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An isotropic Heisenberg antiferromagnet diluted by nonmagnetic impurities is considered; the 
concentration of magnetic atoms is assumed to be close to the percolation limit. The density of states of 
the magnetic excitations, the temperature dependences of the sublattice magnetizations and specific heat, 
and also the concentration dependence of the NCl temperature, are obtained using scaling theory for the 
percolation problem. 

PACS numbers: 75.10.Jm, 75.30.Hx, 75.40.Fa 

1. INTRODUCTION by the symmetry of the Heisenberg Hamiltonian-a fact 
that is natural from the standpoint of the modern theory 

Recently, there have appeared a number of experi- of phase transitions. 
mental papersc11 investigating ferr i -  and antiferromag- 
nets diluted by a sufficiently large quantity of nonmag- 
netic impurities, distributed randomly in the lattice 2. THE ELEMENTARY EXCITATIONS AT ZERO 
and taking the place of magnetic atoms. The most in- TEMPERATURE 
teresting property of such alloys is the existence in 
them of a concentration phase transition: macroscopic The Hamiltonian of an isotropic Heisenberg antifer- 

magnetic order ar ises  only when the concentration x of romagnet with interaction only between the sublattices 

magnetic atoms is greater than a certain threshold val- has the form 

ue x,, while if x <x, a magnetically ordered state does 1 
2% = - T z  vi,.,si,s,,. not arise even at zero temperature T = 0. This concen- (1) 

c J 
tration phase transition is considered in percolation 
t h e ~ r y . [ ~ * ~ ]  The point is that macroscopic magnetic o r -  The subscripts 1 and 2 label the sublattices. The sum- 

der  ar ises  only when the interacting atoms (we shall mation is taken only over the sites occupied by magne- 

call them connected) form an infinite cluster. In mag- tic atoms. As already noted, for x >x, there is an infi- 

netic insulators, a s  is well known, it may be assumed nite cluster, in which magnetic order is established. 

that only nearest neighbors in the lattice a r e  connected. At zero temperature, Sf l=S and Sf2= 4. 

Naturally, for small x the connected atoms form only The low -frequency excitations in the infinite cluster 
finite clusters, and only a t  sufficiently high concentra- a r e  long-wavelength, weakly damped spin waves. The 
tions x>x,  (x, is called the percolation limit) does an small damping of these waves is due to the fact that the 
infinite cluster arise.  Heisenberg Hamiltonian conserves the total spin of the 

system (for more detail, see  the article by Harris and The concentration phase transition has turned out to 
be similar in many respects to ordinary second-order  irkp pat rick).'^' Such hydrodynamic excitations can be 

phase  transition^.^^] In particular, a s  the critical point described phenomenologically by means of the usual 

is approached the role of spatial fluctuations in the expression for the change in the energy E of the system 
when fluctuations ar ise  in the transverse components clusters increases and s o  the geometrical properties 
of the sublattice magnetizations m,(r) and m,(r): of an infinite cluster cannot be understood with the aid 

of some or  other variant of the self-consistent field A HZ 
method. This makes the question of the magnetic prop- E =  ~ ( ~ ~ 1 v " 1 a ( r ) v m 2 a ( r ) ~ + - ~ m 1 ( r ) + m 2 ( r ) i 2 )  --=,v 2M0 d t .  (2) 
erties of such substances especially interesting. 

Here, M ,  is the zero-temperature sublattice magneti- 
The thermodynamics of ferromagnets with lx -x, 1 / zation, proportional to the concentration P(x) of the 

x,<< 1 was investigated theoretically in Refs. 4-6. In atoms in the infinite cluster: M,-P(x)-(x -x,)', 
view of the fact that all the experiments a re  carried out 

f i  = 0.35.c31 As regards the coefficients A and HE, they on ferri-  and ant if error nag net^,^" in the present paper 
a re  studied in detail in the paper by Harris and Kirk- the existing theoryc4-'] is generalized to antiferromag- 

nets. The dependence of the density of states on the 
energy, the temperature dependences of the sublattice 
magnetizations and specific heat, and also the depend- 
ence of the ~ h e l  temperature on x -x,, a r e  obtained. 
It is interesting that the latter dependence turns out to 
be the same a s  the dependence of the Curie temperature 
of a dilute ferromagnet on x - x , . ~ ~ * ~ ~  Thus, the thresh- 
old behavior of the phase-transition temperature is de- 
termined not by the type of magnetic order but solely 

The microscopic analysis that they made of the equa- 
tions of motidn for the spin operators showed that the 
coefficient A is proportional to the conductivity o of a 
network of resistances in which the conductance be- 
tween sites i and j is equal to a,,= V i j .  The concentra- 
tion dependence of the conductivity of such a network is 
now well known in the entire range of concentrations. 
In particular, near the percolation limit, c31 
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The situation with regard to the coefficient H E ,  which 
determines the transverse susceptibility of the antifer- 
romagnet, 

is more complicated. For us, the result obtained by 
numerical calculations on a computer will be suffi- 
cientC7]: 

As is well known, from (2), with the aid of the Lan- 
dau-Lifshitz equations, we can obtain the linear dis- 
persion law w = C, for the spin waves, their velocity 
being 

The density of states p,,(w)' of the magnetic excitations 
in the infinite cluster a t  low frequencies is determined 
by the spin waves and is equal to 

Up to what frequencies is formula (5) valid? 

Hydrodynamic excitations a r e  weakly damped s o  long 
a s  their wavelength is greater than the characteristic 
length determing the scale of the spatial fluctuations in 
the system. According to scaling theory for the perco- 
lation problem, near the threshold the only character- 
istic length is the correlation lengthc3] 

Therefore, the hydrodynamic description of the excita- 
tions is possible only for 

The damping of the waves grows with increase of the 
frequency, and a t  w x w, the damping is of the same or -  
der  a s  the excitation energy. Therefore, it is natural 
to assume that excitations with w >> w, a re  localized 
within a correlation length; in the theory of phase tran- 
sitions i t  is customary to call such excitations the c r i -  
tical mode. 

In order to determine the density of states for w >> w,, 
we shall use the procedure for matching the hydrodyna- 
mic mode and the critical mode that was proposed by 
Halperin and ~ohenber$'] for the description of critical 
dynamics. Here the chief point for us will be the fact 
that the properties of the critical mode (the dispersion 
law, the density of states pl(w) per magnetic atom, 
etc.) do not depend on x -xc. This is explained by the 
fact that the quantity x -xc determines the connected- 
ness of the system only a t  distances greater than L. 
Within a correlation length we already have connected- 
ness. Thus, pl(w) = f ( w / ~ , )  (V, is the exchange integral 
between nearest neighbors), and, therefore, 

Matching (5) and (6) a t  w = w,, we obtain 

Using the index values given above, we obtain z = 0.35. 
Thus, the density of states of the critical mode grows 
with increase of the frequency, but much more slowly 
than in the spin-wave region. 

To describe the dynamics of the excitations in an in- 
finite cluster i t  is important to know also the coefficient 
@(q) connecting the energy density e and the Fourier 
transform ql of the fluctuation of the sublattice mag- 
netization: 

To find @(q) in the spin-wave region i t  is necessary to 
express q2 in terms of ql using the Landau-Lifshitz 
equations and substitute into (2). We obtain @(q) 
= A q 2 / ~ ; ,  and, since q(w) = w/C, 

O(m) =@(q(a) )  =~'fiM~-~, oco*. (8) 

Carrying out the matching for *(w) just a s  we did for 
the density of states, we find 

It can be seen from (9) that a t  high frequencies there is 
some decrease in the power exponent in @(w): i t  be- 
comes equal to 1.7 - 1.5. 

We turn now to the density of states p,,,(w) in finite 
clusters. As the percolation limit is approached there 
appear finite clusters of all  large sizes up to sizes of 
the order of the correlation length L. According to the 
scaling theory, the geometrical properties of finite 
clusters with linear dimensions L a r e  the same a s  
those of regions of size L in an infinite cluster. There- 
fore, 

For w>> w, the quantity pfill(w) should not depend on 
x -xc. Since i t  is normalized to 1 -P(x) - 1, we can 
state that 

and, matching (10) and (11) a t  w -  w,, we obtain 

It can be seen from (6), (7), and (12) that, a s  we should 
expect, a t  w> w, the density of states in finite clusters 
is higher than that in an infinite cluster. At low fre- 
quencies w << w, the situation is reversed. Excitations 
with w << w, exist only in those finite clusters whose 
sizes a re  greater than L. But the number of such clus- 
ters  is exponentially smallc3'; therefore, p,,,(w) is also 
exponentially small for w << w,, and is considerably 
smaller than the spin-wave density of states (5). 
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3. THE THERMODYNAMIC QUANTITIES 

The results obtained in the preceding section a re  
valid not only a t  zero temperature but also for T<< T, 
(T, is the Nhel temperature), when the deviation of the 
sublattice magnetizations (M) from their value a t  sat-  
uration is small, i.e., when 6M = M, -(M) << M,. Assu- 
ming this condition to be fulfilled, we can calculate 6M 
in the usual way: 

If T << w, the integral in (13) is determined by fre- 
quencies w - T,  and, therefore, 6M obeys the usual 
spin-wave law 

It is interesting that even for T- w,, when all  the spin 
waves a re  excited, the quantity ~ M / M ,  is still small: 

this is a consequence of the small number of states in 
the spin-wave part of the spectrum. 

It follows from (14) that, parametrically in the para- 
meter x -x,, the Nhel temperature is greater than do. 

We shall calculate 6M in the temperature range w,<< T 
<< T,. For this we draw attention to the fact that the 
function wp,,(w)/@(w) in the integrand in (13) reaches 
a maximum at w- w,. This leads to the result that the 
integral in (13) is determined for T >> w, by frequencies 
of the order of w,, and we obtain 

Since a t  temperatures of the order of the ~ h e l  temper- 
ature the quantity ~ M / M ,  is of order unity, from (15) 
we obtain 

Since T,>> w,, the temperature region in which 6M de- 
pends linearly on T is much broader than the spin-wave 
region. 

The last two results-the concentration dependence 
(16) for the phase-transition temperature and the exis- 
tence of a broad temperature region in which the order 
parameter depends linearly on the temperature-are 
also valid for dilute ferromagnetsc4] and a r e  evidently 
associated only with the symmetry of the Hamiltonian, 
and not with the type of magnetic order. 

Since the integral (13) for T >> w, is determined by 
frequencies -w,, this means that the magnetic order is 
destroyed by fluctuations with wavelengths of the order 
of L. Over lengths shorter than L ,  short-range mag- 
netic order is preserved even for T >> T,. For exam- 
ple, in pairs of magnetic atoms the spins a r e  correla- 
ted up to temperatures of the order of v,.~' 

The specific heat of the magnetic system is 

For T << w, the specific heat obeys the spin-wave law 
C,-T3, while for T>> w,, from (6), (12), and (17), we 
obtain 

The specific heat (18), like the total density of states 
for w>> w,, is determined by the finite clusters. 

The presence of short-range magnetic order in the 
paramagnetic phase leads to the result that, a s  can be 
shown from simple estimates, the formula (18) is valid 
not only for T<< T, but also in the much broader temp- 
erature range o,<< T << V , .  The specific heat reaches 
a maximum at  T-  Yo. We have not considered the ques- 
tion of the singularity of the specific heat near the Nhel 
temperature, but, since the contribution of the infinite 
cluster to the specific heat is small for T >  w,, i t  is 
clear that i t  is very difficult to distinguish this anomaly 
experimentally against the background of the specific 
heat (1 8). 

In a recent paper by ~ u b e n s k ~ ,  Cgl the thermodyna - 
mics of Heisenberg magnets with ( x  -xcl /xc<< 1 is 
treated using various heuristic ideas and a hypothesis 
about the topology of the infinite cluster. The result he 
obtainscg1 for the concentration dependence of the tran- 
sition temperature coincides with that obtained earlier 
for f e r r o m a g n e t ~ ~ ~ * ~ ~  and with the formula (16) of the 
present work. However, the result obtained by Luben- 
sky for the temperature dependence of the specific heat 
is, in our view, incorrect. He uses a model represen- 
tation of the infinite cluster a s  a network consisting of 
one -dimensional parts of length I - I x -xc I-' and a s  -. 
sumes that the free energy F depends on the tempera- 
ture in the following way: 

where (,(T)-UV,/T is the correlation length of a one- 
dimensional Heisenberg chain. Naturally, i t  only 
makes sense to introduce 5,(T) i f  (,(T)< I , but Luben- 
skyC9' assumes that the free energy also has the form 
(19) for [,(T) >> I, when the correlation of the spins is 
in fact determined by the long-wavelength three-dimen- 
sional spin waves and not by the excitations within the 
one-dimensional segments. He does not take into ac-  
count the spin-wave contribution to the free energy. 

We have considered an antiferromagnet with interac- 
tion only between atoms on different sublattices. At 
the same time, the interaction within the sublattices, 
however small i t  is, becomes important sufficiently 
close to the percolation limit. For example, for x <xc 
the system can become connected again i f  the interac- 
tion within the sublattices is taken into account. We 
note that, i f  the intra-sublattice exchange is antiferro- 
magnetic, then, because of the competition of the inter- 
actions within'and between the sublattices, near the 
percolation limit the formation of a state of the spin- 
glass type is possible. 

The results that we have obtained a r e  valid s o  long 
a s  the intra-sublattice exchange energy, and also the 
magnetic -anisotropy energy, which we have not taken 
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At short distances, the order parameter in a nematic is degenerate on the sphere S 4 ;  this leads to 
topological removability of the singularities. As a result, the disclinations may have a nonsingular core. 

PACS numbers: 61.30.C~ 

According to experimental data on measurement of ture. On substituting (1) in (2) ,  we get 
the heat of transition, critical scattering, etc., c'*21 the 
transition from isotropic liquid to nematic is a weak 

F='12AQ.'-'/3B cos 3qQoa+'l,CQo'. 
transition of the first kind, nearly of the second, Fur- (3) 

thermore, the temperature range of existence of the 
nematic phase i s  much smaller  than the transition tem- Minimization of (3) with respect to cp gives cp = 0 ,  pro- 
perature. Therefore Landau's theory may be a rea- vided B # 0. This means that when B # 0 ,  only the uni- 
sonable approximation for description of a nematic over axial state is stable_. If B = 0, the free energy (2) is a 
its whole range of existence. function only of spQ2, and the symmetry of the order  

parameter is higher than in the uniaxial case. The only 
The order parameter in a nematic if a traceless,  constraint is 

symmetric, real second-rank tensor Q = Q, In gen- 
eral it has five independent components. This tensor 
can be represented in the following form: Sp p=Qoz, 

where Qo is the modulus of the order  parameter ,SpG2 = Q!, 
and n and 1a re  mutually perpendicular unit vectors. The 
angle cp describes the degree of biaxiality of the tensor Q, 8. 

When q=O, Qa8is uniaxial, andn is the director. The ten- 
s o r  Q, ornust not change sign upon change of sign of n o r  1. 
Therefore Q, 8contains no terms of the form n,z. 

There are only two independent invariants of the rota- 
tion group c_onstructec from the components of Qua, for 
example SpQ2 and SpQ3. Therefore the Landau expan- 
sion in powers of Qo can be represented in the form1) 

where A =a(T - T * ) ;  T*  is a fictitious Curie tempera- 

where Qo can be found by minimization of the free ener-  
gy (3) with B = O .  It is easy to show that (4)  is the equa- 
tion of a four-dimensional sphere S4 in the five-dimen- 
sional space of the components of the matrix Qua.  

Now let B be nonzero but small. The biaxial pertur- 
bation corresponds to certain motions on the sphere s~~ 
Such motions have an energy gap A-BQ:. The corre- 
sponding correlation radius is R ,  - ~ B - ' Q , - ~ ,  where k is 
a quantity of the order of the Frank constants. The cr i -  
terion for smallness of B is the condition R, >>Ro, 
where Ro i s  the correlation radius of fluctuations of the 
modulus Qo of the order parameter. In the distance 
range Ro <R < RB, the order  parameter is degenerate 
on the sphere s4. When R > h!,, the degeneracy param- 
e t e r  will be the ordinary nematic director n. Its do- 
main of variation is the sphere s2, on which diametric- 
ally opposite points a r e  equivalent (since n and -n a r e  
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