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An investigation is made of the distribution of the photon momentum between subsystems of colliding 
particles in the course of stimulated inverse bremsstrahlung of light in an isotropic plasma. The general 
case of an arbitrary ratio of the charges and masses of particles is considered. The mass ratio 
corresponding to the complete absorption of the momentum by the lighter particles is found. It is shown 
that the pressure forces exerted on electrons and ions in an electron-ion plasma are, respectively, parallel 
and antiparallel to the direction of wave propagation. The density of the electric current representing the 
photon drag of charged particles is calculated. 

PACS numbers: 52.25.Ps, 52.20. - j, 52.25.Fi 

1. When an electron beam penetrates a plasma, the 
electron motion becomes isotropic. The directional 
momentum is transferred to the plasma electrons and 
ions. The average rate of change of the momentum in 
an electron beam due to collisions with ions is given by 
the well-known expressions 

where p is momentum, m is the mass, and v= p/m is 
the velocity of electrons; v,, is the effective collision 
frequency; n, is the concentration of ions; e and -Ze 
are  the charges of an electron and an ion, respectively; 

r m ~  and r,,, a r e  the usual (for a plasma) cutoff factors 
in the Coulomb l~gar i thm.~"  Electrons with an isotro- 
pic distribution of the velocities v bombard ions a t  the 
same rate from all sides. In this case, collisions with 
ions do not alter the momenta of the electron and ion 
subsystems. Averaging of Eq. (1) over the directions 
of p gives zero. In the absence of external fields the 
isotropic electron component of a plasma does not shift 
relative to the ion component (there is no current). 

If the scattering of electrons by ions occurs in the 
presence of an external electromagnetic wave, we can 
expect not only elastic scattering but also stimulated 
direct and inve.rse bremsstrahlung of the wave pho- 
tons:'' This process is accompanied, respectively, 
by a reduction or  increase in the momentum of the sys-  
tem. In the case of directional motion of particles a 
change in their momentum due to stimulated bremss- 
trahlung processes is a small correction to Eq. (1). In 
the case of an isotropic distribution the Coulomb ex- 
change of the momenta makes zero contribution and the 
average rate of change of the momentum of the parti- 
cles is determined entirely by the stimulated inverse 
bremsstrahlung. Clearly then the total change in the 
plasma momentum (or  the total volume density of a 
force acting on the medium f,,,) is equal to the product 
of the photon momentum k and the number of the ab- 
sorbed photons: 

where nph and n, are  the photon and electron concentra- 
tions; go is the amplitude of the electric field of the 
wave given by go= (4~wn,)"~; w is the frequency of this 
wave; ff is the absorption coefficient; n= k/w i s  a unit 
vector in the direction of propagation of the wave. Here 
and later,  we shall use the system of units in which R 
= c = 1. For simplicity, we shall also postulate that the 
incident wave is unpolarized and that the coefficients 
in Eq. (2) imply summation over the polarizations. 

The absorption coefficient of light a thus represents 
the total rate of change of the plasma momentum -f,,,. 
However, this information is insufficient to resolve a 
more detailed problem of how the absorbed photon mo- 
mentum k is distributed between the two types of parti- 
cle (between electrons and ions in a plasma). To the 
best of our knowledge, this problem has not yet been 
considered and we shall deal with i t  below. The distri-  
bution of the absorbed momentum between colliding 
particles is of interest not only in the case of electron- 
ion but also semiconductor plasmas. In the latter case 
the dominant scattering mechanism may be the Coulomb 
scattering by impurities or  the electron-hole interac - 
tion (we shall ignore the electron-phonon scattering). 
Therefore, we shall consider the general problem of 
the determination of the rate of change of the momenta 
of particles with arbitrary masses and charges being 
scattered in the process of stimulated inverse bremss- 
trahlung of photons. The initial velocity distribution of 
the particles is assumed to be isotropic. Other approx- 
imations made in the course of calculations a re  a s  fol- 
lows: 

1) the nonrelativistic approximation v << 1, w << m is 
used; 

2) the Coulomb interaction between particles is con- 
sidered in the first  Born approximation I elez ( /v << 1 ;  

3) the wave field is assumed to be sufficiently weak 
and is considered only in the lowest order of the per- 
turbation theory; the condition of validity of this ap- - 
proximation is the smallness of the velocity of electron 
oscillations v,= eg,,/mw compared with the velocity of 
the translational motion of  electron^.^^] 

228 Sov. Phys. JETP 48(2), Aug. 1978 0038-5646178, 1080228-05$02.40 O 1979'American Institute of Physics 228 



In the theory of stimulated bremsstrahlung it is usual 
to employ also the dipole approximation in which the 
dependence of the field intensity on the spatial coordi- 
nates is ignored completely~" This approximation is 
insufficient to deal with the problem formulated above 
because the rate of change of the particle momenta is 
governed by the photon momentum k ,  i.e., by the wave 
vector which is assumed to be zero in the dipole ap- 
proximation. We shall obtain general formulas for the 
rate of change of the particle momenta without invoking 
the dipole approximation. 

The validity of the dipole approximation in the usual 
theory of stimulated bremsstrahlun&'] i s  related to the 
smallness of the photon momentum k =  w compared with 
the minimum momentum transferred to a nucleus -w/v, 
i.e., it is governed by the nonrelativistic criterion v 
<< 1. Allowance for the nondipole aspects means that 
some relativistic corrections a r e  included. We then 
face the question whether the allowance for the nondi- 
pole aspects does not represent a redundant precision 
in combination with the nonrelativistic approximation. 
In fact, there is no redundant precision i f  we confine 
ourselves to the first  two terms in the expansion of the 
cross sections in powers of k. The corrections to the 
cross sections proportional to k a re  characterized by a 
parameter v and a r e  considerably greater than the true 
relativistic corrections -v2 SO that we have (w/n?) << v 
(Ref. 2). We shall show later that the zeroth order with 
respect to k makes no contribution to the rate of change 
of the momentum of the relative motion of the particles 
(when their distribution is isotropic). The linear terms 
in the expansion of the cross  sections in powers of k 
give the volume densities of the forces acting on the 
particles and these naturally a r e  of the same order a s  
the total volume density of the force (2). 

Calculations carried out using the perturbation theory 
and the nonrelativistic approximation a r e  quite simple 
in the fundamental sense. Therefore, one might only 
give the final result without considering the details. 
However, the results of such a calculation (given below) 
a re  somewhat unexpected. Moreover, the question of 
the distribution of the absorbed momentum is essential- 
ly quantitative s o  that we have to consider certain ba- 
sic aspects of the calculation procedure. 

2. We shall discuss the processes of stimulated di- 
rect and inverse bremsstrahlung in the case of scatter- 
ing of two particles of charges and masses e,, t n ,  and 
e,, nl,, respectively. The interaction between these 
particles is described by the potential energy V = e,e2/r 
(r is the distance between the particles). The field of 
an external electromagnetic wave is described by a 
vector potential whose value a t  the point of location of 
a particle i (r ,)  is 

Selecting independent variables in the form of the co- 
ordinates of the relative position of the particles r=  r, 
-r2 and of the center of mass 

form 

where p =  m , m , / ~  is the reduced mass and W is the 
operator of the interaction with the wave field: 

In view of the assumptions made above, we shall r e -  
gard the potential V and the operator Was  small per- 
turbations. We shall determine in the usual way the 
probability of scattering in the second order of the per- 
turbation theory, retaining only the cross  terms -V W 
(and ignoring V 2  and v)  in the composite matrix ele- 
ments. Let us assume that in the initial state the mo- 
menta of the relative motion and of the center-of-mass 
motion a re ,  respectively, p and P and that in the final 
state they a re  p' and P'. The differential cross  sec- 
tions of the scattering accompanied by the emission 
(do,) o r  absorption (do,) of quantum w a r e  given by the 
following perturbation theory expressions: 

If the mass of one of the particles is large (m,ziM 
>> m, = p), Eq. (5) simplifies greatly to 

The above expressions for the cross  sections due,, 
show explicitly that allowance for the nondipole aspects 
is equivalent to inclusion of certain relativistic correc- 
tions which appear in the dependences of the energy de- 
nominators of Eq. (6) on the momenta and p. Equa- 
tion (6) can be obtained from the familiar formulas for 
the cross  section of the spontaneous bremsstrahlung 
emission from an electron.c21 The obvious changes 
have to be made in these formulas because we a re  con- 
sidering a stimulated rather than a spontaneous pro- 
cess;  moreover, it is necessary to ignore the relativis- 
tic dependence of the mass on the velocity (correspon- 
ding to the corrections -c2) and small correction terms 
-w/?)ll. 

In general, the cross  sections of Eq. (5) represent 
a change of the momentum of the relative motion of the 
particles and of the momentum of the whole system per 
unit time in a unit volume: 

we shall represent the Hamiltonian of the system in the 
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where n, and n, a r e  the concentrations of the particles 
of type 1 and 2. 

The occurrence in Eq. (5) of the delta function 
b ( ~ '  - P *  k) reflects the self-evident fact that the total 
momentum of the system changes by r k  a s  a result of 
the emission or  absorption of a photon. This allows us 
to represent the rate of change of the momentum of the 
center of mass in the form 

where uT is the total cross section for the emission of 
a photon: 

We can now calculate uT applying the dipole approxi- 
mation because the photon momentum k occurs in Eq. 
(8) a s  a factor. In this approximation, the averaging 
of UT over the directions of the momenta p and P and 
summation over the polarizations of light on the basis 
of Eqs. (5), (8), and (9) gives 

I dP &@' . 8n ntn,e,'e,28,' 
--= "-=n- 
V dt 4n 3 pv'o' (; - s),, (10) 

where a still represents the absorption coefficient. 
For e l=e,e ,= - Z e , m l = p = m ,  and m2=M=*,  Eq. (10) 
reduces to Eq. (2). 

In contrast to the total momentum of the system P ,  
the momentum of the relative motion p does not satisfy 
any laws of conservation and it can be calculated only 
by rigorous integration of Eqs. (5) and (7) allowing for 
the dependences of the cross sections do,,, on k. Ex- 
panding due,, in powers of the wave vector k, averaging 
Vmldp/dt over the directions of the vectors p and P ,  
and summing over the wave polarizations A,,, we can 
easily demonstrate that - a s  stated above -the contri- 
bution of the dipole term (-kO) vanishes. In the first 
order in respect of the wave vector k,  the rate of 
change of the momentum p is 

where the angular brackets represent averaging over 
the directions of the momentum p and summing over the 
polarizations A,,. 

The dependence on the mass of the particles in Eq. 
(11) is mainly concentrated in the factor in front of the 
integral sign. The integrand in Eq. (11) depends only 
on the reduced mass p. Therefore, in fact, the whole 
structure of the integrals (11) follows from Eq. (6) in 
the first order of its expansion in powers of k, i.e., it 
can be obtained in the approximation of an infinite mass 
of one of the particles. The form of the integrand in 
Eq. (11) can also be found from familiar formulas for 
spontaneous b remss t rah l~n$~]  i f  we go over to the non- 
relativistic limit. 

Shmmation over the polarizations A, allows us  to ex- 
press the rate of change of the momentum p in the form 

Ip' -p ,nI2(p' -p ,n)  + [P' -p ,nI  ( ( ~ ' 1 1 )  [ P ' ~ ] - - ( P ~ I )  [pill) 

2clo 1 
(12) 

where dS1, is an element of the solid angle in the direc- 
tion of the vector p. Further integration can be carried 
out conveniently by replacing with a new integration 
variable q =  p' -p. After integration with respect to 
d q ,  Eq. (12) becomes 

where the domain of integration with respect to q is 
limited by the conditions 

Clearly, the integral with respect to q in Eq. (13) is 

The logarithm is governed by the dimensionless pa- 
ramater pw/p2 which is  usually very small (in the op- 
tical frequency range and under the conditions of vali- 
dity of the Born approximation, we have pw/p2- lom5). 
As usual,'ll this smallness results in substantial com- 
pensation of the contributions due to stimulated emis - 
sion and absorption. Expanding the logarithm in Eq. 
(15) in terms of this small parameter, we finally obtain 
from Eq. (13) the following expression for the rate of 
change of the momentum of the relative motion of the 
investigated system of particles: 

3. Equations (10) and (16) describe completely the 
distribution of the momentum of the absorbed photons 
between the particles. In fact, the rates of change of 
the particle momenta dp,/dt a re  clearly related to 
dp/dt and dp/dt in the same way a s  the momenta p, to 
p and P. Hence, it follows that the volume densities 
of the forces acting on the particle subsystems 1 and 2 
are  given by 

1 dp ,  1 d p  m, 1 dP 
f ---=------ 
' - V dt v dt iw V dt 

The above formulas can be written conveniently in the 
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form 

where 

and the absorption coefficient a! is given by Eq. (10). 

The quantities cp, = ki;'/w can be regarded a s  the 
"fraction" of the photon momentum absorbed separately 
by the subsystems of particles of the first and second 
kind. In general, cpl+ cp2= 1, i.e., k$'+lc$' = k and 
fl+ f,= f,,,, where the total force is given by the first  
two equalities in Eq. (2). 

We shall consider the two most interesting special 
cases which follow from Eqs. (19) and (20). 

1) Let us assume that nl,-"M >> 7711-" p ,  e l=  e ,  and e, 
= -Ze (this corresponds to the scattering of electrons 
by ions in a plasma o r  by impurity centers in a semi- 
conductor). We then have 

, k!;' =-3/,k. (21) 

The result is somewhat unexpected because 1 k:;' I > 
I kl , i.e., the "fraction" of the photon momentum ab- 
sorbed by the electron subsystem exceeds unity. This 
excess momentum undoubtedly ar ises  from the fact that 
stimulated inverse bremsstrahlung is accompanied by 
a much greater exchange of the momentum because of 
the Coulomb scattering. The inequality I kt;' ( > I kl 
means that in the presence of an external field the com- 
pensation in the Coulomb exchange of the momenta is 
incomplete even when the distribution of the electron 
translational velocities v is isotropic. This may be due 
to the fact that an external field disturbs the isotropy 
of the system. The momentum ki;' absorbed by the 
electrons consists of the true fraction of the photon 
momentum (which can hardly be determined in i ts  pure 
form) and the uncompensated residue of the Coulomb 
exchange of the momentum between electrons and ions. 

It follows from Eqs. (19) and (21) that the force f, 
acting on electrons is directed along the wave vector of 
light and represents eight-fifths of the total radiation 
pressure force on the medium f,,,. The force f, acting 
on ions represents three-fifths of f,,, and i t s  direction 
is opposite to that of the wave propagation. 

2) Let us now assume that el  = -e,= e and that the 
ratio of the masses n ~ ,  and nl, is arbitrary (this cor- 
responds to the scattering of electrons by holes in a 
semiconductor). Then, the expressions in Eq. (20) be- 
come 

As in the preceding case,  we find that cp, = 8/5 and 
V,= -3/5 for m,>> n!, ( x  - a). Conversely, in the limit 

x - 0  (m,<<ml), we have cp,= -3/5 and cpi=8/5. For 
equal masses (m1= wz,), we find that cpl= cp,= $, i.e., 
f ,= f,=if,,,. Consequently, i f  the masses of the parti- 
cles a r e  equal and their charges a re  equal and opposite 
in sign, we find - a s  expected -that each of the particles 
obtains exactly one -half of the photon momentum. 

It follows from the expressions in Eq. (22) and also 
from Fig. 1 that the momentum absorbed by the heavier 
particles is zero  if the mass of the heavier particles 
represents eight-thirds of the mass of the light parti- 
cle. 

The density of the electric current resulting from 
stimulated inverse b rem~s t rah lun$~ '  can generally be 
described by 

where T, and T, a r e  the characteristic collision times 
of particles 1 and 2 with one another and with other ob- 
jects in the medium. In the case when e l =  -e,= e ,  n, 
=n,=n,, and r1=r2= T ,  we find from Eqs. (19), (22), 
and (23) that 

If m l =  nl , ,  i t  follows from Eq. (24) that the current 
is j = 0. The optical drag of particles of equal mass 
and with equal (but opposite in sign) charges does not 
produce an electric field because the momenta and ve- 
locities acquired by the particles a r e  equal (in view of 
the assumption that rI = T,, these particles also have 
equal mobilities; i f  this is not true, the drag current 
may differ from zero even for equal electron and hole 
masses). 

In the case of rea l  systems we have to average not 
only the directions of velocities of particles in the ex- 
pressions for the force density f,,, and current j but 
also the energy distributions (i.e., for example, aver-  
aging over the Maxwellian distribution is needed in the 
case of an electron-ion plasma). Clearly, such aver- 
aging does not affect the conclusions formulated above 
on the distribution of the absorbed momentum between 
the particle subsystems. 

An estimate of the value of j in the case of a laser  
plasma is given in a recent paper,[" where i t  is shown 
that currents of very high densities may be generated 
by the optical pressure on electrons. It is assumed 
that the momentum absorbed by electrons is equal to 

FIG. 1. Relative momenta acquired by particles of different 
masses ( ini  and mz) in stimulated bremsstrahlung absorption 
of photons; x = ~ i z ~ / n ~ ~ .  
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the photon momentum k$' = k. In fact, a s  shown above, 
the value of lc$' has an additional numerical factor of 
8 h .  Clearly, this factor (-1) does not affect the qual- 
itative estimate given in Ref. 3. On the other hand, an 
accurate quantitative determination of the distribution 
of the photon momentum between electrons and ions in 
a laser plasma is hardly possible because of many sec- 
ondary phenomena. It is likely that the optical pressure 
forces exerted on particles in the stimulated inverse 
bremsstrahlung can be determined more easily in the 
case of a semiconductor plasma, in which case the 
current j can be measured with a high accuracy. The 
drag of particles in the process of stimulated inverse 
bremsstrahlung may also be manifested in astrophysi- 
cal phenomena. 

In conclusion, we should point out that in addition 

to any practical applications of the above results, the 
distribution of the photon momentum between charged 
particles is undoubtedly of intrinsic interest because i t  
is related to such classical phenomena as stimulated 
direct and inverse bremsstrahlung of light. 
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The distributions of the intensities in the rotational structure of the 2+ bands of the N, system in a dc 
discharge and in strong-current discharge were investigated. The causes of the appearance of a "hot" 
group of N,(C 'nu) molecules with a high rotational excitation level are discussed. It is shown that this 
group is the result of impact de-excitation of the N,(E 'El) molecules. The effect of alternation of the 
intensities in the emission spectrum of the hot group is considered and found to be connected with the 
existence of selection rules for the transfer of electron excitations in collisions of heavy particles. 

PACS numbers: 33.10.Ev, 33.70.Fd 

1. INTRODUCTION 

We have previously establishedC1l that under condi- 
tions of a low temperature glow-discharge plasma at 
reduced pressure, when the lifetime of N,(C3n) is 
shorter than the time between the gaskinetic collisions, 
the rotational-leveldistribution of the N,(C311) molecules 
deviates from Boltzmann's law. The deviations consist 
in the fact that a so-called "hot' group of molecules is 
produced, with a high ("2100 K) population tempera- 
ture. If we subtract the hot part from the total distri- 
bution, then the remaining "cold" group has a Boltz- 
mann distribution described by the temperature of the 
translational motion of the neutral gas. This must be 
taken into account when attempts a re  made to deter- 
mine the gas temperature by measuring the spectrum 
of the 2+ system of N,. The e r r o r s  that can appear in 
the determined temperature because of failure to take 
the hot group into account depends both on the experi- 
mental conditions and on the spectral interval in which 
the measurements a re  made. These deviations from 
eauilibrium amear  in the electron-vibrational-rota- 

a s  in mixtures with other atomic and molecular gases. 

We note that similar anomalous rotational distribu- 
tions in discharges in N,-Ar mixtures were pointed out 
earlier in a number of  paper^,^^'^' although no clearcut 
separation into cold and hot groups was made. It was 
established in those molecules that NT molecules with 
fast rotation a re  produced in the reaction 

Many details, however, remained unexplained in this 
frequently described case, particularly the unique al- 
ternation of the intensities in the rotational structure of 
the spectrum of the 2+ system of the N, ." 

We have therefore verified e~perirnentally"~ the 
possibility of the appearance of hot N, molecules when 
no argon was specially added to the initial gases, but 
residual impurities could be present. Measurements 
of the densities of the Ar(2p54S) metastable states have 
shown that the observed anomalies cannot be ascribed 
to the influence of the impurities. 

* 

tional spectrum in discharges in pure nitrogen a s  well In many reports of the study of the mechanisms of 
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