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Reversal of the wave front of light in the case of 
depolarized pumping 

B. Ya. Zel'dovich and V. V. Shkupov 
P. h! Lebedeu Physical Institute. USSR Academy of Sciences 
(Submitted 12 January 1978) 
Zh. Eksp. Teor. Fi. 75, 428438 (August 1978) 

Some specific features of the reversal (or reproduction) of the wave front during stimulated scattering of 
light, which are due to the inhomogeneity of the pump polarization state, are considered. It is found that 
there are four linearly independent solutions for the scattered field with a structure correlated with the 
structure of the pump field. The growth rates are determined and the form of the solutions is investigated 
in detail. It is shown that the polarization inhomogeneity is favorable for reproduction of the wave front in 
the case of forward stimulated scattering. For backward stimulated scattering, the pumping depolarization 
impairs the quality of the wave front reversal (the reaction of the scattered wave on the pump is 
neglected). 

PACS numbas: 42.65.Cq 

1. INTRODUCTION 

The reversal of the wave front in backward stimulated 
scattering (SS) of light in pump beams E,(r,z) with a 
highly developed transverse structurec11 consists of 
the f a d  that the preferred gain is possessed by the con- 
figuration of the scattered field E,(r,z) that i s  the com- 
plex conjugate of the pump field, i.e., 

ever, the theory and the experiments pertained to 
radiation with a definite state of polarization that is 
the same at all points (r,z) of the scattering medium. 
On the other hand, it i s  well known that the inhomo- 
geneity of the pump polarization leads to a number of 
specific features of the SS process-see for example, 
Refs. 18-20. In the present work, we examine how the 
appearance of reversal (in backward SS) o r  reproduc- 
tion (in forward SS) of the wavefront takes place when 

E, (r, z) -const.E~'(r, 2). (la) the pump polarization i s  modulated randomly over the 
cross section. 

Similarly, in forward scattering a configuration of the 
form The following results are  obtained in the present 

work for the most interesting case of scattering of the 
E,(r, z) -const.EL(r, Z) (2a) scalar type. For forward SS, the phenomenon of re-  

production with account of depolarization differs in 
should possess a large gain. These effects were in- general little from the case of homogeneous polariza- 
vestigated later in a number of researches (see, for tion of the pumping, and the relation (2) is essentially 
example, Refs. 2-17 and papers cited therein); how- generalized to 
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~ . ( r ,  z) -const .EL(?, z). (2b) 
In contrast with this, for backward SS the relation 

E, (r, 2)-const -E,'(r, z) (lb) 

is generally not satisfied. In fact, the relation (lb) de- 
notes a transition from some unit vector of elliptical 
polarization of the pump e,, for example eL = cosa! 
e, + i  sin0 e,, to the unit vector of the scattered wave 
e, = cosa e, - i  sins e,. In the special case of circular 
polarization (a! =n/4), the unit vector e, turns out to 
be orthogonal to e, and then there is no interaction of 
the scalar type at all. For  this reason, the generaliza- 
tion of the relation (la)  to the vector case is not trivial 
and requires the solution of the se t  of corresponding 
equations. Just this program is carried through in the 
present work. 

2. THE SYSTEM OF BASIC EQUATIONS 
We shall write the equations for the pump wave EL(r,  

z) and the Stokes wave E,(r, z )  in the usual parabolic 
approximation. For simplicity in writing, we introduce 
symbols for the two-dimensional vectors: EL = E and 
E,=B; these vectors have components in the (x,y) 
plane that is perpendicular to  the direction of propa- 
gation z .  Here we shall assume that the scattered wave 
B always propagates in the +z direction, while the pump 
field propagates in the +z o r  -z direction depending on 
whether forward o r  back scattering is considered. 

Designating the Cartesian components of the vectors 
of the wave field by the symbols E i  and B, (i = 1,2), 
we obtain the following relations in the parabolic ap- 
proximation and neglecting the reaction of the Stokes 
wave on the pump: 

Here A,= (a2/a2 + a2/ay2), k =kL = w,d=)/c, a = (k, 
- k,)/k, and summation over repeated indices i s  assumed. 
The minus sign in (3) refers  to the case of forward scat- 
tering, the plus sign to back scattering. 

The matrix with four subscripts C,,,, characterizes 
the polarization dependence of the scattering process 
(both stimulated and the corresponding spontaneous). 
In liquids o r  gases, this matrix is characterized by 
three independent constants: G,, G, and G,, cor- 
responding to scattering of scalar,  symmetric trace- 
less, and antisymmetric type: 

G,,,=G,&,~,,+~,G, (6i16km+6.m6k~-z/S6~6~,) +G,(6i16~m-6i,6k,) .  (4) 

Normalization of the quantities G,,, G, and G ,  in (5) is  
obtained in the following way. If scattering of only any 
one type is "turned on, " then in a linearly polarized 
pump wave of constant amplitude, the greater (of the 
two possible, see  Ref. 19) gain (in the intensity) g 
(in cm") is equal to 

gn=CslEI2, 
where the index runs through the values P = sc, s, and a. 

We shall solve the problem of stimulated light scat- 
tering in a rectangular light pipe, assuming periodicity 
boundary conditions of the Born-von Karman type. A 

discussion of this assumption may be found in Refs. 11- 
13. Here i t  is convenient to use the expansion in a 
Fourier ser ies  in the transverse coordinates (see Refs. 
6, 7> 11-13): 

B (r, z) = z S (q, Z) exp ( i ~ ) .  
1 

The solution of the equation for the pump (3) in the 
Fourier representation is trivial: 

ci(q,  z) =Cd(q)exp(riq242k). (6) 

In the following, we shall assume that Ci(q) are  a set  
of Gaussian complex random quantities and their cor- 
relator is equal to 

where 6(ql -q,) is the discrete Kronecker delta: 6(q 
+ 0) = 0, 6(0) = 1. The relation (7), together with the 
boundary conditions of the Born-von Karman type, 
corresponds to an assumption that the properties of 
the pump a re  the same (in a statistical sense) at all 
points in the volume of the light pipe. The Hermitian 
matrix T,,(q) = T,,*(q) as a function of i ts  indices i and 
j ,  characterizes the polarization properties of the 
angular component of the pump with given q (see, for 
example, Ref. 21, Sec. 50). 

Equation (3) for the Stokes wave takes the form 

in the Fourier representation. 

The reversal  (or reproduction) of the wavefront in 
Raman scattering with a significant relative fre- 
quency shift a, where u=(k, - k,)/k,, was discussed 
by us earlier.c111 Therefore, aiming to discuss here 
the specifics of the process that a r e  connected with the 
polarizations, we limit ourselves below to the case of 
scattering with a small  frequency shift and set a = 0. 

3. SOLUTIONS UNCORRELATED WITH THE PUMP 

In this section we consider such solutions.of Eq. (8) 
which correspond to  the Stokes waves S,(q, z)  , un- 
correlated with the pumping, Then the right side of 
Eq. (8) can be averaged over the ensemble of fluc- 
tuations of the pump, and the equation transforms to 

where the Hermitian gain matrix gim (dimensionality 
cm") i s  equal to 

The Hermitian matrix I,, =ck characterizes the pump 
polarization properties averaged over the cross sec- 
tion of the light pipe (or, what amounts to the same thing, 
over all q). The trace of this matrix, I=I,,+I,,, is 
equal to the total pump power density summed over the 
polarizations I = (E*,(r, z) EL(r,  z)). 
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It i s  convenient to represent the matrix f itself in the 
form of an expansion in Pauli matrices: 

This expansion has the form 
z- l /*~  ( f+t&), (12) 

where the real vector 5 = (tl, t,, t3) is the so-called re- 
duced Stokes vector, which characterizes the mean state 
of polarization of the radiation. The value p = 16 I char- 
acterizes the degree of polarization, so that p = 1 cor- 
responds to completely polarized radiation and the di- 
rection of the characterizes the mean orientation 
(t,, t3) and the degree of ellipticity (5,)  of the polariza- 
tion (see, br example, Ref. 21). 

We note that for wavesthat are  uncorrelated with the 
pump, we obtained Eq. (9), without indicating before- 
hand which case of scattering is considered-backward 
or  forward; therefore, for such waves, the two cases 
of scattering do not differ in the approximation con- 
sidered. 

The general solution of Eq. (9) has the form 

S(q, z) =exp(-i&/2k) e ~ ~ ( ' / ~ g z )  s (q, 2-0) (13) 
In (13) we introduced a symbol for the exponential func- 
tion of the matrix l/@z. If we represent the arbitrary 
matrixft in the formft=A, +A -6, then the following 
relation holds : 

~ e ~ r e s e n t i n ~ f t  in the form of the matrix 1/2gz with* 
from (4) and (lo), we can obtain an explicit solution 

for the Stokes waves that are uncorrelated with the 
pump. In our case 1/2& is a Hermitian matrix, and the 
vector p =/A(A .A)-lh in (14) i s  purely real and equal 
with modulus unity: Ip 1 = 1. Its value i s  expressed in 
terms of f and the gains G,,, G, and G,. The matrices 
1/2(1 i p  -0 )  are projection operators along the mutually 
orthogonal directions of polarization, characterized 
by the Stokes vectors w. These polarization directions 
correspond to the natural waves of the Stokes field, 
amplified (at a given state of the pump polarization of 
the Stokes vector 4-and at given G,,, G, and G,) with a 
definite amplitude increment g,,, and with preservation 
of the orientation of the polarization. 

Referring to our Refs. 19 and 20 for details of the 
general case of all three forms of scattering, we dis- 
cuss here the most interesting case of scattering of a 
purely scalar type (G,=G,=O) and set G,,=G. Then 

p=B/IBI, p l~=GI( l+ lB1) /4 .  (15) 

The completely polarized Stokes wave, with direction 
of polarization closest to the polarization of the pump, 
i s  amplified with a gain (in intensity) 2p1 =GI(1 + 1 6 1)/2 
and the Stokes-wave polarization that i s  orthogonal to it 
has a gain 2g2 = GZ(1 - 15 1 )/2. In particular, in the 
case of arbitrary elliptical (but complete!) polarization 
of the pump, i.e., at It! =1, we have 2y =GI and 2g2=0. 
On the other hand, in the case of completely unpolarized 
pumping, i.e., at 14 1 = 0, we have 2 y = 2 c(, = GI/2. 

4. SOLUTIONS CORRELATED WITH THE PUMP FOR 
FORWARD SS 

Similar to what was done in Refs. 11-14 without ac- 
count of the polarizations, we now consider the solu- 
tions for a Stokes wave correlated with the pump field. 
For the case of forward SS we shall seek such a solu- 
tion in the form 

where p is the complex amplitude increment. The 
matrix f,,(q) characterizes the coupling of the i-th com- 
ponent of the scattered field with the k-th component of 
the pump. As will be seen from the solution obtained 
below, at (k, -k,)/k,= ct = 0 this matrix turns out to be 
independent of q. 

A field of the form (16a) does not satisfy Eq. (8) exac- 
tly. A search for an approximate solution in the form 
(16a) means that we are seeking the so-called "modes" 
of a medium with a spatially inhomogeneous dielectric 
constant 6 ~ ( r , z )  mil  ~ ~ ( r , z )  1'. In the coordinate re- 
presentation, (16a) corresponds to writing 

a i 
S(r, z) =M (r, z) d", - M (r, z) - - A,M (r, z) -0. 

a z  2k 

In other words, the spatial structure of the mode M(r,z) 
is described by the law of propagation in the case of free 
diffraction, while the total complicated effect of multi- 
ple re-scattering by the inhomogeneities 6&(r,z) re- 
duces to the appearance of the exponential factor 
exp (~z ) .  

We shall assume that the condition of existence of the 
phenomenon of reproduction, discussed in Refs. 6 and 13, 
for completely polarized radiation, i s  satisfied, i.e., 
we shall assume that G I s  129'. Here 9 is the angular 
spread of the pump radiation. Then, similar to the 
method of Refs. 11-14, we substitute the expression 
(16a) in Eq. (8), multiply the right and left sides of the 
equation by C:(&) and average over the ensemble of 
pump fields. As a result, we obtain the following equa- 
tion: 

This procedure corresponds to the discarding, in the 
right side of Eq. (8), of anumber of terms corresponding 
to re-scattering of the wave S(q)  by "foreignJ' lattices 
of the form 

with q+q, and ql #q,. Actually, the interference of the 
amplitudes re-scattered by the "foreign" lattices, 
under the assumption of 6 correlation of (7), gives a 
mean value of zero over the ensemble, while the 
fluctuations around the zero mean value are  small 
upon satisfaction of the condition GI r kg2. What i s  
more, the overwhelming part of the discarded terms 
oscillates rapidly with change of the z coordinate, 
i.e., it does not satisfy the Bragg condition. 

Assuming the matrix T,,(q) to be nondegenerate, we 
can multiply the right and left sides by T1 and obtain 
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where g,, is determined by formula (10). It is seenfirst  
of all from this equation that f(q) actually does not de- 
pend on q, and therefore in what follows, the argument 
q will be omitted in the matrix f. With account of this 
circumstance, Eq. (17b) can be rewritten in the form 

( ~ 6 i ~ 8 ~ ~ - ~ / 2 g t ~ 6 , ~ - ~ / ~ G ~ , t ~ I ~ ~ )  fmm=O. ( 1 7 ~ )  

The system (17c) contains four ( i=  1,2; s =1,2) linear 
homogeneous algebraic equations for four ( m  = 1,2; 
n = 1,2) unknowns f,, The condition of compatibility 
of this system-the vanishing of i t s  determinant-gives 
an equation for the eigenvalues of the increment p.  
This equation is of fourth degree and in the general 
case it has four different roots: ply p,, p3, p4. 

We now explain in detail the reason forthe appearance 
of such a number of eige~values p ,(i = 1,2,3,4) and 
the correlated solutions f (,)c (q, z)  corresponding to 
them for the Stokes wave. The pump field is charac- 
terized by two functions E(r, z)  = [ ~ , ( r , z )  , E,(r ,  z )  1, 
which a re  independent in the general case. From 
these two functions we can construct four linearly 
independent fields of the scattered wave B, cor- 
related with the pump: 

~,(r) -[~.(r), 01, Bz(r) =to, E,(r) I, (18) 
B,(r) =[E,(r), 01, B,(r) =[O, E.(t) 1 

The eigensolutions determined from (17a) a re  in the 
general case linear combinations of the fields B, to B, 
from (18); however, the number of linearly independent 
fields (four) found in (18) does not change in the tran- 
sition to  such combinations. 

For the more interesting case of scattering of the 
scalar type, i t  is convenient to represent Eq. (17c) in 
matrix form: 

rf-'/2~[~f+~p (ff) el], (19) 

where it,= Iji denotes the transposed matrix and t;e 
index of G,, is omitted for brevity. Writing f and f in 
the form of an expqsion in the Pauli matrices: f 
=fo 1 + f and for I the formula (12), we transform (19) 
to the form 

pfo-".~z(fo+~f 1, 
(20) 

pt=~/6~~(fog+f+i[f~~l). 

Here (&, t2,  t3)  = ( t l ,  - t2, t3) and the square brackets 
denote the vector product. The eigenvalues p ,  cor- 
responding to  the vanishing of the determinant of the 
system (20) a re  then 

Graphs of the dependence of p on If 1 a r e  given in Fig. 
1. Here the inequalities p1 < p2 <p3< p4 a re  satisfied 
for all I f ( in the range 0 <  If 1 < 1. 

In order to make clear the meaning of the obtained 
solutions, it is convenient to represent the complex 
vector E(r ,z)  of the pump field in the form of a resolu- 
tion into two orthogonal polarizations e, and e,, such 
that the Stokes vectors for these two unit vectors a re  
respectively f ,  = f / ( t )  and f, = - 5 /  1 E: I. Here 5 is the 

FIG. 1. Dependence of the amplitude increments 
pi ( i= 1,2,3,4), for solutions correlated with the pump, on the 
degree of polarization of the pump 1 5  1 a t  fixed total intensity 
of the pump for forward SS. 

Stokes vector, which characterizes the state of polariza- 
tion (generally speaking, partial) of the pump field. 
Also, 

E (t, z) =Rl (r, z)e,+Rt(r, ~)e2 (22) 

and the functions R,(r,z) and R2(r,z) are  orthogonal and 
statistically independent. The degree of polarization 
I 5 I and the total intensity I of the pump field a re  given 
by the expressions 

I=(~Rl12)+(~R2~2), ~ ~ ~ = ( ~ ~ R l ~ 2 ) - ~ ~ R 2 ~ 2 ~ ) ~ I  (23) 
(it is certain here that (IR, 1 ') 2 ( I R ~  1'). 

The study of the characteristic matricesj("(i= 1,2,3, 
4), corresponding to the characteristic increments 
found above, shows that the Stokes field here has the 
following form for each of the solutions: 

B, (r, z) =const.exp(p1z)R~(r, z)elr 

B,(r, z)=const.exp(hz)R, (r, z)e:. 

The solution B,(r,z) is completely polarized in the 
direction of the unit vector e,, while i t s  spatial de- 
pendence is given by the function R,(r,z) . By virtue of 
the scalar character of the interaction, the role of the 
pump for this solution is played by the field R,(r,z), 
and because of the statistical independence of the 
fields R,(r, z)  and R,(r ,z)  the solution B, corresponds 
to the amplification of the uncorrelated wave. The 
same arguments apply to the solution B2(r,z) with 
replacement 1 2 2  of the indices. As expected, the 
increments p,,, are  described by the formula (15) ob- 
tained in Sec. 3 for the uncorrelated solutions. 

The solution B,(r,z) has the largest increment p3. It 
duplicates mainly the spatial and polarization structure 
of the pump field, slightly accentuating the field com- 
ponent R,e, which carr ies  a large fraction of the pump 
energy. In the case of a completely unpolarized pump, 
If 1 -0, the duplication is complete and the amplitude 
increment @, is equal to (3/4)~1. This quantity is 
three times the increment p 3  = 1/4GI for the uncor- 
related solutions-formula (1 5) as  f 1 -0, The cor- 
respondence is complete also in the case of a com- 

217 Sov. Phys. JETP 48(2), Aug. 1978 B. Ya. Zel'dovich and V. V. Shkupov 217 



pletely polarized pumping I ( -1. Here the increment 
is equal to p3 =GI; it is twice the increment for the un- 
correlated solutions; this circumstance i s  well known 
at the present time. 

The solution B4(r,z) in the case of completely un- 
polarized pumping, I f  1 -0 corresponds to separately 
duplicates the R,e, and R, e, components of the pump 
field; however, these components enter into the field 
with opposite signs (in comparison with the pump): 
B,((I ( -0) -R,e, -R,e,. Here p4- 1/4~1, i.e., it coin- 
cides with the increment of the uncorrelated solutions. 
In the other limiting case, for a completely polarized 
pump, B,( 1 6 ( - 1) -R,e,, i.e., this field duplicates the 
"weak" polarization component, and its increment tends 
to zero. 

We note that the obtained expressions (24) for the 
field allow us to determine the Stokes vectors [(') 

characterizing the states of polarization of the scat- 
tered wave: 

5. SOLUTIONS CORRELATED WITH THE PUMP FOR 
BACKWARD SS 

For backward SS, we seek solutions correlated with 
the pump, in a form similar to the expression (22) for 
the forward SS case, with this difference, that the Stokes 
waves here basically duplicates the complex-conjugate 
wave of the pump. We shall seek the solution S,(q,z) 
in the Fourier representation, in the form 

si(q, 2) -f*(q)C~'(-q, z)eWz. (2 6) 
Limiting ourselves, as  above in Sec. 4, to the more 

interesting case of scattering of the scalar type and, 
furthermore, with a small frequency shift (a -O), i d  
carrying out similar averaging procedures, we arrive 
at the following equation for the increments ki and the 
eigen matrices f (which are independent of q) : 

~ f = l / ~ ~ ? ( i +  7). (27) 
The four eigenvalues p,,,,,,, of this equation are  equal 

PI-0, pa-GI/2, p,. 4-'/.GI (if 16 1 ). (28) 

Graphs of the dependence of the increments CL,,,,,,~ on 
the degree of polarization 16 I at a fixed total intensity 
of pumping I are shown in Fig. 2. Using the same re-  
presentation (22) for the pump field, we can write the 
solution for the Stokes wave in the form 

B, (r, Z)  -const. eo.*{R,'(r, z)er-R;(r, z)e,)=const. [E'(r, z)x ex]. 
B,(r, z)=const~eu~'(R,'(i-lEl)ez+RZ'(l+IIl)c,), 
B,(r, z) =~onst.e"~'R,'(r, z)e,, (29) 
B,(r, Z) =const.eV+'R,'(r, z)e,. 

We note a characteristic feature of the expression 
(29) that is specific to the problem of stimulated for- 
ward scattering of the light. The vectors e, and e, 
in (29) a re  generally complexunit vectors, corresponding 
to elliptically polarized waves. The structure of the 
solutions of (29) that we have found i s  such that the 
spatial dependence of the components of the Stokes wave 
corresponds to the complex-conjugate components of the 
pump field, i.e., a reversal of the wave front takesplace 
for the individual terms R, and H z .  At the same time, 

0 ' Irl 
FIG. 2. The same as  in Fig. 1, but for backward SS. The 
points show the dependence of the amplitude increments ple2 
for solutions that a re  uncorrelated with the pumping in spatial 
structure; the properties of these solutions a re  identical fo r  
forward and backward scattering. 

the polarization unit vectors el and e, are  not subject 
to complex conjugation, but simply coincide with the 
unit vectors of the pump. 

The solution B, is the solution of the free wave equa- 
tion, i.e., without amplification. The absence of 
amplification (p,= 0) for this solution i s  connected with 
the fact that the field B ,(r , z) is strictly orthogonal to  
the field of the pump at each point in space, i.e., 
B,(r,z) .E*(r,z)= 0; we recall that we are  discussing 
scattering of scalar type, the interaction in which is 
determined by the scalar product just written down. 
It isinteresting to  observe that in the case of forward 
scattering, for a pump not fully transversely polarized 
over its cross section, ( [ 5 1 < I),  it i s  not possible to 
find for the free wave equation a solution that would 
be strictly orthogonal to the pump at all points of 
three-dimensional space (r,z). For this reason, there 
are no zero values of the increment at ( 5 ( < 1 for the 
problem of forward scattering, for either the correla- 
ted or  uncorrelated (with the pump) solutions. 

The solution B, possesses the interesting feature that 
its increment does not generally depend on the degree 
of polarization of the pump and is equal to the value of 
the increment in the case of interaction of strictly po- 
larized plane waves of the same polarization. We can 
say that for this solution the deterioration of the am- 
plification because of the inexact coincidence of the 
polarizations i s  compensated for by improvement of 
the polarization because of the coincidence of the 
maxima of the intensity of the pump and the scattered 
wave . 

The solution B, corresponds to reversal of the front 
of the stronger component of the pump wave, while the 
solution B4 corresponds to the same for the weaker 
pump component. The form of the solution B, and the 
increment p, are the same as  if the usual reversal of 
the wave front took place in the field of a strictly po- 
larized pump of the form E =  R,e,, i.e., without the weak 
component in the pump, with a corresponding decrease 
in the total intensity of the pump. A similar statement 
can be made for the solution B4 with only the weak 
component remaining in the pump. In correspondence 
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with this, a s  15 1-1, the behavior of p,,, is the fol- 
lowing @,--GI, p,-0. On the other hand, in the case 
of completely unpolarized pumping, all three incre- 
ments p,,,,, tend to the same value G1/2. 

We also note the following circumstance. The intro- 
duction of a polarization of the pumping beam that is 
random over the cross section leads to different changes 
in the amplification coefficients for  forward SS and 
backward SS. To be precise, in the case of a completely 
unpolarized pump, the maximum increment of the 
forward SS exceeds the maximum increment of the 
backward SS by a factor of 1.5. This can be of in- 
terest in problems in which the amplification coef- 
ficient in Mandel'shtam-Brillouin SS (SMBSS in only 
the backward direction) exceeds the amplification 
coefficient on any line of the Raman scattering by only 
a small amount. In this case, the above mentioned dif- 
ference of the forward and backward increments in the 
case of a depolarized pumping can serve a s  a method 
for suppression of SMBS and separating of the Raman 
scattering which is not excited under other conditions 
against the SMBS background. 

6. CONCLUSIONS 

The different "modes" of the amplifying medium with 
spatially inhomogeneous pumping were found above and 
the values of the increments corresponding to them 
were determined. Since amplification in the regime above 
the threshold of stimulated scattering corresponds t o  
values of exp(2RepL) - eZ5, then the component from the 
spontaneous noise is more sharply isolated that cor- 
responds to the solution with the larger increment. 
Just this component corresponds to  the reversal  
(duplication) of the wave front in the case of back 
(forward) scattering of completely polarized pumping, 
The results obtained in the present work show that 
the spatially inhomogeneous depolarization of the 
pumping wave impairs the regime of reversal  of the 
wave front in the case of backward SS in comparison 
with the case of completely homogeneous polarization. 
In contrast with this regime, the duplication of the 
wave front for forward SS is improved upon introduction 
of a strong, spatially inhomogeneous depolarization, 
since the increment of the duplicating solution in this 
case is three times the increments of all the re -  
maining solutions. From our viewpoint, experiments 
on reversal and duplication of the wave front under 
conditions of depolarized beams of pumping is of un- 
doubted interest. 

It should also be noted that for both cases, the for- 
ward and backward scattering, the process of stimulated 
scattering of the scalar type in the field of a spatially 
inhomogeneous, incompletely polarized pump leads to 
an increase in the degree of polarization of the 
scattered radiation in comparison with the degree of 
polarization of the pump. This refers not only to the 
pump-correlated field that, possesses the largest in- 
crement, but also to the scattered fields that a r e  
uncorrelated with the pump. The increase in the 
degree of polarization of the radiation at the shifted 
Stokes frequency can lead to instability relative to the 

polarization of the process of stimulated scattering 
of the radiation with a broad spectrum (broader than 
the value of the Stokes shift), which is evidently of 
interest in astrophysical problems of stimulated Comp- 
ton scattering by the electrons of the cosmic plasma.c221 
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