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This article is concerned with the problem of the interaction with each other of foreign molecules injected 
into a liquid-crystal medium. It is very probable that such interactions play an $portant role in 
biochemical reactions that occur in biological systems. An injected molecde produces in the liquid-crystal 
medium distortions whose dimensions considerably exceed its own dimensions; and another injected 
molecule, if it enters the distorted region, will interact effectively with the first. Nematic and smectic 
liquid crystals are considered. Expressions are obtained for the asymptotic value of the interaction energy 
in the limit of large distances between the injected molecules. In the large-distance limit, the interaction 
energy decreases according to a power law. For typical biological macromolecules, with distances of 
hundreds of angstroms between them, the energy of interaction through the medium considerably exceeds 
the van der Waals energy. 

PACS numbers: 61.30.Cz, 87.15.Kg 

INTRODUCTION 

There has now accumulated a quite large body of ex- 
perimental material indicating that the interaction be- 
tween molecules of substances dissolved in a liquid- 
which may under certain conditions exist in the form of 
a liquid crystal-is strongly dependent on whether the 
solvent is in the isotropic o r  in the liquid-crystal 
phase. Thus in a number of casesrlpZ1 a transition of the 
solvent to the liquid-crystal phase leads to considerable 
increase of the rates of reaction of the dissolved sub- 
stances. This circumstance is the more interesting, 
because it is known that there a r e  biochemical reactions 
that occur under natural conditions in a phase very 
reminiscent in its properties of a liquid-crystal 
phase:'] 

The principal difference of liquid crystals from or- 
dinary isotropic liquids consists, a s  is well known, of 
the fact that over a certain temperature range, there 
a r e  in these substances long-range correlations in the 
orientations of the molecules. It is therefore natural 
to suppose that a transition of the solvent to the liquid- 
crystal phase leads to the appearance of a new form of 
interaction between molecules injected into such a liq- 
uid: through long-range orientational order. Specific- 
ally: an injected molecule produces around it  a region 
of distortion of the liquid crystal, which may occupy a 
volume considerably exceeding the size of this molecule; 
another molecule, if it is in a state to react somehow 
to this distortion, will thus effectively interact with the 
first. Our aim is to construct a phenomenlogical theory 
of such interaction. Nematic and smectic liquid crystals 
a r e  considered in this article. Formulas a r e  obtained 
for  the interaction energy of molecules located a t  suf- 
ficiently large distances from each other. 

It should be noted that it is  quite easy to change, by 
external actions, the interaction parameters of mole- 
cules of a dissolved substance; this opens up, in prin- 
ciple, a possibility for direct test of the theory setforth 
in this article. The effect of external factors is con- 
sidered in the example of a liquid crystal located in a 
constant, uniform external magnetic field. 

1. INTERACTION OF MOLECULES INJECTED INTO A 
NEMATIC LIQUID CRYSTAL 

The free energy of a nematic liquid crystal, a s  i s  
well known,c3n43 can be written in the form 

F =; j (Fo+'/2[a,(divn)2+a2(n rot n)2+a,((nV)n)2])dv. (1) 

Here n(r) is  the director, which defines the orientation 
of the molecules; a,, a,, and a ,  a r e  temperature-depen- 
dent coefficients. 

We consider a large1' molecule located in the liquid 
crystal. If we suppose that the interaction energy of 
each section of the molecule depends on the direction of 
the director a t  the place where this section is located, 
then the total interaction energy can be expressed in the 
form 

where g(r; n) is interaction-energy density. Since in 
liquid crystals replacement of n by -n changes nothing 
physically, we may write 

We consider the case in which the perturbations of the 
director field caused by the presence of the inhomo- 
geneity of the foreign molecule a r e  sufficiently small. 
In this case we have 

where n , , l v ( r )  and I v 1 << 1. The total free energy, with 
allowance for interaction with the injected molecule, 
can be represented in the form 

F = (F,+g(r; n,) )dv 

+J ~ / ~ ( [ a ,  (div v)'+a,(n, rot v)'+a3( (n,V)v)'I+b(r)v) do; (5) 
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It can be shown that when we consider the problem of 
interaction of molecules a t  large distances and close to 
the molecules, the condition I v 1 << 1 is violated; but if 
we renormalize b(r )  appropriately, then even for  this 
case it is possible to represent the f ree  energy in the 
form (5). 

We consider an unconstrained molecule. In the zeroth 
approximation with respect to v,  the variation of 
Jg(r; n,,)dv with respect to possible rotations of the mol- 
molecule a s  a whole must vanish. But rotations of the 
molecule a r e  equivalent to rotations of n,,. We have 

Hence we find that the vector 

is parallel to n,,. 

We consider two molecules. Thei r  interaction energy 
can be represented in the form 

8- -2J  b; (r) &(r-r') bI (r') dr dr', (9) 

where b , ( ~ )  refers to the f i rs t  molecule, b2(r) to the 
second; G ( r  - r') is Green's function. The equation for  
Ei,(r- r3 can be obtained from (5) by setting b(r )  
=b, 6(r1) in it and varying with respect to 6v. 

We transform to the k representation: 

8=-- j b; (k) € (k) b, (k) a, (10) 
( 2 4 '  

b(k) -- jb (r )  e-'&* dr, G,j(k) - j Gcr (r)e-"' dr. (11) 

In explicit form, on choosing the direction of the x 
axis along rb, of the y along k, and of the z along n, 
x k, we have 

Here k = k, + kI&. We can write 

(13) 
In the process of motion of the molecules, the vectors 
b, and b, change. We shall assume that conformational 
transitions a r e  absent. The condition (8) fixes the axis 
of the molecule around which it might rotate freely. We 
introduce b(r )  in a system of coordinates attached to the 
molecule. We denote it, in distinction from the b(r )  of 
the laboratory system, by bl(r). We have 

bl; zck) =e-lkR , ; , A  (ql:  2) bf (A (-(P,; ,) k). (14) 
Here R,, i s  the radius vector that describes the posi- 
tion of the center of mass  of the molecules, andA(cp) 
is the operator of rotation of a vector through angle cp 
about a n  axis directed along n,,. On subsituting (14) in 
(13) and then in (lo), we get 

x exp(ik(R,-R,) )a. 
(15) 

The component of the vectors b' along n,,, as was to be 
expected, makes no contribution to the energy. 

We consider the case in which the distance 1% - R, I 
between the molecules i s  much larger than the charac- 
terist ic dimensions R' of the molecules. We can in 
principle expand 6 a s  a ser ies  in the small  parameter 
R'/ I R2 - R, I. For  this purpose it i s  most convenient 
to expand bl(k), in (15), a s  a se r i e s  in powers of k: 

bl(k)  =bo+ipk+O(ky ), 

where 6 i s  a tensor with components 

pus - Jbfl(r)z,dr. 

It follows from (8) that b, IIn,,, and therefore b, makes 
no contribution to &. In order to obtain the f irst  term 
of the expansion, one must substitute b(k) in (15) in the 
form i jk ,  rejecting terms of order  k2 and higher. 

Thus a l l  information about molecules interacting a t  
large distances is contained in their tensors 3. In gen- 
eral ,  however, the expression for 8 in terms of the 
components p i ,  turns out to be very cumbersome. We 
shall consider a special case: molecules possessing 
cylindrical symmetry. Through linear terms (dropping 
b,), one can write 

  ere f ',O: and pi:: a r e  coefficients characteristic of the 
molecules. On substituting (18) in (15), we get 

8=f!''f:O'~(a,; a,; R,-R,) +P!~'~:O'Q(~~:  a,; Rz-R,), (19) 
a, " 3aRll2 

Q (a; a,; R) =8n (44,) -'" ( oRl:+a,R,z ) (m~- ) ' (20) 

In the large-distance limit, a s  is shown by formulas 
(19) and (20), 8 decreases a s  R-,. We shall estimate 
& in order  of magnitude. Let the molecules be close to 
each other. The energy &' of the perturbed liquid crys- 
tal  is ~ v / R ' ~ ~ ~ R * ,  where a is of the order  of magnitude 
of the coefficients a , ,  a,, and a,. For a -  loe6 dyn and 
R'- ~ O O A ,  8 ' -  1 eV; the interaction energy decreases 
a s  R-,, starting with distances of the order  of the radii 
of the molecules. When R / R ' - ( & ' / T ) ' ~ ~ ,  the interaction 
energy is comparable with the thermal energy. For 8' 
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- 1 eV and T -300 K, the distance R turns out to be of 
the order of 300A. 

We shall now consider the effect of a magnetic field on 
on 6.  In the presence of a magnetic field H directed 
along n,,, we must add to the parentheses in the numer- 
ators of (15) a term of the form xAZ, where X, is the 
magnetic susceptibility. For the case considered above, 
we have 

Q (a; a,; R)  =8n (aa,) -" ! ,a+a,.2 " 

A magnetic field can produce a peculiar shielding of the 
interaction. The characteristic shielding distance L is 
( a / x , ~ ~ ) l ~  '. For example, for a - 10"j dyn, o~ - and 
H- 3.105 the characteristic distance L - 100A. 

Since strong magnetic fields affect the interaction en- 
ergy, there is in principle a possibility of using them to 
change the rates of chemical reactions occurring in liq- 
uid crystals. 

INTERACTION OF MOLECULES INJECTED INTO A 
SMECTIC LIQUID CRYSTAL 

As is well in the simplest case smectic 
crystals form a layered structure, consisting of planes 
located a t  equal distances from one another, and capable 
of moving comparatively freely with respect to one an- 
other. We shall suppose that the unperturbed layers a r e  
parallel to the yz plane. A perturbation can be  specified 
by the x component ux(r) of the displacement of points of 
a layer. By use of u,(r), the free energy can be rep- 
resented in the form 

where F, is the part of the free energy that is  inde- 
pendent of the perturbations; B and K, a r e  coefficients. 

If the perturbations produced by a large foreign mol- 
ecule, injected into the smectic crystal, a r e  small, 
then, just a s  for nematic liquid crystals the interaction 
energy is represented in the form Jbvdv, s o  in the 
present case we can represent it a s  

Here P( r )  is a function characteristic of the injected 
molecule. 

On varying the sum of (22) and (23) with respect to 
6ux, we get 

We transform to the k representation: 

u=(k) -  Ju=(r)e- ikrdr,  

P ( k )  = J P ( r )  e-lkr dr. 

We have 

u.(k) = - P ( k ) l  (Bkl,'+K,k,'). 

We note that P(0) = 0. In fact, a displacement of the 
molecule a s  a whole along x causes a change of energy 

where 624, is a constant defining the displacement. But 
the molecule is located a t  a position of equilibrium. 
Therefore 66 ,,,/6ux = 0. From this it follows directly 
that P(0) = J P ( ~ )  dv = 0. If we consider in analogous 
fashion a variation 66,,, with respect to rotations of the 
molecule a s  a whole, we can derive 

We consider two molecules. Their interaction energy 
can be represented in the form 

We introduce the function PE ,(r), which is P, ,(r) cal- 
culated in a specially chosen system of coordinates 
attached to the molecule. By use of P;,(r), (30) can be 
expressed in the form 

The function P', ,(r) can be rewritten 

where R1;': depend on I r, 1 and on x .  We have (R ii:) 
= (R i-:') *. We introduce 

- - 
2:;' (k , ;  k,) =2n (-1)"P J R!;;~' Jm (kir,) exp ( - ikl lz)  r,dr,dr. (33) 

-- 0 

By use of this expression, (30) can be put into the form 

We consider the case of large distances between the 
molecules. In the linear approximation with respect to 
k, only one of a l l  the 2, , remains: 

- - 
z:,:' =-2nikll J R:: zr,dr,dz=ikllxl,2. 

-- 0 

(35) 

On substituting (35) in (34), we get 
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(3 6) 
In this approximation, the energy & differs significantly 
from zero only when 

where X is the distance between layers in the smectic. 
But in this range, where I (R, - R,), I << ( x ,  - x, 1 , the 
linear approximation with respect to k proves insuffi- 
cient. It is necessary to take account of terms of order 
kfr : .  We have 

The interaction energy can now be represented as  the 
sum of three expressions: 

8 ,  is the expression (36) withx;r2 replaced by 

for  6 ,  and 8 ,  we have 

Here y i s  the incomplete gamma function. 

Formulas (38)-(40) show that the interaction energy 
of molecules lying in a plane parallel to the planes of 
the smectic decreases a s  the inverse fourth power of 
the distance. If, however, the molecules a r e  located on 
a line perpendicular to these planes, the interaction en- 
ergy varies a s  x'*, where x  is  the distance between 
them. 

"A "large" molecule here means one whose dimensions are  
much larger than the intermolecular distances in the liquid 
crystal, so that the liquid crystal, in its interactions with 
the molecule, can be treated in the continuous-medium ap- 
proximation. 
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