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We propose a variant of the quasiclassical equations for description of the motion of a nonrelativistic 
charged particle with spin in a magnetic field, from which it follows, in particular, that it should be 
possible to carry out a Stern-Gerlach experiment for a free electron. 
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The question of the possibility of observation and rp-e's'nE, (2) 
measurement of the spin of a free electron was investi- where s ( ~ ,  t )  is a scalar function and *b, t )  is a spinor. 
gated in the early years of development of quantum Substitution of Eq. (2) into the Schriidinger equation with 
mechanics. The point of view which developed a t  that the Hamiltonian gives 
time can be summed up a s  follows: The spin angular 
momentum of the electron cannot be determined by as a% - --&+il-= [ $ ( v s - - A  -paB t 
means of experiments to which the classical concept of at at m 1 
particle trajectory is applicable.['] 

Recently ~ a l c a r ' ~ ~  has criticized this point of view. 
Emphasizing the need of distinguishing measurements 
of the mechanical and magnetic moments, he pointed 
out a fundamental arrangement for measurement of the 
spin of a free electron whose motion can be considered 
classical. In the present article we intend to show that 
the intrinsic magnetic moment of the electron also can 
be measured in experiments which can be described 
classically. As a specific example we will consider a 
Stern-Gerlach experiment for the free electron. 

The arguments which were used to justify the impos- 
sibility of measurement of the spin and magnetic mom- 
ent of the electron in the course of its classical motion 
a r e  based on the uncertainty principle (see for example 
Refs. 5 and 6). Basically there a r e  no objections to 
these arguments, but they refer to definite specific re- 
alizations of experiments and therefore do not encom- 
pass a l l  possibilities. 

We shall carry  out the discussion for an arbitrary 
particle with spin 4, charge e,  mass m, and magnetic 
moment p.  The gyromagnetic ratio y =2k/R we shall 
not necessarily consider equal to e/mc-the valuewhich 
follows from the Dirac equation. The particle motion 
will be assumed nonrelativistic. In this case the Ham- 
iltonian can be written a s   follow^^^': 

Here o a r e  the Pauli matrices, B is the magnetic field, 
and A is its vector potential. For simplicity we shall 
assume the field to be s t a t i ~ . ~ '  We impose on the po- 
tential the usual condition 

In the quasiclassical approximation we look for 5 in 
the form of an asymptotic expansionc8' in powers of ti. 
The equations for the coefficients of this expansion and 
for S a r e  obtained by systematically equating terms of 
like powers of ti on the two sides of Eq. (3). Here we 
obtain several different results, depending on whether 
we formally consider PUB a term of zero order in A or, 
writing it in the form ~&uB,  included in the terms con- 
taining ti to the first  power. For our purposes the first  
procedure, in accordance with which we have grouped 
the terms in Eq. (3), turns out to be more convenient. 
Note that this approach does not mean neglect of the 
quantum origin of the spin magnetic moment of the par- 
ticle. Here it is  necessary to have in mind, first  of all, 
that the quasiclassical expansion in powers of ti is  es- 
sentially a formal procedure, since the small parameter 
(in the role of which ti enters) must infactbedimension- 
less. Therefore in actuality the expansion is carried out 
in the ratio of ti to some quantities characteristic of the 
phenomenon considered and having the dimensions of 
action. In the second place, the presence in the equa- 
tion of small parameters does not uniquely determine 
the nature of the corresponding asymptotic expansion, 
which can be carried out in various ways, depending on 
the specific features of the problem. We shall not de- 
termine the desired quasiclassicalexpansioncompletely, 
but shall find only the principal term which describes 
the classical motion of the particles and shall estimate 
the next term, considering it a s  a correction. The con- 
dition that this correction be small  will permit us, on 
the one hand, to find limits within which the approxi- 
mation adopted can be used and, on the other hand, to 
determine those parameters which form the actual basis 
of the expansion. 

div A-0. In accordance with the above we write 

&=&'"+if&%', 
Since we have in mind going over to the quasiclassical 
approximation, we shall write the wave function in the where iASr is  the mentioned correction. The term of 
form zero order in A in Eq. (3) is  the following equation: 
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The presence of the spin matrices in this equation leads 
to some modification of the usual discussions for the 
quasiclassical approximation (cf. Ref. 8). We shall pro- 
ceed a s  follows. In addition to the initial "laboratory" 
system of coordinates K we shall consider localsystems 
Kr(x)such that the access 0'2' of the system K r  a t  each 
point Or with coordinates x i s  directed along the mag- 
netic line of force. Let x be a two-dimensional column 
vector of the components of the spinor with respect to 
the system K'. Then the relation between x and 5 (the 
components of the spinor in the laboratory system) is 
given by 

where g =g(x) is  a rotation which transforms K r  to a 
system with axes parallel to the axes of K and D is the 
finite-rotation matrixc71e' for spin 2. The rotationg can 
be characterized by a vector (P =(p(x) directed along the 
rotation axis and equal in magnitude to the rotation 
angle. We note that g is so fa r  determined only with 
accuracy to an arbitrary rotation aboutthe 0'2' axis. 

In the new spinor coordinates Eq. (5) will contain the 
already diagonal matrix: 

In order that this equation have a nontrival solution 
(x"'# O), it is necessary that 

Equations (7) and (8) have a simple meaning. They a re  
the Hamilton-Jacobi equations for motion of a charged 
particle under the influence of a magnetic field B and 
potential r @, which is the energy of the magnetic di- 
pole p constantly oriented parallel o r  antiparallel to the 
field. We shall return again to discussion of this cir- 
cumstance but note here that for definiteness in what 
follows we shall assume that Eq. (7) is  satisfied. Ac- 
cordingly, X'O' should have the form 

- (a') - (; ) 

(the components of the spinors will be designated by the 
same letters with subscripts 1 and -1; for brevity in- 
stead of Xy' we shall write v). 

In what follows it is  convenient to carry out the entire 
discussion in the local spinor coordinates. Therefore 
an appropriate substitution of variables must be made in 
the initial equation (3). Here after simple transforma- 
tions we obtain 

In this equation G ,  and G, ,  a r e  respectively the left- 
hand parts of Eqs. (7) and (8), 

( A  is the Laplace operator) and we have used the equal- 
ities 

where v is the particle velocity, cp, a r e  the components 
of the vector (P in the local coordinate system, and 
summation over the twice repeated vector indices is  
understood. The equations (11) follow from well known 
properties of the Hamilton-Jacobi equation, and Eq. (12) 
can be verified directly. 

In order to find an equation for v, let us consider in 
Eq. (9) the term of first  order in ti; here to begin with 
it is  sufficient to limit ourselves just to the upper line 
of the corresponding spinor equation. In order to 
achieve simplification, we shall make use of the arbi- 
trariness remaining in choice of the local coordinates 
(see above) and shall impose the condition 

This condition can be satisfied by choosing the vector (P 

a t  each point to be orthogonal simultaneously to the OZ 
axis of the laboratory coordinate system and to the di- 
rection of the magnetic line of force. It is easy to see  
that with inclusion of (13) the equation for v becomes the 
ordinary transport equation (cf. Ref. 8): 

av - + vvv  +: vv=o< 
at 2 

Thus, we have obtained the principal equations which we 
need for S and v. Note that v can be taken a s  real. We 
shall discuss these equations later, and now we turn to 
investigation of the conditions of their applicability. 

In correspondence to the spin-coordinate substitution 
made above, i t  is convenient to consider x1=D(g)E1 in- 
stead of 4'' (see Eqs. (4) and (6)). The exact equation 
for x r  can be obtained from (9), but solution of this 
equation is no easier than that of the initial equation. 
Therefore we shall determine x1 approximately a s  the 
term of next order in the quasiclassical expansion. 
Considering again in (9) the term of first  order in 6, but 
this time the lower line of the corresponding equation, 
we obtain an equation for xr,,. It turns out to be not a 
differential equation, but simply a linear algebraic 
equation (cf. Ref. 8) with a solution 
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Here 

and we have used the fact that in view of (7) we have G-, 
=2pB. 

In order that the approximation discussed be applica- 
ble, it is necessary that 

Since we have in mind first of all the electron, we shall 
assume for order of magnitude estimates y - e ~ / m c .  
Since (also in order of magnitude) I' - I-', where I i s  the 
characteristic scale of inhomogeneity of the magnetic 
field, i t  is easy to see that the condition 

mvc/cBlai (17) 

assures satisfaction of the inequality (16). Rewriting 
this condition in the form 

where R is the Larmor radius, we conclude that the 
particle motion in a magnetic field considered here 
should have a drift The particle revolves in 
a circle whose center slides freely along the line of 
force and slowly drifts in the transverse d i re~t ion .~)  

From Eq. (17) it also follows that 

where w=eB/ lnc  is the cyclotron frequency and t, is the 
characteristic time of variation of the magnetic field 
along the particle trajectory. This inequality is the 
adiabaticity condition for the magnetic moment,[ll' 
which agrees completely with the results obtained pre- 
viously and permits a simple interpretation for them. 
As we have already mentioned, Eqs. (7) and (8) describe 
the classical motion of a particle whose intrinsic mag- 
netic moment adiabatically "follows" the field direction. 
We now see that this behavior of the magnetic moment 
is a natural feature of the approximation considered and 
follows directly from the equations of its applicability. 
Moreover, Eq. (14), since v can be chosen a s  real, is 
easily seen to be equivalent to the ordinary equation of 
continuity for v2-the number density ofparticles moving 
along classical trajectories. 

Let us now consider the equation for X;. It is obtained 
from (9) in second order in A and by means of (15) can 
easily be converted to the form 

The solution of this equation with zero initial value can 
be written as  

where f ( x ,  t )  is the right-hand side of (19) and x(t) is the 
classical trajectory of the motion. Evaluating the quan- 
tity x i ,  we shall assume that the flux of particles is a 
narrow monochromatic beam of particles with approxi- 
mately identical velocity directions. The beam diam- 
eter D will be assumed to satisfy the inequalities 

where A is the DeBroglie wavelength of the particles. 
The exponential factor in Eq. (20) describes the change 
of concentration of the particles in the beam. For  sim- 
plicity we shall digress from discussion of the caustic 
(see Ref. 8) and shall assume that the motion of the par- 
tilces i s  not accompanied by a significant focusing or  
expansion of the bundle of trajectories. In this case the 
exponential factor mentioned will be close in magnitude 
to unity. Let us consider individually the two terms 
which make up f. Since D is the smallest. character- 
istic scale of variation of the quantity occurring under 
the Laplace operator in f (see Eq. (lo)), we must have 

Therefore it is easy to see that IfiX; ( 4 v ,  if 

where L =vt  is the path traversed by the particle. The 
first  of these inequalities is the ordinary condition for 
geometrical optics, that the diffraction spreading of the 
beam be much less than its transverse dimension (we 
recall that the opposite case L >> D 2 / ~ ,  corresponds to 
Fraunhofer diffraction, in which the geometrical rep- 
resentation is completely inapplicable). The second 
inequality is an additional specific limitation on the 
path length.4' 

Let us now return to the Stern-Gerlach experiment for 
a free electron. At the initial point let there be a mono- 
chromatic electron beam of the type described, moving 
in an inhomogeneous magnetic field. The trajectory of 
this beam is approximately a helix of the Larmor radius 
wound on the magnetic line of force. As the result of 
action of the external field on the intrinsic magnetic 
moment of the electron, the initial beam gradually splits 
into two beams with opposite spin orientations. 

Let us estimate the minimum time necessary to de- 
termine this splitting. Since motion of the particles 
across the magnetic lines of force is hindered by the 
Larmor rotation, spatial separation of the beams will 
occur first of all along the lines of force. Thedifference 
in the forces acting on electrons withopposite spinorien- 
tations is in order of magnitude kB/2 - eFiB/11zcl, so  that 
the difference in the displacements along a line of force 
in a time t will amount to (in order of magnitude) 

ehB eAB Lz A1 - - t ' = -  
m'cl m'cl v' 
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where L is as  before the path traversed by the particles. 
In order that the beams with opposite spin orientations 
be spatially separated, A1 must be greater than D (the 
transverse dimension of the beam), and from this we 
obtain 

L>L,,,= (DZR~X)".  (23) 

This inequality gives a new limitation on the pathlength 
(this time a lower limit). However, it is easy to see 
that in principle the inequality (23) is consistent with 
Eqs. (17), (21), and (22), and all of these inequalities 
can be satisfied simultaneously, i.e., an appreciable 
splitting of the beam can occur before the quantum ef- 
fects substantially distort the geometrical pattern of 
the trajectories. 

Thus, a Stern-Gerlach experiment for a free electron 
turns out to be achievable in principle, but it is neces- 
sary to have in mind that from Eqs. (22), (23), and (18) 
it follows that L,,, >1 >>R and therefore for spatial sep- 
aration of the beams the electrons must execute a rather 
large number of turns in the magnetic field. This cir- 
cumstance explains, in particular, why the arguments 
mentioned above, which were given by pauliC5] and by 
Mott and ~ a s s e y , ~ ~ '  do not exclude the possibility of 
carrying out a Stern-Gerlach experiment for a free 
electron: In Refs. 5 and 6 an experimental arrangement 
is discussed in which the electron crosses the region 
with inhomogeneous magnetic field once. 

In conclusion the author expresses his gratitude to the 
participants in the seminar of the I. E. Tammtheoretical 
division of our Institute for a productive discussion of 
this work. 

i%ee also the discussion which followed thts work. 13d1 In 
regard to the possibiltty of measuring the intrinsic magnekic 
moment of a free electron, Kalcar holds to the previous 
negative point of view. 

2)Alao for the sake of simplicity we shall not assume an 
electric fisld in the calculation. It would not be difficult to 
take tt Into account, and no important changes would be 
introduced in the subsequent discussions. 

3 b o r e  precisely: R is the maximum possfble value of the 

Larmor radius for a given velocity, determined by the 
expression mv,c/eB, where v, is the projection of the 
velocity perpendicular to the line of force. We note further 
that Eq. (17) can be written in terms of action: pBZ/v 
coincides in order of magnitude with that part of the change 
of action of the particle AS, on its passage through a region 
of characteristic size 1 which is due to Intaraction of the 
intrinsic magnetic moment with the external field. There- 
fore Eq. 07) can be represented in the form AS,>>ti. 
However, it must be kept in mind that there is some 
arbitrariness in this interpretation of Eq. 47). While it is 
suitable for a trajectory of "general type" in which, in 
particular, v, and v,, = (v2 - ~ 2 ) ~ ' ~  are comparable in 
magnitude (and both of the order of v 1, this may become in- 
adequate €n some special cases, for example, for v,,<< v, 
when the tlme of flight through the characteristic region of 
inhomogeneity of the magnetic field turns out to be much 
greater than Z/v. 

4-e limitations obtained above, strictly speaking, do not 
exhauet all conditions of applicability of the quasiclassical 
approximation considered. It is necessary also to be con- 
vinced that the terms discarded in derivation of Eus. 05) 
and 09) are actually small. Verification of this $11, 
generally speaking, lead to the necessity of imposing an 
additional limitation, which can be written as I<< D2/h. 
However, for successful accomplishment of a Stern- 
Gerlach experiment (see below) it is necessary that 1 < L 
and therefore we o W i  nothing new in comparison with Eq. 
(22). 
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