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Classical and quantum theory are used to investigate stimulated interaction of charged particles with 
intense electromagnetic radiation in a medium with a nonstationary dielectric constant. As a result of the 
real energy exchange with the external field, the particles are accelerated (inverse transition effect) or 
decelerated (and give up energy to the wave in the form of stimulated transition radiation), depending on 
the initial phase. Simultaneous absorption-emission leads to inelastic diffraction scattering of the particles. 
Quantum modulation of a beam of charged particles at the frequency of the external wave and its 
harmonics is also obtained. The modulation depth becomes of the order of unity even in weak laser fields. 

PACS numbers: 77.90. + k, 41.70. + t 

INTRODUCTION 

If a charge moves uniformly in a medium with non- 
stationary properties (specifically, in which the di- 
electric constant varies with time), radiation is pro- 
d ~ c e d ~ l - ~ ]  similar to transition radiation on the inter- 
face between different dielectrics.c41 In the presence 
of an external electromagnetic wave, this radiation ac- 
quires a stimulated character and enhancement of weak 
electromagnetic radiation a t  the expense of the energy 
of the charged particles is possible. The inverse pro- 
cess, stimulated absorption of quanta from the external 
field and their acceleration, also takes place (the 
inverse transition effect). Real multiphoton exchange 
between particles in the wave leads to the quantum ef- 
fect of inelastic diffraction scattering of particles in the 
field of the electromagnetic wave. An important conse- 
quence of the direct and inverse stimulated transition 
effects is also the quantum modulation of a beam of 
charged particles at  the frequency of the external wave 
and its harmonics. 

Analogous phenomena in a homogeneous stationary 
medium (stimulated Cerenkov effect) were investigated 
in detail in Refs. 5 and 6, and effects in a spatially in- 
homogeneous medium were investigated in Ref. 7. 

In the present paper we examine stimulated inter- 
action of charged particles with a plane electomagnetic 
wave in a spatially homogeneous medium whose prop- 
erties vary strongly with time. 

In Sec. 1 we present the classical theory of the direct 
and inverse stimulated nonstationary transition effects. 
From the classical equations of motion we obtain the 
changes of the momentum and of the energy of the par- 
ticle after the interaction. Depending on the initial 
phase, the particle is either accelerated (inverse tran- 
sition effect) o r  decelerated and gives up its energy to 
the wave in the form of stimulated emission. 

In Sec. 2 is presented the quantum theory of this ef- 
fect, which has a multiphoton character. On the basis 
of the Klein-Gordon equation, we obtain the probability 
of the multiphoton absorption and emission, correspon- 
ding to inelastic diffraction scattering of electrons. It 
is shown that, depending on the energy spreads of the 
real beams, the diffraction scattering can lead to an en- 
ergy broadening of the beam by a value of the order of 
the initial width. 

In Sec. 3 we present the theory of quantum modulation 
of the beam of charged particles at  the frequency of the 
wave and its harmonics. Owing to the nonstationary 
character of the medium, the beam is modulated also 
in time, and the modulation period depends strongly on 
the change of the dielectric constant of the medium. At 
sufficiently large variation of the latter, hard quanta (on 
the order of the electron energy) appear in the spectrum 
of the wave and the probability amplitude of their ab- 
sorption is proportional to the intensity of the trans- 
formed wave (in the one-photon case). The interaction 
of the electron with such quanta leads also to formation 
of electron-positron pairs even in first  order in the 
field, in contrast to the case of a stationary plasma, 
where this is  possible in an incomparably higher order 
in the field. 

1. CLASSICAL THEORY OF THE INTERACTlON 

Let a charged particle (electron) with constant initial 
velocity v, move in a spatially homogeneous medium 
whose dielectric constant & changes abruptly at  the in- 
stant of time t = 0 from a value &, (t < 0) to &, (t > O), and 
let a strong electromagnetic wave propagate in this 
medium. Such a jumplike change of the dielectric con- 
stant can be realized by abruptly changing the density 
(pressure) of the medium. Particular interest attaches 
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to the case when the nonstationary character of the di- 
electric constant of the medium is automatically pro- 
duced by the wave intensity (nonlinear polarization of 
the medium, formation of a laser  plasma in solid films, 
etc .) . 

We consider f i rs t  the question of how the change of 
the properties of the medium affects the external mono- 
chromatic wave. If a plane monochromatic wave of 
frequency o and electric intensity amplitude E propa- 
gates in such a medium (& = &,) at  t < 0, then at 
t >O(& =cz) there a r e  two waves-incident and reflected. 
Since the medium is assumed to be spatially homo- 
geneous, the wave vectors a r e  k =k, =k, = const, and the 
nonstationarity of the medium leads to a change of fre- 
quency. Using the boundary conditions for the electric 
induction of the waves D = D l  +D2 and for the magnetic 
field intensity H =HI +Hz a t  t = 0 we obta ic  in the case 
of linear polarization of the wave, for the amplitudes 
of the electric field of the transmitted and reflected 
waves, respectively, 

If E changes abruptly, the initial monochromatic wave 
is transformed into a continuous wave spectrum. Taking 
(1) into account, we obtain for the spectral amplitude of 
the field 

Actually the 51 spectrum depends on the time during 
which the properties of the medium change. F o r  an 
abrupt change of & i t  is necessary that this time be 
T<< 217/Cl, and then the monochromatic wave is trans- 
formed into the spectrum (2). 

The problem of the interaction of the electron with 
the electromagnetic radiation in a medium with non- 
stationary properties reduces now to the interaction of 
an electron with the field (2). We consider the dynamics 
of such an interaction with the aid of classical theory. 

Let the wave propagate along the x axis and let  the 
electric field intensity be directed along the y axis. 
Then the relativistic equations of motion of the electron 
in the field (2) take the form 

where 

F (B,  x ,  t )  =A (a)  ere'-'"-A '(P) e-''"+'hz, 

and A(51) is the spectral amplitude of the vector poten- 
tial of the field (2). The electron motion along the z 
axis remains free, we can choose the electron velocity 
in the xy plane: 

We shall solve the system (3) inaperturbation-theory 

approximation with respect to the field. The param- 
e ter  of the perturbation theory is 5 = e A / r n ~ ~ ( [ ~  = e2A2/ 
m2c4 is a relativistically invariant parameter of the 
wave intensity), which is much less than unity even for 
strong laser  fields, [ <. 1. Integrating (3) with respect 
to time from -- to +w, we obtain infirst-orderapprox- 
imation in 4 the following expressions for the changes 
of the momentum and energy after the interaction: 

Ap,-Ap.=O, Ap,=AePlu, cos 0, 

ve' sin 0  cos' 0  
AeP==2mcZ~ (e l -e l )  

(1-e,'"v,c-' cos 6) ( l - e , v , L ~ - ~  cos' 0 )  

vo x sin a t o e , * 1 3 - m  0 )  , ( c  

where to is the instant of time corresponding to the 
initial phase of the electron in the wave, which has be- 
come transformed into a spectrum at t = 0. As seen 
from (4), depending on this phase, the electron is either 
accelerated after the interaction o r  is decelerated and 
gives up energy to the wave. This rea l  energy exchange 
is due to the direct and inverse stimulated (nonstation- 
ary) transition effect. In the case  of an electron beam, 
different electrons in different initial phases Go 
= w ~ ~ E : ~ ~  c-l wo COSB, acquire o r  lose different energies 
a t  the interaction. As a result, the initial monoener- 
getic beam will broaden, provided that the temporal 
relative retardation of the electrons in the beam exceeds 
the value 

(this is always satisfied for rea l  beams). The beam 
acquires in this case width y =2Ag,,. 

Let us  estimate the energy acquired o r  lost by the 
electron after the interaction. Since we a r e  interested 
only in the stimulated trantition effect due to the change 
of &, we must exclude the Cerenkov effect in the medi- 
um with E ,  and E,, i.e., we put 

Then an electron with initial energy go - 10 MeV in a 
plasma with c, -E, - 1 at  5 - 10" (which corresponds, for 
example, to a C0,-laser intensity E - lo7 ~ / c m )  will 
acquire o r  lose an energy A P -  1 MeV (A0 << go, which 
agrees with the perturbation- theory approrimation). In 
the case of an electron beam this can be observed in the 
form of an energy broadening of the beam by an amount 
7-2  MeV. 

2. QUANTUM THEORY OF STIMULATED 
MULTIPHOTON PRODUCTION 

The classical change of the energy and momentum of 
the electron (4) a s  a result of stimulated interaction 
with electromagnetic radiation in a nonstationary medi- 
um shows that such a real energy erchange with the 
field (2) corresponds to stimulated absorption and emis- 
sion of a large number of photons. We elucidate the 
multiphoton character of the stimulated nonstationary 
transition effect on the basis of quantum theory. To 
this end, we consider the quantum motion of a relativ- 
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istic electron in a field (2). The role of the spin is in- 
essential here, and we therefore solve the Klein-Gordon 
equation. Assuming the same geometry a s  in Sec. 1, 
this equation takes the form 

We shall solve (5) in the impulse approximation, when 
the initial plane wave of the electron is slowly distorted 
in this field, i.e., we take the solution in the form 

where f ( x ,  t )  is a function, slower than exponential, of 
the coordinates and of the time. This corresponds to a 
small change of the momentum and energy of the elec- 
tron in the field compared with the initial values: 
Ap<<p0,Ag<< go, i.e., this is perturbation theory in 
terms of the energy-momentum and corresponds to the 
classical case. Substituting (6) in (5) taking into account 
the slow variation of the function f(8f/8t<< fg0/ti, af 18% , 
<< f~,,/fi), and changing to the Fourier transform of the 
field, we obtain for an electron beam with initial den- 
sity No = const after the interaction (t - + a), taking (2) 
into account, 

* ( I ,  t ) - ~ % ~  exp (+pauy) i lJ . (a )  
,--- 

where the argument of the Bessel function is 

mca v,' e,-el sin 0 cos 9 a=%---- 
h o  C' e l "  (1-e,"'v.c-' cos 0) (I-e:~02c-zcos' 0) ' 

(8) 

As seen from (7), after stimulated interaction with the 
wave the electron actually absorbs and emits s photons, 
as a result of which the momentum and energy after the 
interaction a r e  altered: 

The probability of this process is 

and corresponds to inelastic diffraction scattering of the 
electrons. The initial plane wave of the electron is 
spread out by the diffraction into a packet of waves with 
arbitrary number of absorbed and emitted photons (since 
<(a) =<,(a), and this spreading is equally probable: 
all electrons have the same probability of absorbing and 
emitting F quanta). Comparison of the expression for 
o! with a classical change of the energy-momentum of the 
the electron (4) shows that 

Since the classical change Ap, corresponds to cy >> 1, 
the main contribution to the scattering is made by pho- 

tons s - o! (as seen from (101, photons s - o! >> 1 a r e  ab- 
sorbed and emitted with maximum probability, in full 
agreement with the classical change of the electron mo- 
mentum). F o r  the numerical values of the parameters 
given in Sec. 1, we have s,,- lo6. The probability of 
emission and absorption of this number of photons is 
Ws ,,,- lo4. For  a monochromatic electron beam this 
means that - 0.01% of the beam has classical probability 
of being accelerated after scattering (conversely, the 
same number of electrons is slowed down). For  real  
particle beams having energy spreads, it is necessary 
to average the scattering probability (9) over these 
spreads. 

Let po($) be the initial distribution function of the 
electron beam with energy width yo = 8 - 8'. In the final 
distribution function of the electrons in the beam, after 
the scattering, is 

Since the main contribution to the integral is made by 
photons s - (principal diffraction maxima), and since 
on the other hand 

the final distribution function p,(gf) depends on the ratio 
y0/Ag. 

If yo<< A$, then p,(g1) -W, = J;(E) ,  where (Y corre- 
sponds to the average energy of the electrons of the 
initial beam, and diffractive spreading of the electron 
energy will be observed (a pure quantum effect). If 
yo-Ag, then we get from (12) 

We see  therefore that a finite width of the beam ?=yo 
+2 lag\, i.e., multiphoton absorption o r  emission of 
electrons, leads in this case to an energy broadening of 
the beam by a value on the order of the initial widths. 
This is in full agreement with classical theory and it 
appears that it is precisely this case which can be ob- 
served in experiment, namely, beam broadening which 
is a consequence of the direct and inverse stimulated 
nonstationary transition effect. In the case yo>> A 8  we 
pf(gp) - po($P) and it is clear that such anenergy exchange 
( A ~ C  yo) cannot lead to a change in the energy width of 
the beam. 

3. QUANTUM MODULATION OF ELECTRON BEAM 

In the preceding section, when solving the quantum 
equation of motion, we did not take into account the 
quantum recoil of the electron (at a slow variation of J ,  
we neglected the second derivatives of J ,  compared with 
the first  derivatives). If account is  also taken of the 
quantum recoil obtained by the electron in stimulated 
absorption o r  emission of field photons, then this leads 
to quantum modulation of the initially homogeneous 
electron beam. We solve for this purpose the Klein- 
Gordon equation (5) with the aid of perturbation theory 
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in the field. In first-order approximation (single-pho- 
ton absorption-emission) we obtain for the wave function 
of the electron from (5) the equation 

epou !?k - 1 - (m~~~+CzPOy')$I=-2-[Ay (t)e-"'+A,' ( t )  e'k']$o, 
dr' c2 atz hZcz cR' 

(14) 
where 

i 
$, (r, t)=[@l(t)e-'k+@z(t)etk]exp[ (p0r-8,t)]. (15) 

describes the initial beam with density No= const. The 
solution of (14) is sought in the form 

- 
9,-YN, exp - (pOr-&Pot) [ :. I 

Substituting (15) in (14) and changing over from A,(t) to 
the Fourier component of the field we obtain for @,(t) 
and @,(t) after the interaction (t - +oo)  

- 
@'(t)  =-4ilN, 

nece,, 
{A'(-Q,')erp(iQ,'t)-A'(-Q,')esp(i~,'t)], 

hl(Q,'-Qz,) 

(16) 
where 

Formulas (17) correspond to the energy-momentum 
conservation laws for the electron: in this process the 
electron can emit only photons with frequencies a,, and 
absorb photons with frequencies a;, ,. Inasmuch a s  
&,/A>> & i J 2  wvW/c, a t  laser frequencies we expand the 
square roots in (17) in a series,  and retain only the 
small  terms of f irst  order. We then obtain 

d u.. A o '  u ' Q2=2 -- e l ' : o - + e l - ( 1 - 9 ) .  
I; c 28, 

V., hoZ Q,'~-e ,"ao--  e l -  

ho' 
c 28,, 

These expressions show that emission of a photon with 
frequency 62, and absorption with frequency 62; has a 
clearly quantum character, and its probability, a s  seen 
from (21, depends on the change of the dielectric con- 
stant of the medium &, - &,. We consider therefore two 
cases: cI/cp I 1 and 1. 

If 5 1 (this corresponds in fact to realsituations), 
we get from (2) 

so  that in this case we can neglect in (16) the pure 
quantum process of emission and absorption of exces- 
sively hard photons 62, - 2g,,/fi. In this case we obtain 
for the density of the beam (11)~+$,1~) after the interac- 
tion 

N=No { i faasin [ e z( - I - -  u$) t ] cos [ e >xu; -o ( t - -  u: )I} (191 

where 

coincides with the argument of the Bessel function (8). 
As seen from (191, stimulated absorption and emission 
of the photons a, causes the beam to be modulated a t  a 
frequency 521=&~12voxo/c with a depth r , = 2 a .  The per- 
iod of the time modulation is 

Formula (19) corresponds to modulation of a beam at  
the frequency of the wave (fundamental frequency). If 
we obtain the wave function of the electron in the next 
higher orders of perturbation theory, then we obtain the 
beam modulation a t  higher harmonics of the wave fre- 
quency. The modulation depth a t  the s-th harmonic is 
rs - r;. 

Let us estimate the depth of modulation. For relativ- 
istic beams a t  sin0 - cos0- l(vo <c/&:!,fcos9 to exclude 
the Cerenkov effect), a s  seen from (8), 

and r , - l %  already a t  which corresponds to an 
N~:YAG - laser()l= 1.06 ~ m )  intensity E - lo3 ~ / c m  o r  a 
CO, - laser  (k= 10.6 pm) intensity E - lo2 ~ / c m .  The 
period of the time modulation (for $,-I M ~ V )  is TI-10 
nsec. These estimates show that in practice it is pos- 
sible to obtain beam modulation also a t  higher harmon- 
ics of the laser  frequency. 

In the case when 1, it is necessary totake 
also A(62,) into account in (16). This leads to the fol- 
lowing expression for the beam density: 

where the modulation depth due to the absorption-emis- 
sion of photons 62, is 

me' Ao 00 e,/e,-i r2=t--- 8, 8, c sin e 1-(EI/E2) (fto128;T' 

The period of the time modulation is T, =nA/g,,. 

Comparison of the expressions for r, with r, and for 
T, with TI shows that r 2 < <  r, andT, << TI. At thesame 
values of the parameters T,- 10-2'sec, and r,- lW5&,/ 
E,. In practice it i s  extremely difficult to realize such 
a large change of E ( & ~ / C ~ > >  1). This case, however, can 
be of interest in astrophysics, where the radiating mat- 
ter  i s  in a strongly nonstationary state. Since the mod- 
ulated particle beam emits coherently, this mechanism 
can be used to explain the pulsar radiation, which has 
high intensity. 

Finally, we note that the formation of hard photons - gb a s  a result of the abrupt change in the properties 
of the medium leads to production of electron-positron 
pairs. As seen from (121, the probability amplitude of 
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.. 
absorption-emission of such photons by an electron is 
proportional to the parameter 

which characterizes the field of the transformed wave 
(E - E & ,/&,, w - $g/rnc2lf). Consequently, the probability 
of electron-positron pair production will be - 5;,  in con- 
trast to the case of pair production in a stationary plas- 
ma in the field of strong waves or  radiation, where the 
probability of this process is -tZS(s r lo6 for optical 
photons, and 5 << 1). Thus, the principal small quantity 
in the probability of electron-positron pair production 
is eliminated in this case. 
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The mass operator is obtained for an electron moving in the field of an intense wave propagating along a 
magnetic field. An operator diagram technique is used for the analysis. The radiative shift of the levels 
and the electron radiation probability are obtained. The cross section is calculated of the Compton effect 
on an electron moving in a magnetic field. The region near cyclotron resonance is analyzed in detail. 

PACS numbers: 41.70. + t 

If a plane wave propagates along a magnetic field, a 
very interesting situation is  realized: at the cyclotron- 
resonance point, where the wave frequency coincides 
with the frequency of the particle motion in the magne- 
tic field (with allowance for the Doppler shift), reso- 
nant energy transfer from the particle to the wave and 
back is possible. This process (cyclotron resonance) 
can take place in a large number of physical phenomena, 
particularly in the formation of pulsar radiation, as well 
as  in devices used to amplify electromagnetic waves or 
to accelerate particles by a laser wave. 

In this connection, an analysis of radiative effects in 
a field of the indicated configuration, including the vi- 
cinity of the cyclotron resonance, is of undoubted in- 
terest. An approach to the analysis of this problem was 
formulated by us in an earlier paper,[" where the case 
of particles with zero spin was considered, and where 
a brief bibliography concerning processes in this field 
is given. In the present paper we consider the case of 
fundamental physical interest, that of particles with 
spin 1/2. We used in our approach an operator diagram 
technique based on the operator representation of the 
Green's function of a charged particle in a given field 
with a subsequent specific transformation of the opera- 
tor expressions. This technique was developed earlier 

for the analysis of radiative effects in the case of a ho- 
mogeneous external field by Katkov, Strakhovenko and 
one of and for the case of a plane electromagnetic 
wave by Katkov, Strakhovenko, and both of us.[31 The 
analysis of radiative effects in a field having the config- 
uration considered in the present paper is a substanti- 
ally more complicated problem, and the preceding pa- 
pers were limited to an analysis of some particular 
cases. In the present paper we obtain a general expres- 
sion for the mass operator of an electron in a given 
field, from which we deduce both the probability of the 
electron emission and the quasienergy level shift. We 
analyze some limiting cases and, in particular, obtain 
the cross section of Compton scattering in a magnetic 
field. Effects near cyclotron resonance are considered 
in detail. 

We describe the electromagnetic field by a potential 

4 = A w ( ~ ~ , )  +Av(v), (1) 
where rp = x x  and X X , ,  = 0 .  Assume that the magnetic 
field is directed along the wave-propagation axis (the 
3 axis); then 

A' (2,) =-zZII ,  A"(q) =n,'a, (cp) +n,"aa,(cp) ; (2) 

Here 40 = x x = x O  -$; we have introduced the vectors 
nf =&, n: =&, xu =g:+&, where &are  components of 
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