
correction for the thermal expansion and neglect the 
tetragonal distortion of the RhFeSn lattice.  h his dis- 
tortion can influence the values of the coefficients of 
formula (l).] It is  nevertheless clear that the model 
considered above accounts at least qualitatively for the 
character of the anomaly of h(T) for Sn at T/Tc<0.7. 

It is easy to see why formula (3) does not agree with 
the experimental data at T/Tc>0.7. In the critical re- 
gion of temperatures, the molecular-field model is cer- 
tainly incorrect: in real ferromagnets, the behavior of 
the magnetization near Tc does not follow the Brillouin 
functions. The critical exponent j3 for the magnetization 
as  given by the molecular-field model is 0.5, whereas 
the contemporary theoretical and experimental values 
of j3 for three-dimensional ferromagnets are close to 
0.35-0.38. According to the universality principle, in 
the critical region the mean values of the local magne- 
tization for the Fe and Rh atoms should have one and 
the same functional dependence on the temperature (re- 
gardless of their behavior at temperatures far from T,). 
According to ( Z ) ,  such a temperature dependence should 
correspond also to the hyperfine field for the Sn atoms. 
This agrees well with our experimental data: at T/Tc 
>0.8 the h(T) relations for Fe and Sn are the same but 
do not follow a Brillouin function. 

Thus, the characteristic anomalous form of h(T) for 
Sn in RkFeSn can be fully explained by recognizing that 
the moments of Fe and Rh have identical temperature 
dependences near Tc, but substantially different ones in 
the range 0.4 < T/T,< 0.8. It appears that the tempera- 
ture anomaly we obtained earlierc14' for the hyperfine 
field of impurity Sn atoms in the ferromagnetic matrix 
FeRh is explained in exactly the same way. 

It is obvious that similar temperature anomalies of 
H(T) should be observed also in other systems contain- 
ing magnetic atoms with substantially different temper- 
ature dependences of the local magnetization. A well 
known example of systems in which the temperature 
dependences of the magnetizationin nonequivalent lattice 
sites can be substantially different are certain ferri- 
magnetic compounds. Attention should be called in this 

connection to the result of Lyubutin et uZ.['~' who ob- 
tained a large H(T) anomaly for impurity Sn atoms in 
the ferrite MnFe,O,. We note that when the magnetic 
hyperfine interaction in metallic and nonmetallic sys- 
tems is  considered it is customary to use entirely dif- 
ferent concepts and approximations. In particular, no 
method has been found for representing the hyperfine 
fields in nonmetals with the aid of universal expressions 
similar to formula (1), so that the model considered 
above can not be used directly for an interpretation of 
the data obtained for nonmetallic ferrimagnets. None- 
theless, it is  easy to note that there is an undisputed 
formal analogy between the model considered by us in 
the present article and the data interpretation contained 
in the paper of Lyubutin et 
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Duality relations analogous to the Krarners-Wannier symmetry of the two-dimensional Ising model are 
established for spin and gauge systems with internal symmetry Z(n). 

PACS numbers: 11.30.Ly, 1 l.lO.Np, 12.40.Hh 

Kramers and wannierc" drew attention to the fact phases of this model. It is  found that the model admits 
that the two-dimensional Ising model possesses an ex- equivalent descriptions, in terms of a spin variable a 
act symmetry that links the high- and low-temperature (the order parameter) defined on the lattice, and in 
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terms of a dual variable p (the disorder parameterc121), 
which i s  defined on the dual lattice and is also a spin 
variable, p = * 1. The description of the low temperature 
phase of the model in terms of o coincides with the 
description of the high-temperature phase in terms of 
p, and vice versa. 

Generalization of the Kramers-Wannier (KW) sym- 
metry to other models is possible in two directions. 
The first  is the generalization to the entire class 6f 
models with the same internal symmetry (the symmetry 
Z(2)") as the Ising model; these can be called general- 
ized gauge Ising models (see Ref. 3). 

We shall consider a simple cubic lattice in d-dimen- 
sional space. Its dual lattice i s  also simple cubic, with 
the sites situated at the centers of the cells of the 
original lattice. The lattice contains elements of differ- 
ent dimensionality OGqGd (for q = 0 these a r e  the sites 
of the lattice, for q = 1 i ts  bonds, for q = 2  i ts  faces, 
etc.). The elements of the original lattice that have 
dimensionality q can be brought into dual correspon- 
dence with the (d-9)-dimensional elements of the dual 
lattice. For example, if d = 3, the s i tes  of the original 
lattice are  the centers of the cells of the dual lattice, 
and the bonds pass through the face centers of this 
lattice. 

The generalized gauge Ising rnodels are  formulated in 
the following way: a "generalized gauge fieldyy2' A 
(which is a spin variable A =*I) i s  defined on the lattice 
elements of dimensionality q - 1, and "generalized in- 
tensities" F are  specified on the q-dimensional elements 
as the product of the quantities A corresponding to all 
the (q-l)-dimensional elements bounding the given q- 
dimensional element. A "generalized gauge transfor- 
mation" i s  defined by specifying a field o on the (q-2)- 
dimensional elements of the lattice and multiplying the 
fieldA on a given (q-1)-dimensional element by the 
quantities o specified on all the (q-2)-dimensional ele- 
ments surrounding it. After the gauge transformation, 
each o appears twice (in the absence of an overall 
boundary) in the product defining the intensity F; there- 
fore, the field F i s  invariant under generalized gauge 
transformations. 
- 

The KW symmetry i s  formulated for these models in 
the following way: a model with fields F on the q-di- 
mensional elements of the lattice is dual to a model 
with fields defined on the corresponding (d +)-dimen- 
sional elements of the dual lattice. For example, the 
three-dimensional Ising model i s  dual to i t s  gauge 
variant, and on a four-dimensional lattice the gauge 
Ising model i s  self-dual. Relationships of this type can 
be established for various mixed models: e.g., the 
model with a spin field (q = 1) interacting with the cor- 
responding gauge field (q = 2) is self -dual on a three- 
dimensional lattice, since the spin field i s  dual to the 
gauge field, and vice versa. A review of the topics 
mentioned here can be found; e.g., in Ref. 4. 

The second direction in which the KW symmetry can 
be generalized is the analysis of systems with other 
commutative symmetry groups. It is found that the 
dual systems do not always have the same mmetry 

group a s  the original systems. For example, models 
with internal symmetry U(1) a re  dual to models with 
symmetry Z (Z is the group of integers under addi- 
tion) ,C5-71 

In the present paper i t  will be demonstrated that 
models with internal symmetry z&) are  dual in the 
sense mentioned above to models with the same sym- 
metry Z(n), and, for a special choice of the form of the 
interaction between the spins, the duality i s  found to be 
exact, i.e., it can be expressed in the form of a trans- 
formation of the temperature, as i s  the case in the 
Ising models. 

For simplicity, f i rs t  we shall consider only a spin 
system on a two-dimensional square lattice, with the 
global symmetry Z&). We shall label the lattice sites 
by the variable x={x,,xJ, where x, and x2 a re  integers. 
The dual lattice i s  obtained by shifting the origin to 
{i, i}, and i ts  si tes a re  labeled by the variable 
?={?,,IJ, where x, and x2 are  half-integers. In addi- 
tion, we introduce two "unit vectors" Axp, p = 1,2, 
such that Ax, ={I, 0) and AX,=(O, 11, and their dual pair 
of "vectors" 

where E,, i s  the antisymmetrizer &, , = - E ,,, &,, = 1. A 
bond terminating a t  the si tes x and x + Ax, in the orig- 
inal lattice is labeled by the p,air x, p,-and a bond of the 
dual lattice with i t s  ends at I' and !i? + Ax, by the pair 
?, p. We note that the bond x ,p  i s  dual to the bond I, p 
ifI=x+{4,+).  

The elements of the group Z &), specified a t  the 
lattice sites, will be represented by the numbers exp 
(i*d, where @,=2nk,/n, k = 0,1, . . . , n - 1; here the 
group multiplication coincides with numerical multi- 
plication. We shall denote the configuration of the 
system by { @ J ,  and we must not, of course, distinguish 
between configurations that differ by 2nm, if the rn, are  
integers. The partition function of the model has the 
form 

where T is the temperature parameter. As the func- 
tional CI({@J, T) we take 

This complicated and special form of U has been chosen 
so that the KW transformation does not change the 
functional form of the interaction energy and reduces to 
a transformation of the parameter T o 3 )  In view of the 
fact that, for T-0 and small @, - 0,+,, , 

we shall call T simply the temperature. 

Using (2), we obtain 
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where {mx,,} denotes a configuration of integers de- 
fined on the bonds of the lattice. If on the bonds we 
define the increments Ox,, = ax, the summation 
over a, can be replaced by a summation over 
(where x, is a certain reference lattice site) and over 
the configurations {ex,,) of increments. Here, of 
course, the following condition must be fulfilled: 

which takes into account that the circulation of the 
"vector" around a cell of the lattice leads to the 
starting group element. In formula (5) the lattice 
"curl" (Rot 9 ); and the intergers 1; are defined on 'ihe 
si tes of the dual lattice. 

It i s  easy to verify that 4' 

Therefore, the summation in (4) can be taken over all 
{o~,,} if the factor 

r exp ( ip;(Rot  0);) (7) 
r p ; 4  

is introduced into the summation. After this, (4) can be 
rewritten in the form 

Hereb;} denotes a configuration of the numbersp;. 
Now the summation over m , ,  can be performed ex- 
plicitly and we obtain (we have introduced the notation 
9,,, + 2am , ,  = (2a/n)k,, ) 

Using the well known equality 
2 

we obtain 

where { l; , , }  denotes a configuration of integers on the 
bonds of the dual lattice, the notation x.; = 27rp;j/n has 
been introduced, and 

Finally, i t  is pertinent to make the following remark. 
In the above computations we omitted the summation 
over the variable cPq (which reduces to multiplication 
by n) and implicitly added an "extra" summation over 
x at  one of the sites of the dual lattice. To understand 
the latter, we imagine that the lattice is closed on a 
torus. If we now pick out some lattice site, the con- 
dition curl 6' = 0 at all the other sites will ensure that 

the "curl" a t  this site i s  equal to zero, so that one 
summation over p in (7) is superfluous. Because of the 
Zh) symmetry of the dual system, this summation 
leads only to multiplication by n. 

The duality relations for "generalized gauged sys- 
tems" with Z h )  symmetry a re  derived analogously. We 
note f i rs t  that the generalized gauge invariance implies 
that configurations differing by a gauge transformation 
must be  regarded as identical. Therefore, for systems 
with generalized gauge symmetry the summation over 
the "potentials" A can be replaced by a summation over 
the "intensities" F with the constraint that the lattice 
"curl" of the field F be equal to zero. This curl i s  de- 
fined on the (q + 1)-dimensional elements of the origi- 
nal lattice, or, which i s  equivalent, on the @ -q -1)- 
dimensional elements of the dual lattice that a re  dual 
to them. The constraint can be  fixed by introducing 
expressions of the form (7) into the summation, where 
the numbers p are  defined on the @ -q  - 1)-dimensional 
elements of the dual lattice. This substitution quickly 
leads to the required duality relations. 

We note that for n = 2 the model (1) conincides with 
the usual Ising model. Indeed, it is easy to verify that 
when n - 2  and when the relation between K and T (K i s  
the inverse temperature of the Ising model) i s  implic- 
itly determined by h2e formula 

the model (1) is transformed into the Ising model. In 
this case the replacement T-T* corresponds to the 
replacement K-K*,, where sinh2Ksinh2K*=l. 

The KW symmetry of the two-dimensional Ising 
model enables us to establish the position of the phase- 
transition point (from the condition K=K*). For n 2- 3 ,  
evidently, the situation is different: there a re  two 
phase-transition points T;) and Tp) ,  with 
T:)T~'= 47r2/n2. The postulated phase diagram in the 

(T,n)-plane is depicted in the Figure. There i s  an 
upper and a lower phase, which transform into each 
other the KW transformation (the shaded regions in the 
diagram). In the lower phase the symmetry i s  broken 
and the system fluctuates about one of the elements of 
the group ~ ( n ) ,  while in the upper phase the symmetry 
of the dual system is broken. Between them is an inter- 
mediate region Tp '  < T < T:'. It i s  possible that in this 
region the system has the properties of the Berezinskir 
p h a ~ e ' ~ * ~ '  of the XY model, i.e., the symmetry is not 
broken (there is no mean field) but there i s  transverse 
stiffness and the correlation functions fall off at large 
distances in a power-law manner with exponents that 

n 

FIG. 1. 
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depend continuously on the temperature. Then the phase xxv(~)={: G = I  G + I  
transition at T =T:' corresponds to the vanishing of the 
transverse stiffness and is the phase tran- Here  v labels the irreducible representations of the p i n t  group 
sition in the XY model. G, n is its order ,  and x,( G) a r e  the characters  of these 

representations. This relation and the analogous formula for 
The author i s  grateful to Aleksandr Zamolodchikov continuous groups makes it possible to use  the method pre- 

for useful discussions and comments, and also to sented to obtain KW relations for systems with any commuta- 
L. I. Lapidus for his interest in the work. t ive group. 
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2hI?ne fields under consideration a r e  a certain formal gener- 
alization of a gauge field. A geometrical interpretation of 
these fields is, however, not known. F o r  q=2 the general- 
ized gauge field coincides with the usual one with gauge 
symmetry Z(2). We note that gauge models with any com- 
mutative symmetry can be  generalized in a similar formal 
manner. 
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The Mossbauer effect is use to measure the pressure dependences of the hyperfine magnetic fields H and 
of the isomeric shifts r at the nuclei 5 7 ~ e  and "9Sn in the alloy Fe,,Rh,, with - 1 at.% Sn as an impurity. 
Pressure causes E to decrease, and this corresponds to an increase (for 57Fe) or a decrease (for Il9Sn) of 
the density of the s electrons at the nuclei. In the ferromagnetic (FM) state of the alloy, at 398 K, 
AH/HAp =(-2.8+0.2)~10-"bar~' for 57Fe and (-4.8*0.8) X I O - ~  kbar-' for Il9sn; in the 
antiferromagnetic state (AMF) at 78 K, AH/HAp=. 0 for 5 7 ~ e  and AH/HAp = (-6.2+ 1.O)X lo-' 
kbar-I for Il9Sn. The results are attributed to the strong dependence of the magnetization of the alloy 
matrix on the pressure for "Fe in the FM state and to the absence of "local" polarization of the s-like 
collectivized electrons and to the pressure dependence of the magnetic moments of the Fe ions in the 
AFM state. The causes of the different effects of pressure on the magnetic moments of the Fe ions in the 
FM and AFM states are discussed. The results for Ii9Sn in the FM and AFM states agree with a 
previously proposed model [A. E. Balabanov, N. N. Delyagin, et al. ,  Sov. Phys. JETP 27, 752 (1968) 
and elsewhere; I. N. Nikolaev and V. P. Potapov, ibid. 45, 840 (1977)l of the hyperfine fields at the Sn 
impurity atoms in magnetic matrices. An estimate is obtained of the radial dependence of the hyperfine 
field at the 'I9Sn nuclei for the AFM state, namely, H ( r )  varies more strongly than r -9. 

This is a logical continuation of a number of preced- 
ing ~ t u d i e s ~ ' ' ~ '  of the influence of pressure on hyperfine 
interactions in magnets. The purpose of these studies 
was to attempt to explain the mechanism whereby hyper- 
fine magnetic fields are  produced at nuclei of atoms in 
magnetic matrices and, in particular, determine the 
role of spin polarization of collectivized electrons in 
the onset of magnetic order. In alloys of the Fe,Rh,-, 
system, when the composition or the temperature is 
changed, a transformation from the ferromagnetic (FM) 
into the antiferromagnetic (AFM) state is observed, the 
parameters of the crystal lattice change jumpwise by 
0.3%, and the structure remains cubic. In this case 

there is a r a r e  opportunity of tracing, in samples hav- 
ing the same composition, the influence of pressure (in- 
teratomic distance) on the hyperfine magnetic fields at 
the nuclei of the matrix (57Fe) and impurity ('19Sn) 
atoms in two magnetic states, FM and AFM, which a re  
produced by varying the temperature an which differ in 
the orientatiop of the magnetic moments of the iron 
atoms, and hence in the polarization of the conduction 
electrons. For the Fe,Rhl_, alloys, detailed studies 
were made of the magnetic fields at the nuclei 57Fe (Ref. 
7) and lI9Sn (Ref. 8), of the distributions of the magnetic 
moments and of the spin density,[ 91 and also of the in- 
fluence of pressure on the temperatures of the 

171 Sov. Phys. JETP 48(1), July 1978 0038-5646/78/07017 1 -04$02.40 O 1979 American Instituteof Physics 171 




