
what follows, these times will be determined exactly in 
each specific case). The formation of the tail is an im- 
portant fact of the evolution under the action of the per- 
turbation even at comparatively small t; for example, 
in the case of KdV solitons at t,<< t<< (ts/t,)'12t,. Sec- 
tion 2 is devoted to the study of the action of the pertur- 
bation in this initial period. The general picture of what 
is obtained in this case is shown in the figure. 

The wave pulse, which is assumed to be a "pure" soli- 
ton at the initial instant, is changed into a formation 
consisting of a weakly deformed soliton (soliton core) 
and the tail following it. In the region adjoining the 
core, the tail has approximately the form of a plateau 
with an amplitude of the order E of the amplitude of the 
soliton; on the left part of the tail, oscillations appear 
with decreasing wavelength as one goes away from the 
soliton. In perturbations of a definite type [condition 
(2.43)], the tail is not formed. Upon increase of t, the 
length of the tail increases, but the order of magnitude 
of i t s  amplitude remains the same. The tail is also 
gradually modulated. However, the part of the tail ad- 
joining the core keeps the shape of a plateau over dis- 
tances amounting to many soliton lengths. The shape of 
the soliton core is here close to that of the soliton; i ts  
amplitude and velocity change slowly according to the 
so-called adiabatic e q ~ a t i o n . ~ ' * ~ '  Such a picture is pre- 
served, at least up to times of the order of t, (Sec. 3). 

In a number of cases, for example, if the perturba- 
tion is a dissipation, the soliton core is generally 

damped within a time of the order of t,, so  that the re- 
sults obtained in this research describe the evolution of 
the soliton throughout all the entire time that it is mean- 
ingful to speak of solitons. 

In Sec. 4, similar results a re  obtained also for  the 
MKdV solitons. So f a r  a s  the NSE solitons are  con- 
cerned, no tail is formed in this case, and the result of 
the action of the perturbation is a self-similar change 
of the soliton with a small deformation (at least i f  the 
condition given in note 5 is f ~ l f i l l e d ~ ' ~ ) .  

2. STRUCTURE OF THE TAIL OF A PERTURBED KdV 
SOLITON 

We consider the solution of Eq. (1.1), which des- 
cribes the perturbed soliton, writing it in the form 

~ ( 2 ,  t )  =u.(z,  X )  -!-GU (2,  t ) ,  z = x ( t )  [ z - E ( t )  1, 
u.(z ,  X )  =-2xZ(t)sech'z,  6 u ( z ,  t )  = - 2 x Z ( t ) w ( z ,  t ) ,  

E ( 0 )  -0, w (2, 0) =o. 
(2.1) 

Here the first  term of us has the form of a soliton pulse 
with slowly changing x(t) and dt;/dt. The second term 
determines the perturbation of the soliton w-  E .  At 
z < 0  and 121 >> 1, this term describes the tail.['] 

The equations determining the change of x,  5, and 
624, can be obtained with the help of the formalism of the 
inverse problem of scattering theory. If we write dawn 
the Schradinger equation corresponding to the potential 
4 %  t), 

-$"(z) + u ( z ,  t )  $ ( z )  = k g $ ( z )  , (2.2) 

and find the linearly independent solutions of this equa- 
tion f (x ,  k; t) and g(x, k; t), which satisfy the conditions 

then f(x, k; t) and g(x, k; t) (the so-called Jost functions) 
a re  connected with one another through the coefficients 
a(k, t), b(k, t): 

g=af'+bf, J a 1 2 - l b 1 2 = l  

for 1z2>0. These coefficients determine the reflection 
coefficient 

r(/c, t )  = b ( k ,  t ) / a ( k ,  t ) .  (2.3) 

The discrete spectrum of Eq. (2.2) k,= i x ,  ( ~ , < 0 ,  
Y =  l , 2 , .  . . N) is determined by the zeros of the function 
a(k), analytically continued in the upper half-plane of k. 
He re  

By knowing Jost coefficients a(k, t), b(k, t), p,(t) and 
discrete spectrum of the Schradinger equation, the "po- 
tential" u(x, t) can be replaced by the formula 

6 
u ( z ,  t ) = - 2 - K ( z .  d z  t; t ) ,  

where K(x, y )  is the solution of the Gel'fand-Levitan 
equation: 
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At u=u,, i.e., for a potential having soliton shape, we 
find from (2.2) 

present (2.6) in the following form in the case of solu- 
tion of Eq. (2.5): 

b=O, a=a,=(k- ix)  (k+ix)-I ,  p=e", 
(2.7) 

f ( 2 ,  k )  = f , ( z ,  k )  -eik{k+ix t h [ x  (2-g)  1) (k+ix)-I .  

Thus, at u =  u,, the quantity F = -x2 is the only eigenval- 
ue of the discrete spectrum. 1 " 

6 )  - r ( k ) e i +  e ( X o ) p o  e x p ( - x e z )  ; 
2n.. _ ial (ko) 

(2.14a) 
If u=uS+6u, then b=6b. 

a ( k ,  t )=a.(k ,  x)+da(k,  t ) .  

In particular, in first  order in E, Here r(k) is defined in (2.3). 

Taking into account the smallness of sc,/x, we find 
from (2.11) that a'(ix,)- i/x ,. Substituting (2.14), 
(2.14a) in (2.5) and assuming the value of 6F to be small where 
(-E) we find the solution of Eq. (2.5) in the first-order 
approximation in E (just as was done in Ref. I), and 
then, by use of (2.4), the solution of (1 . l )  in the form 
(2.1), where 

is the variational derivative of a(k) with respect to u(x) 
at u=u,. A similar expression can be written down also 
for 6b= b. 

It is useful to note that the change in the eigenvalue X 
of the discrete spectrum, due to 6u, is equal to zero (in 
first-order approximation in E), i.e., X = -?c2 + O(sZ), in 
spite of the fact that w - E. This is connected with the 
fact that 

xo thz 
+ae(x, )po-- .  

x ch'z 

We now write down in f i rs t  order in the equations de- 
termining the time dependence of the quantities ~ ( t ) ,  
p(t) and b(k, t) in the adiabatic appro~imat ion~ '*~*~ ' :  

while (see Ref. I), 

jw (z~sech2zdz-0.  (2.10) 
-- 

Substituting (2.9) in (2.8) and taking (2.10) into account, 
we get 

dp 
- Z + Y E  - = 8 x z p - 2  J R [ U .  ( z )  I (th z+ -) dz. 

dt 2xz-_ ch' z 

Using elementary perturbation theory for the Schr8din- 
ger equation, i t  is not difficult to verify that 

PO--1+O(e) .  (2.19) 
We now proceed to the calculation of the reflection 

coefficient ~ ( k ,  t). From (2.17), we find 

Thus, if the perturbation is such that %,> 0, then a 
small additional level k,=ix.due to w appears. 

Analysis shows (this will also be seen from the re- 
sults obtained below) that the expression (2.11) for 
a(k, t) is valid up to the value t-(t,/tp)1/2t,. Here t, 
=1/8 x3 is the soliton time, tp= 1 ~ ~ ~ ~ 1 ' '  is the charac- 
teristic time of the per turbat i~n,~ ' ]  where 

e exp (8ik3t) J' 
b (k ,  t )  = A(k1  x ( t ' ) )  exp[-8ik't'-2ikE(t1) ]dtr ,  

2ik x ( t ' )  [ka+x2(t ' )  ] 

(2.20) 

where - 
A ( k ,  x )  - j ~ [ u , ( z )  ] (k-ix th ~)'e-"~"'dz. (2.21) 

-- 

Here we have assumed the initial condition b(k, 0)= 0, 
which corresponds to w(z, 0 )=  0. 

We first  investigate the process of tail formation and 
soliton deformation a t  comparatively short times 

ta (t . / t , )  "t,. (2.13) 

Integrating by parts in (2.20) and taking it into account 
that 

However, i t  is assumed that the soliton manages in this 
case to travel a distance that is much greater than its 
characteristic dimensions, i.e., we assume t>> t,, since 
only in this case will the tail play a significant role in 
the physics of the phenomenon. On the basis of the re- 
sults obtained here, a sufficiently complete picture of 
the evolution of the soliton will be described below also 
for much greater times t -tp. 

* - -4xa+0 ( e )  
at 

by virtue of (2.14), (2.11), and (2.18), we get from (2.3) 
and (2.11) 

Taking into account what has been said above, we re-  
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where x = x(t), [=  [(t), and we have assumed smallness 
of t in comparison with t,, in accord with what is shown 
above.'' Substituting (2.22) in (2.15) and introducing the 
dimensionless quantities 

p-klx,  T-8xJt=tl t , ,  

we obtain, with account of (2.19), 

E av 
w ( z , t ) = - - - -  

X ,  t h z  
2 e ( ~ , ) - -  

32nx' a z  x c h z z '  (2.23) 

where 

- 
A ( p ) -  R [ u . ( z )  ] (p- i  t h  z)'exp(-2ipz)dz.  (2.25) 

-- 

From (2.23)-(2.25), we obtain 

where q is defined in (2.12). On the other hand, from 
the law of momentum change 

-- 
it follows thatt1' 

Substituting (2.26) here with account of the equality 
d[/dt = 4x2 + O ( E )  we find that (2.27) is fulfilled within 
the assumed limits of accuracy. 

We also note that i f  (2.11) and (2.26) result in a value 
x,  # 0, then the reflection coefficient (2.22) r ( k ,  t)- -1 
a s  k -  0, which is in agreement with the general proper- 
ties of the scattering matrix of the one-dimensional 
Schrijdinger equation.15 

On the basis of the obtained solution (2.23)-(2.25), we 
now proceed directly to the study of the region of the 
soliton tail. The latter is located to the left of the soli- 
ton (z <0) and corresponds to i t  I z I >> 1. At such z ,  we 
can set tanhz = -1 in (2.24) and neglect the second term 
in (2.23). In carrying out the calculations, it is conven- 
ient to introduce the functions 

B ( P )  B ( O )  x 
p-is p-is' 

s = m ,  (2.28) 

where, according to (2.25), (2.12), B(O)= 4% q. Here 
q(p)  has no singularity at p = 0 .  

In sum, after differentiating with respect to z in 
(2.23), we get for the region of the tail (-z>> I), 

ieq 
w,(z,  s=- - j [ i - e x p ( i T p ~ + s x r p )  1 e z 8 P : d p  

p-is  ' (2.30) 
*x-- 

ie a 5 q ( p ) e x p [  i ~ p ~ + 2 i p  (z+z:)  l d p ,  w ~ ( z *  t )  = =-- (2.31) 

Calculating the integral in (2.30), we obtain 
Y 

EQ 
- w , ( z ,  t)=-;j- 5 A i ( y t ) d y ' ,  

" 
-m 

where Ai(y)  is the Airy function, 

Y=~(z+x~)/(~T)'~=~XX/(~T)'". 

( x  is the coordinate in the laboratory system of coor- 
dinates). In obtaining (2.33), we can, for example, 
make use of the representation 

and carry out integration f i rs t  over p and then over z'. 
In the analysis of the expression (2.33), it is useful to 
keep i t  in mind that 

r ~ i ( z ) d z = i .  
-* 

We now turn to the function w,, rewriting it in the 
form 

We a re  interested in the behavior of this function a t  
r>> 1. Investigation shows that if l y  1 1 / 2 < <  ( 3 ~ ) ( ' / ~ ' ,  then 
the basic contribution to the integral is made at 
Ip 1 << (3r)li3. Because of this, we can set 1p(p/(37)'/~) 
=q(O) (here i t  is essential that Icy(0) I <a), af ter  which 
we obtain the Airy integral. Thus, at r>> 1 and l y  1 1 / 2  
<< ( 3 ~ ) " ~  we have - 

where, in accord with (2.28) and (2.25), - 
'(0) =2i 5 R [ u .  ( z )  I (th z-z thz z+thz z )dz .  (2.37) -- 

At I y  1''' 2 (37)'13 and y <O we calculate (2.35) by the 
method of stationary phase. As a result, 

Obviously, this formula is valid in the wider interval 
l y  I >> 1, y <O. Here, if l<< I y  11/2<< ( 3 ~ ) l / ~ ,  (2.28) is 
identical with (2.36). The region yl/' 2 (3r)lj3, y >O does 
not concern the tail of the soliton; it is discussed in 
Sec. 3. At y >> 1, the function w2 vanishes rapidly. 

Finally, the function w3(z) at z < 0, lz I >> 1 has the 
form 

In contrast with w, and 2112, this function describes that 
part  of the perturbation which propagates along with the 
soliton. As the distance lz I from the center of the soli- 
ton increases, w3 falls off more rapidly than w, and UJ,. 

Thus, we can assume that u; describes the perturbation 
of the soliton "core", while the tail is  described by the 
sum 
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FIG. 1. Tgpical form of the KdV soliton deformation d e r  
action of the perturbation; AB - (3t I s ,  OC - OD= (t) . 

Substituting (2.33) and (2.38) in (2.40), we obtain the 
following relations, which determine the asymptote of 
the tail (z < 0, ( z I >> 1) at 1 << 7 << (tp/t,)'12: 

(~(:ls3~,=-eq 
2 -- i y  lylY<(3r)' (2.41) 

(in this region w, >> w2), and 

w ( : ~ ~ -  eA(s)exp[-i(ZzsVn/4) ] + C.C. 
16%' (3nr)"'sn (s2+ I)  (s+i)' 

The general form of the tail is shown in the figure. 
At y > 0, 1 <c y'12<< ( 3 ~ ) ' ~ ~ ,  the expression (2.41) des- 
cribes a line close to the horizontal line w = -&q/2. Up- 
on decrease in y, we fall into the transitional region 
2 ~ 1 x 1  <(37)'13, the width of which increases with time 
like (3~)"~ .  At large negative y, oscillations appear 
which are  described by the expression (2.42). At s >> 1, 
these oscillations are  rapidly damped, since A(s) falls 
off rapidly as  s - 00 (see the figure). This picture of 
the tail is naturally more detailed than that which was 
described by the averaged expression of Ref. 1; how- 
ever, it preserves its two basic characteristics, which 
follow from the averaged expression, namely the length 
of the tail -4X2t and its area -4&qx4t. 

We note that the perturbation for which q =  0, i.e., 

does not lead to the formation of an increasing tail. In 
this case, the main result of the perturbation is the self- 
similar change of the soliton, described by u,[z, x(t)] , 
on which small distortions are  superimposed, propaga- 
ting along with the soliton and localized in the region 
)zl 5 1. Actually, it follows from (2.33) that w, = O  at 
q = 0, while the function w2 spreads out with passing of 
time. Its appearance in the considered case is obvious- 
ly connected with the initial conditions assumed here, 
which correspond to an instantaneous turning on of the 
perturbation a t  t = 0. 

creases with time. According to (2.11) and (2.26) at the 
small times t considered here, we have 

i 
Xo = - - eqx2f,  

2 

At &q>O (Figure, b), this level i s  absent (although 
the increment 6a remains). The condition (2.13), a s  i s  
not difficult to show, is equivalent to a situation in 
which the value of the level x2, is much less than the 
depth of the potential well 624. At &q < 0 and t 2 (t,/t,)1/2 
t,, new levels appear which must be taken successively 
into consideration. However, as will be seen from the 
next section, the most important qualitative results ob- 
tained above remain in force, at least up to t-t,. 

Finally, we note still one more interesting effect con- 
nected with the tail. It turns out that the growth of the 
latter leads to a change of velocity of the soliton d{/dt 
by an amount of the order of & in comparison with the 
case in which the tail is not formed. Actually, it is 
seen from (2.11) and (2.26) that the difference of the co- 
efficient a from a, is brought about by the tail. Substi- 
tuting (2.11) in the second formula of (2.14) and differ- 
entiating it with respect to time, we get, with accuracy 
to terms of order c2, 

The second term on the right side determines the reac- 
tion of the tail to the velocity of the soliton (the "recoil 
effect"). 

Now, using (2.18), (2.16), and (2.44), we obtain 

9 
- 

- - 4v.l- 4 1  R[u.  (z) ] (rsech' z+th z+thZ z)dz. 
dt 4xS-m 

Equation (2.46) differs from the corresponding adiaba- 
tic-approximation e q u a t i ~ n ~ ' * ~ * ~ ~  by the presence of the 
last term in the round parentheses in the integral, 
which stems from the second term in (2.45) and thus 
describes the reaction of the tail. If the latter is not 
formed, then this term will not make a contribution by 
virtue of (2.43). 

3. EVOLUTION OF THE SOLITON CORE UNDER THE 
ACTION OF THE PERTURBATION 

The formation of a tail under the action of a pertur- 
bation takes place simultaneously with the deformation 
of the soliton and is closely connected with the latter. 
We investigate the asymptotic form of the deformed soli- 
ton. Under the condition (2.13), this deformation is de- 
termined by the formulas (2.23)-(2.25) in the region 
lz 1 << xE. The integral in (2.24) is conveniently divi- 
ded into two, corresponding to the two terms in the nu- 

I t  follows from what has been set forth above that the merator of the next to the last factor. Here we can set 
additional discrete level k= ix, is due to a long but shal- p-p*iO in its denominator. We then substitute (2.25) 
low potential well, connected with the tail at &q <O (see and interchange the order of integration over p and z. 
the Figure, a). The width of this well is -5(t), and the Then the first integral can easily be calculated with the 
depth is 624 = &qx2. The value of the additional level in- help of the residue theorem. In the first  integral, as is 
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easily established, the principal contribution is made 
by the regionp s(lr5)", so  that we can set  exp(irp3) 
= 1 in the case xt >> 1. After this, the second integral 
is also calculated. We finally obtain - 

u ( z ; f ) -  j ~ [ u . ( z ' ) ] I ( z . z ' ) d ~ ' + ~ n j  R [ u , ( z ' ) ] [ t h z n U T z  
-- 

-th z thaz'+ (z-z') th' z th'z'] dz'+16n0 ( x o )  x4qp th2 z,  (3 ,I) 
where 

n 
J(z ,  z') - - ch2 chz z ,  [2(e-" chz z+4eX'-' ch z ch z'+eZz' ch'z') 

- 14(e - ' chz+e"chz ' )9 , ( z - z ' )+  1 W 2 ( z - z ' ) ] ,  
9 , ( z )  =l+'/,z, B z ( z )  = l + " / r , ~ + ' / , ~ ~ z .  

Substitution of (3.1) in (2.23) leads to the expression 
w, which depends only on z, 'K, since the latter terms 
on the right sides of (3.1) and (2.23) (which a re  propor- 
tional to [) cancel one another. Here the asymptote of 
W(Z) at 1 << -z<< x[, a s  follows from (3 .I), has the form 

* 
w (z) = -A th' z j ~ [ u ,  (zf) ] thz zfdz1 + wI (2)  , 

8 x S  
(3.2) 

where w,(z) is defined in (2.39). It is not difficult to see 
that the first  term in (3.2) goes over into the tail a s  
z - --. This tail was obtained in the previous section. 
At q =  0, this term tends to zero. The asymptote of w at 
z >> 1 is obtained if we set  w3(z) - -w3(-z) in (3.2). We 
note that (3.1) corresponds to what was obtained for the 
considered (near) region in Ref. 1; however, the second 
term in (2.23) was absent there. 

The fact that the expression found here for the defor- 
mation of the soliton does not depend on suggests that 
i ts  applicability is limited not by the condition (2.13) for 
which it was obtained, but by a much greater time. In 
order to verify this, we substitute the expression 

u ( z )  = - 2 ~ . ' [ s e c h ~ : + w ( z )  ] (3.3) 

in Eq. (1.1), where w(z) - 5 and, in correspondence with 
(3.1), we assume that w(z) -0 a s  z - m. Then, after 
linearization, we obtain the following equation: 

Substituting the integral representation for w from 
(2.23)-(2.25) in the left side of (3.4)3' and making use of 
the identity 

and also Eqs. (2.16) and (2.46), it is not difficult to veri- 
fy that w(z) actually satisfies Eq. (3.4). Here the e r r o r  
associated with the discarded terms can generally in- 
crease with time and become of the order of the re- 
tained terms at t -t,(t,/t,). Therefore w(z), which is 
determined by the asymptotic expressions (2.23) and 
(3.1), describes the deformation of the soliton at4'  ts 
<< t<< t,(t,/t,). At large t, the figure refers only to the 
region Ax<< ~-'(t,/t,)'/~, adjoining the soliton core. 

The portions of the tail that a re  more distant from the 
nucleus are  modulated; at cq < 0, small solitons begin 
to develop from them, corresponding to the levels of 
the potential well formed by the tail. The amplitudes of 
these solitons will be of the order of cqx2. 

4. STRUCTURE OF THE SOLITON TAILS FOR 
PERTURBED MKdV AND NSE EQUATIONS 

As was shown in Refs. 1 and 6, the solution of Eqs. 
(1.2), (1.3), which describe the perturbation of the 
soliton pulse, has the form u = u,+ 624, 

u.(z,  t )  - 2 ~ e ' ~ ' ~ + "  sech z, z=Zv( z -e ) ,  

6u=2vw ( z ,  t)eiw'1Y+'6, (4.1) 

where, in first  order in c, 

Here r(X) = b(A)/a(k) is the coefficient of keflection, and 
the change in time of the real  parameters v(t) >0, p (t), 
[(t), and 6(t) is described by the equations of the adia- 
batic a p p r o ~ i m a t i o n . ~ ~ * ~ * ~ ~  

ieA (h, p, v )  e'd-"'*i . 
a t  

where 
' 

A (A, p, V )  = j e"u-~""{(h-p-iv th z)'R[u, ( z )  le-"f*-'6 

-m 

- v Z  sech' zR'[u. ( z )  ] ei*zfv+'6 1 dz, (4.5) 
and h(k) = 8h3 and h(A) = -2AZ for MKdV and NSE, respec- 
tively (on the case of a real  MKdV equation (1.2) one 
should set p = 6 = O  in all the formulas). 

Using the equations of the adiabatic approximation for 
v(t) and p(t), it is not difficult to establish the fact that 
Eq. (4.3) is satisfied at 

i.e., 6a= a - a,= 0 (a, corresponds to us). This can also 
be proved by direct calculation of a with the help of 
variational derivatives [in analogy with (2.29)]. Corre- 
spondingly, the tails formed in this case under the ac- 
tion of the perturbation will not lead to a change in the 
adiabatic-approximation equations for p, v, 6 and 5 .  

Everywhere in what follows, just a s  was done in Ref. 
1, we shall assume the perturbation to be such that p, 
v andA(h, p ,  v) change slowly with the time.5' Then, 
from (4.4), by integration by parts, we obtain (at t<< t,*) 

E A  (i., p, V )  [I-esp ( ih  (h)  t+PihE-i6) 1 e,d-Z,4 
r(A, t ) =  - IV [ h  (l;) +2h;,--6,] (h-p-iv)'  

where 

We now consider a real MKdV equation (l.2), i.e., we 
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set p = 6 = 0, h(x) = 8A3. Taking it into account that 
?-*(-A) = -r(X) in this case, and introducing p = X/V and 
r = 8vSt = t/t,, we obtain from (4.2) and (4.6), 

x (l-elrz'+zir*t ) e'Pa d p ,  (4.7) 

where - 
A ( P )  = j RIu.(z) I (p'-2ip th z-i)exp(-ipz)dz. 

-- 
Integrating (4.7) with respect to z, we obtain 

At the assumed degree of accuracy, this same result 
[taking into account the fact that 5, = 419+ ~ ( c ) ]  follows 
from the law of variation of the f i rs t  invariant .. 

I , = J  udz 
-- 

for a real MKdV eq~at ion.~ ' ]  

The regions of the tail of interest to us correspond to 
z < 0, I Z  I >> 1 (the soliton, just a s  in the case of the KdV 
equation, moves from left to right). Taking this into ac-. 

Finally, we show that by integrating in (4.7) at lz 1 
<< 2 ~ 5 ,  we can obtain a solution of w(z) in explicit form 
for  the region of the soliton core. This solution re- 
mains valid at least to t-t,+. Just a s  in Sec. 3, this is 
demonstrated by the substitution of u=u,+ 6u in Eq. 
(1.2). At -z >> 1, this solution transforms into the pla- 
teau w =cq/16 mentioned above. At z>> 1, its asymptote 
is identical with that found 

We now consider the NSE (1.3). Setting 

h(b) --Wz, It-2p+O(e), 6t=2(v'+pz)+O(e) 

in (4.6), we get from (4.2) the solution in the form 
w(z, t)=u)+6. The quantity w, which changes slowly 
with time, represents the averaged correction to the 
soliton and which decays a s  lz I - m. It was found pre- 
viously a t  y =O.r l l  At arbitrary p ,  the quantity Z is ob- 
tained by formal replacement 6 - 6+ pz'/v in the formu- 
las (5.14) from Ref. 1. For  the rapidly changing part of 
the solution 3 at 

Izl > I ,  lar=2v2t~2v't,' 

we find, by the method of stationary phase, 

count and setting 

&)= B @) -B (0)  
B(p)s ( p2+ l )  ( ~ + i ) ~ *  P 

we obtain from (4.7) 

eA (vs, p, v )exp[ i (~s~-pz /v-6+n/4)  1 
3s Z'*=', 

8v5(n~) '"1  (s-p/v)  l + l ]  (s-p/vTi)' 
(4.17) 

(4.9) 
where s = VX/T and A(vs, p, v) is determined by the for- 
mula (4.5). This quantity, being a consequence of the 

w 2 ( z , t ) - - -  j .(p) exp[ irpa+ip (z+2vg) ldp, 
32nv'-_ 

Reasoning in the estimate of the integral in (4.12) ex- 
actly in the same manner a s  in Sec. 2, and taking into 
account that w3 -cz2ee describes the distortion of the 
soliton core, we find the asymptote of the tail from 
(4.10)-(4.12) at l<<r<<t,+/t,, z < 0 ,  and 121 >> 1: 

in the region 12vx 1'/'<< ( 3 ~ ) ' ~ '  and 

w"' = w, + w, 
eA ( s )  exp[-i(2rsS+n/4) ] 2vz 

s (4.15) 
32v' (3nr) "s%(sz+l) ( s f  i) 

in the region s > l ,  x<O. 

Thus, the qualitative picture of the formation of the 
tail is the same here as in the case of the KdV equation, 
and is characterized by the presence in w(z) of the pla- 
teau w = &q/16 in the region ( 3 ~ ) ' ~ ~  s 2 v x c  37, a transi- 
tion region 2vlx 1 < (37)'13, and a region of rapid expo- 
nentially decreasing oscillations at (2vx 1 ' /' >> (37)11', 
x<O. The condition of absence of an increasing tail, 
similar to (2.43), has the following form in the given 
case: 

chosen initial conditions, vanishes a s  T - m, in corre- 
spondence with the results of Ref. 1. Thus, in the given 
case, the perturbation does not lead to the formation of 
a tail, and the soliton, slightly deformed, changes in 
self-similar fashion in correspondence with the formu- 
las of the adiabatic approximation. In the work of Pere- 
i r a  and S t e n f l ~ , [ ~ ~  a similar result was obtained for the 
case in which ER[U] describes the growth o r  decay of the 
waves. 

l h ~  all three cases, it is assumed that u h ,  t ) - 0, R [u(x ,  t ) l  - 0 as I x I +  m, and that the operator R does not depend 
explicitly on the time. 

2)If q = 0 ,  then t9 = -, and in place of it we need to take, for 
example, 

3)~hanks to the conditions I z I << %[ and x< >> 1 ,  we can set 
exp (irp3) = l  in (2 .24) ,  as was done in the derivation of 
( 3 . 1 ) .  

4btrictly speaking, at t - tp, we should substitute the quantity 
x in u s ( z , x ) .  This quantity is  defined in the approximation 
that follows from (2.161, since the error 6% -c at t - tp .  
However, this makes no changes in the physical picture set 
forth above and therefore the corresponding correction is  
not calculated here. We also note that if tR[ul  describes 
the dissipation, then, generally speaking the soliton ceases 
to exist after at several tp intervals. 

5 ) ~ h i s  is  true, for example, if R [ w ' ~ ( ~ ) ]  = e i 6 ( t ) ~ [ u l ,  where 
Imb( t )  = O .  

- 

'V. I. Karpman and E. M. Maslov, Zh. Eksp. Teor. Fiz. 
73, 537 (1977); 74,  1566 (1978) [SOV. Phys.-JETP 46,  281 
(1977); 47,  (1978)l. 

2 ~ .  I .  Karprnan, ZhETF Pis. Red. 25, 296 (1977) ~ E T P  
Lett. 25, 271 @977)1. 

258 Sov. Phys. JETP 48(2), Aug. 1978 V. I. Karpman and E. M. Maslov 258 



3 ~ .  I. Karpman and E. M. Maslov, Preprint, Inst. Terr. (1977). 
Mag. , Ionosphere and Radio Wave. Prop. Acad. Sci. USSR, 'D. J. Kaup, SIAM J. Appl. Math. 31, 121 (1976). 
No. 1 (1751, Moscow, 1977. B ~ .  I. Karpman and E. M. Maslov, Phys. Lett. 61A, 355 

&v. I. Karpman and E. M. Maslar, Phys. Lett. 60A, 307 (1977). 
0977); 61A, 493 0977). 9 ~ .  R. Pereira and L. Stenflo, Phys. Fluids 20, 1733 

5 ~ .  D.  Faddeev, Trudy V. I. Steklov Math. Inst, Acad. Sci. 
USSR 73, 314 (1964). 

6 ~ .  P. Keener and D. W. McLaughlin, Phys. Rev. A 16, 777 Translated R. T. Beyer 

Mechanism of nonadiabatic losses in a dipole trap 
V. 0. Il'in and A. N. Il'ina 
Nuclear Physics Research Institute of the Moscow State University 
(Submitted 13 February 1978) 
Zh. Eksp. Teor. Fiz. 75, 518-523 (August 1978) 

The principal mechanisms of the nonadiabatic escape of particles from a trap are considered-stochastic 
instability and universal Arnold instability. The boundaries of the regions of existence of these inshbilities 
are investigated. It is shown that the results of numerical calculations of the limits of the adiabatic 
behavior of the particles agree with analytic estimates that follow from stochasticity theory. It is observed 
in experiment that introduction of azimuthal inhomogeneity of the magnetic field can lead to a decrease of 
the nonadiabatic losses. 

PACS numbers: 52.55.Ke, 52.35.P~ 

Processes that control the dynamics of particles in 
magnetic t raps  can be connected, besides the global 
diffusion due to the scattering by the residual gas, with 
the universal Arnold diffusion and with stochastic in- 
stability.[ll In particular, it was s u g g e ~ t e d ~ ~ . ~ ~  that 
the nonadiabatic decrease of the particle lifetime with 
increasing relative cyclotron radius X = p/R, (R, is the 
radius of curvature of the force line), which is ob- 
served in linear t raps  with mirrors ,  is due to the 
Arnold universal instability. To  understand the reason 
for the nonadiabatic behavior of the particles it is nec- 
essary to determine first  the l imits of the regions 
where the proposed instability mechanisms operate. 
The present paper is devoted to a determination of 
these limits and of the form of the instability respon- 
sible for the nonadiabatic departure of a particle from 
a dipole trap. The questions considered here, which 
touch upon the general physical problem of the investi- 
gation of very subtle and universal inter action mechan- 
i sms of resonances that control stochastization pro- 
cesses, are of great  interest, for example, in the in- 
vestigation of singularities of the spatial distribution of 
the high-energy part of the spectrum of the charged 
particles in the magnetic t raps  of the earth and of 
Jupiter, etc. 

1. The change of the adiabatic invariant in multi- 
period systems is due to the interaction of nonlinear 
resonances, for example, resonances between fast 
Larmor rotation and higher harmonics of slow oscilla- 

tions between the magnetic mirrors.  In the vicinity of 
the separatrix of each resonance there appears the so- 
called stochastic layer, which constitutes a certain re- 
gion of unstable In the case of axial sym- 
metry of the field (two-dimensional motion) the thin 
stochastic layers of different resonances do not inter- 
sect  on the phase plane, and the instability is therefore 
localized within the confines of a single stochastic 
layer, and causes only bounded oscillations of the adia- 
batic invariant and of the frequencies. If the parameter 
X is large enough, the stochastic layers  broaden to the 
dimensions of their  resonances, neighboring resonan- 
ces  in phase space overlap, and strong stochastic in- 
stability results. 

The boundary of the stochastic instability, determined 
by the criterion of overlap of the nonlinear resonances, 
can be represented, according to Ref. 4, in the form 

Ap/p*n'"S?/?o, (1 

where & is the orbital magnetic moment of the particle, 
w is the cyclotron frequency, and 52 is the frequency of 
the oscillations between the reflection points. We rec-  
ognize that in a dipole magnetic field the period of the 
oscillation of the leading center between the reflection 
point is given by C 5 3  

T ~ = ~ R . T  (a) l v ,  O<a<n/2, (2) 

where v is the particle velocity, Re is the radius of the 
force line in the median plane, T ( a )  = 1.3-0.56 sin a, 
and a is the angle between the velocity vector and the 
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