
state XIZf into the state C3n,, then the N,-system 2' 
spectrum connected with the transitions of the cold 
molecules would reveal a characteristic in tas i ty  al- 
ternation wherein triplets with even K' would be more 
intense than triplets with odd K', owing to the influence 
of the nuclear spin. We, however, did not observe such 
an alternation. This question deserves a special inves- 
tigation. 

The authors thank L. P. Presnyakov for consultations 
on questions pertaining to collision theory, as well a s  
P. L. Rubin, V. I. Man'ko, and L. A. Shelepin for a 
discussion of the results. 

l ) ~ h i s  phenomenon was pointed out in the report, c61 and while 
the experimental conditions in that reference a r e  not quite 
clear, it can be assumed that disequilibrium was observed 
there not only in the RF discharge in the N2-Ar mixture, 
but also in pure N2. 

2 ) ~ h e  radiating state B'Z* for the Angstron band system is 
populated in the discharge by direct electron impact from the 
state CO Q'z'). 

3 ' ~ h e  wave function is positive if i t  remains unchanged upon 
reflection in a plane passing through the axis joining the nu- 
clei, and negative if its sign is reversed by this reflection. 

4 ) ~ e  note that when one speaks of the symmetry of an electron 
wave function relative to reflection in a plane passing 
through an internuclear axis the reference is to symmetry of 
its coordinate part.u91 

5 ) ~ h i s  was verified by experiment. 
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We discuss the levels E and their widths r of hydrogen atom in the quasiclassical approximation in the 
presence of a uniform electric field E (all quantities are in atomic units). The effective quantum number 
v = ( - 2 ~ ) ~ " ~  depends on E and on the parabolic quantum numbers n,, n,, and Iml. For Iml 4n,,* 
the ratio v/n (n is the principal quantum number) with accuracy to quantities of order (m/n)' is a 
universal function of two parameters: S = (n,-n,)/n and T = 4n ' E. The value of v/n is determined by 
Eqs. (3.4)-(3.6) and the value of r by Eq. (5.8). The values obtained with these relations are close to 
the results obtained by numerical integration of the Schrodinger equation. 

PACS numbers: 32.60.+i, 32.70.J~ 

1. INTRODUCTION the field strength, 5 and i) are  parabolic coordinates in 
the atomic system of units, and we introduce the ef- 

The hydrogen atom in the presence of a uniform elec- fective quantum number 
tric field is described in parabolic coordinates by well 
known equations ."I v= ( - 2 ~ )  -'", (1.1) 

We shall designate the energy of the atom by E, P: is the reduced field strength 
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and the coordinates 

t=v-'f, y-v-'q. 

Using these designations, the equations mentioned take 
the form 

The boundary conditions a re  

T,(n)=n. v,(OO) -0. ( ~ ~ ( 0 )  =n. cr-.(-) -0. 

The form of the functions 

at small distances is determined mainly by the Coulomb 
and centrifugal terms, and at large distances by the 
term containing the field w .  Here V,- -* a s  y - .o, s o  
that a potential barr ier  is formed along the y coordin- 
ate. 

The energy spectrum is formally continuous. How- 
ever, in practice we a re  dealing with a set of quasista- 
tionary states. The spectral density, defined a s  I J  1 ',, 
where J is the Jost  function (see Sec. 4), consists of a 
ser ies  of more or  less sharp peaks in a background of a 
smooth variation, which correspond to the quasistation- 
ary states. In the energy region in which these peaks 
a re  sufficiently well separated from each other, the 
shape of a peak is given by the well known expression 
[(E -E')2+ r2/4]-I where E' and r / 2  a re  the real and 
imaginary parts of the complex zero of the Jost  func- 
tion; E' defines the location of the quasistationary state 
on the energy scale; r' is the width, which is related to 
the lifetime T against ionization (i.e ., passage through 
the barrier)  by the expression r=  T" (r and T are  in 
atomic units) . 

In the quasiclassical approximation without taking into 
account the finite width of the level (i.e., without taking 
into account passage through the barrier)  the dependence 
of 11, and a,  on w is determined by the quantization con- 
ditions[" 

where n,,, a re  non-negative integers which a r e  assumed 
to be large. The points x', d ' ,  and y', y" a re  the zeros 
of the integrand functions. Equation (1.6) determines 
the dependence of v on w ,  and Eq. (1.2) the dependence 
of v on $(of course, in implicit form). 

For  $+O, v depends on the three quantum numbers 
n,, n,, and In? I independently. For  $= 0, degeneracy 
sets in: 

The quantization condition (1.7) is satisfied for all  
values of w. However, the condition (1.8) is satisfied 
only fo r  those w which do not exceed some critical val- 
ue w,. In the case when w >  w, there is no real upper 
limit y'' in (1.8), in which case the integrand vanishes. 
The physical meaning of w, is that the energy level 
reaches the peak of the potential barr ier  along the y 
axis. 

In the absence of a field we have the equality 

here xP, x", and x, a re  the zeros of the corresponding 
integrands. 

In the presence of a field the exact equality of the 
form (1.9) does not exist. However, in the case when 
lm ~/cY,,,<< 1 it is possible with accuracy to small cor- 
rections of order (c~ , , ,w) (m/ f f , , , )~  to represent (1.7) and 
(1.8) in the form 

Analysis of Eqs. (1.10) and (1.11) (see Sec. 2) shows 
that in this approximation the ratio v/n  depends only on 
the two parameters * 

S= (n,-n,)ln, T=4n%, (1.12) 

v/n=f (S, T), (1.13) 

where f is a universal function. Quantities of order 
(rn/n), have not been taken into account, which does not 
introduce a substantial e r r o r  if [ m  ( << n. 

We note that the same relation (1.13) is observed also 
in the well known formulas of perturbation theory if we 
apply them to the case of large quantum numbers n and 
neglect terms of order (nz/n)'. 

The phase integrals which enter into Eqs. (1.10) and 
(1.11) were discussed in 1930 by ~ a n c z o s c ~ ~  who expres- 
sed them in terms of elliptic integrals. His example 
was followed in 1961 by Rice and ~ o o d . ~ ~ '  However, ex- 
pression of the phase integrals in terms of elliptic in- 
tegrals introduces completely unnecessary complica- 
tions into the calculation and unnecessarily makes the 
formulas extremely cumbersome. As a result the ana- 
lytic investigation of the phase integrals in the studies 
cited remained to a certain degree incomplete. In par- 
ticular, the authors of Refs. 2 and 3 did not note the ex- 
istence of the universal dependence (1.13) for Inz I << n. 
In addition, a number of e r r o r s  exist in these studies. 

In the present work the phase integrals a re  expressed 
in terms of the hypergeometric function F(-1/2,1/2,2, 
2). Although it is possible with recurrence relations to 
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Taking into account (2.7), we have reduce this function to a combination of elliptic inte- 
grals, it is much more convenient to deal directly with 
F(-1/2,1/2,2,z). 

On the basis of a study of the relations (1.10) and 
(1.11), we establish in Sec. 3 a system of equations for 
determination of the function f (1.13). In Sec. 4 we take 
into account the finite width of the level. An expression 
is established for the Jost function, and its complex 
zeros with a small imaginary part are discussed. In 
Sec. 5 we calculate the level width and present approxi- 
mate analytic expressions for weak and strong fields. 
In Sec. 6 we give a comparison with the calculations of 
other authors. 

From this it follows that 

The least value of a, is achieved for z, = 1 and is equal 
to 

A s  can be seen, a,  does not change greatly over the en- 
tire attainable interval of variation of z,. 

Expressing a,w by means of (2.8) in terms of z, and 
combining it with (2.9), we obtain, similarly to (2.5), 2. TRANSFORMATION AND STUDY OF THE PHASE 

INTEGRALS 

We shall consider first the integral 

Relations (2.9) and (2.10) express the dependence of a,  
on w in parametric form. 

It follows from Eq. (2.10) that the mdimum value of 
w (for a given n,) is reached at z,= 1 and i s  equal to By means of the well known integral representation of 

the hypergeometric function 

and from Eqs. (2.10) and (2.11) we obtain 

the integral L, is reduced to the form w 311.2'~ zl ---- F(-'/z, 'I:, 2, 22). 
1170 4 (i+zr)" 

where 

( i + i 6 a l w )  '18-i 
21 - (1+i6alw)"+1 

' 
3. EQUATIONS FOR DETERMINATION OF THE 
EFFECTIVE QUANTUM NUMBER 

Taking into account (1.10), we obtain 

Substituting into Eq. (1.6) expressions (2.4) and (2.9) 
for a ,  and a,  and using the designation (1.12), we have 

It i s  evideit from this that 

a , > n , + ' / ~ ( l m l + t ) .  
Then, adding (2.5) and (2.10), taking into account (1.2), 
and using the designation (1 .l2), we obtain We then carry out the following transformation: We ex- 

press alul in terms of zl by means of Eq. (2.3): 

and substitute into this Eq. (2.4) for a,. We obtain Finally, subtracting (2.10) from (2.5), we have 

Relations (2.4) and (2.5) express the dependence of a ,  on 
w in parametric form. 

Equations (3.1)-(3.3) are  inconvenient, since they in- 
volve combinations of all the quantities S, T, and v. 
However, by means of simple transformations it is pos- 
sible to break up these combinations and reduce Eqs. 
(3.1)-(3.3) to the form 

Let us turn now to the integral 

like Eq. (2.1), it can be reduced to the form 

where 
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FIG. 1 .  Dependence of zl 
on T for S=-0.5 ( I ) ,  0 (2), 
0.5 (3). and 0;5 (4). 

The relations (3.5) and (3.6) are the key system of 
equations to which the entire problem reduces. Finding 
the parameters z, and z ,  by means of Eqs. (3.5) and 
(3.6) for given S and T and substituting them into (3.4), 
we obtain the desired quantity v/n. 

Solution of (3.5) and (3.6) is possible only in numeri- 
cal form. In Figs. 1 and 2 we have shown the depen- 
dence of z,  and a, on T for several values of S. 

4. THE JOST FUNCTION 

For calculation of quasistationary states with inclu- 
sion of the width, the quasiclassical approximation in 
its simplest form is inadequate. It i s  necessary to use 
a more refined approach. 

We shall use the method developed by N. FrSman and 
P. ~ r S r n a n . ~ ~ l  According to this method, an approxi- 
mate solution of (1.5) ~ ( y )  is represented in the form of 
a superposition of two linearly independent quasiclassi- 
cal functions: 

The quantity Q in the simplest approximation is equal to 

Q-'/z(-i+4at/y-m'/yl+wy)". (4.2) 

(The FrBmans developed a technique for calculation of 
higher-order corrections to (4.2), but we will not take 
these corrections into account here). In the FrSman 
method a major role is played by the matrix F which 
relates the values of a,,, with each other at two points: 

The properties of the matrix F and the technical details 
of its application have been set forth in detail in the 
FrSmans' book.t43 We present here only the results 
necessary to us on application of this method to the pro- 
blem of interest here. 

FIG. 2. Dependence of 2 2  

on T for S=-0.5 (I) ,  0 (2), 
0.5 (3). and 0.75 (4). 

The asymptotic behavior of cp a s  y - we represent 
in the form 

q~-(2iQ)-'"[I' exp (iSQdg) -1 exp (-ijQdy) I .  (4.4) 

The coefficient J is a Jost function. We can construct 
for it an expression in terms of the elements of the ma- 
trix F: 

1-N{IF,,(O, -) I e-'@- IF23(0. m) (el* j .  (4.5) 

where N is a normalization factor whose explict form is 
not needed here; 

I" @-=I Q dv+S, 
", 

6=l/z (arg Fzl-arg F,,) . 

The location of the quasistationary states En on the en- 
ergy scale is determined by the condition 

0 (E.) = (n2+'h)n, (4.8) 

which represents a direct generalization of the cohdi- 
tion (1.8) and differs from (1.8) in the presence of the 
additional term 6 in the left-hand side. 

For the quantities I F , ,  I and I F , ,  I in Ref. 4 we have 
obtained the approximate expressions 

IF,tl=(l+e-zX)", IFxzlzi, (4.9) 

where 

I.*' 

K-- ~ Q ~ I I  (4.10) 
1' .  

(y"' is the turning point to the right of the barrier, and 
y" i s  the turning point to the left of the barrier). The 
expressions (4.9) are  exact for a parabolic barrier. In 
ouk problem the barrier near the top is very close to a 
parabglic shape. Therefore the expressions (4.9) are  a 
good approximation for small K. On the other hand, for 
large K expressions (4.9) go over to well known formu- 
las obtained in the elementary quasiclassical approxi- 
mation. Therefore Eq. (4.9) can be considered a good 
approximation for all K. 

The approximate expression for 6 at small K has the 
form 

The expression contained in the brackets in the right- 
hand side of (4.11) is exact for a parabolic barrier and 
is given in Ref. 5. Similar expressions have been con- 
sidered also in a number of other studies (for example, 
Ref. 3). The value of 6, depends on the shape of the 
barrier at large distances from the top and in the gen- 
eral case c a ~ o t  be represented in analytic form. For 
an approximate evaluation of 6, we shall proceed as  
follows . 

We shall assume expression (4.11) valid for large K 
and require that as  K -  m the value of 6 goes to zero 
(since on removal of the turning point yl" to infinity it 
should enter into the quantization condition (4.8)). Using 
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the known asymptotic expression for argr(x) at large 
x, we find that 6, = n/8. Finally we have 

In any case-for small  o r  large K-the contribution of 
6 to the quantization condition (4.8) is small, especially 
for large quantum numbers. Therefore in the first  ap- 
proximation we shall neglect the quantity 6 and deter- 
mine the position o f the level from the condition (1.8). 
When necessary it i s  possible to take into account the 
correction introduced by 6. The condition (4.8), a s  
shown by the Framans, can be generalized in such a 
way that it will determine also the quasistationary 
states above the barr ier .  

In the case in which a quasistationary state has a suf- 
ficiently small width, i t  is possible to obtain an expres- 
sion for  r from (4.5), expanding @ in  se r i e s  in powers 
E - E n  and assuming all remaining quantities constant. 
We set 

do 
(E-E,) + . . . 

(.2+ 3 .+ (E),E" 

Then to first  order in the difference E - E n  we have 

where 

We note that in a quasiclassical situation the quantity 
(d@/dE,)" has the meaning of the average distance be- 
tween levels. Therefore expression (4.15) can be used 
only for the condition rd@/dE,<< 1, i.e., for 

which in view of (4.9) reduces to the condition 2K 2 1. 
Here it is possible with sufficient accuracy to replace 
(4.15) by the simpler expression 

In calculation of the quantity d@/dE which enters into 
(4.16), the term d6/dE is particularly important for 
small K and must be taken into account. The point is 
that the quantity 

which enters into d@/dE, is proportional to the classical 
period of oscillations between the points y' and y". 
This period approaches + when the energy level ap- 
proaches the top of the barr ier .  On the other hand, the 
quantity d6/dE approaches -m in such a way that a finite 
value is obtained in the sum. 

5. LEVEL WIDTH 

Let us consider the quantities which determine the 
numerical value of r. We begin with the quantity K. 

Neglecting the centrifugal energy in the barr ier  region, 
we have 

i Y Z  4a 'I, 
K--?I ( 1 - 2 - w Y )  dy. 

Y  
Yl 

By means of transformations similar to those used in 
Sec. 2, we obtain the expression 

where 

The parameter z, can be expressed either in terms of 
S and T by means of Eqs. (3.5) and (3.6), o r  in terms of 
the ratio w/w, by means of (2.12). We shall now pro- 
ceed with calculation of the quantity (4.17). 

We shall use the approximation (1.11), in which the 
problem reduces to calculation of the quantity dL,/dE. 
We represent i t  in the form 

According to (2.5) for fixed a, we have dL,/dv= dL,/da,. 
From expressions (2.7) and (2.8) it follows that L,, be- 
fore the quantization condition is imposed, is a function 
of two independent variables: w and a,. For  the pur- 
poses of the present calculation we need the derivative 
for w = const. A calculation gives 

(5.4) 
Finally, let us consider the quantity d6/dE. Using 

expression (4.1 I), we represent it in the form 

where J ,  is the logarithmic derivative of the r function. 
Calculating 

we obtain 

From (5.4) and (5.5) we find 

where 

Substituting (5.2) and (5.6) into (4.16), we obtain 
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Let us consider the functions g and h in the limiting 
cases z,<< 1 and 1 -z,<< 1. 

1) z,<< 1. In estimation of g it is necessary to take 
into account that the hypergeometric function F(1/2, 
3/2,3,1-z,)belongs to the formF(ff,B,a+B+n,x),  
where n =  O,1,2. . . For  functions of this type the ex- 
pansion of F as x -  1 contains in addition to powers of 
1 - x also In (1 - x )  (see for example Ref. 6). Using this 
expansion, we have 

For g we obtain 

Substituting the approximate expression fo r  z,, which 
follows from (2.12) for  z,<< 1: 

and taking into account expression (2.11) for w,, we find 

In regard to h(z,), we have for z, - 0 

In  this approximation we obtain for I? 

2) 1 - z,<< 1. In this case 

Considering h(z,) a s  z, - 1, we can observe two terms 
proportional to In (1 - z,) and going to infinity at z, = 1. 
One of them originates from In (K/lr) on substitution of 
expressions (5.2) and (5.3). The other originates from 
the logarithmic terms in the expansion of the hypergeo- 
metric functions F(-1/2,1/2,2, e,) and F(1/2,3/2,3,z2) 
in the quantity 1 - z, (see Ref. 6). These two terms mu- 
tually cancel, and a finite expression remains. The 
limiting value for z, = 1 is 

h(i)-2'h\6-ln(2'".32w~) -$('f;) I. (5.13) 

r .lo6 I-hrom [ Present I krom I Present 

Ref 7 calculation Ref. 7 calculat~on 

n-5,8-i.8.10-' 
n=l~i,8=iO-5 
n=i'5,8-3.i0-* 1.74 

6. COMPARISON WITH RESULTS OF OTHER 
CALCULATIONS 

An exact numerical calculation of the energy levels 
was carried out by Damburg and ~ o l o s o v . ~ ~ ~  

We have compared values of v obtained by means of 
relations (3.4)-( 3.6) and values of r determined from 
Eq. (5.8) with the corresponding values calculated by 
the method of Ref. 7, for three states with n, =n,, 
m = 0 ,  andn=5 ,  11, and 15. The results a re  given in 
the table . 

For  weak fields Damburg and ~ o l o s o v [ * ~  found by 
means of an asymptotic method an analytic expression 
for r. If the factorials of the quantum numbers in the 
formula for I' from Ref. 8 a re  expressed approximately 
by means of Stirling's formula, we obtain an expression 
which coincides with our formula (5.11) with accuracy 
to small corrections. 

In conclusion the author extends his thanks to N. Fr6- 
man and P. FrSman for discussion of the questions 
taken up in Sec. 4 and for valuable observations, to I. 
Yu. Yurova for carrying out the numerical solution of 
Eqs. (3.5) and (3.6), and to V. V. Kolosov for carrying 
out numerical calculations by the method of Ref. 7, the - 
results of which a re  given in the Table. 
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