
cay" af te r  the light is turned off takes place as a resu l t  

of a process  having a lower activation energy: 0.2 eV- 
the  motion of dislocations. As follows f r o m  resu l t s  ob- 
tained i n  Ref. 8, if the dislocation charge is l a r g e r  than 
the s tat ionary value the dislocation will  rapidly give off 
the excess e lec t rons  to the trapping c e n t e r s  that  it en- 
counters. 

The authors  thank V. 1. Nikitenko f o r  valuable advice 
and a useful discussion. 
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Acoustic oscillations of superfluid solutions in narrow 
channels 
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The linearized hydrodynamic equations for H e 3 - ~ e ~  solutions are considered in the phonon temperature 
region T(0.7 K under conditions of complete stopping of only the phonon part of the normal component. 
The velocities of two types of sound oscillations are calculated. 

PACS numbers: 67.60.F~ 

A solution of He3 in superfluid ~e~ is an assembly of 
elementary excitations-phonons, rotons, and impurity 
quasiparticles-contained i n  a superfluid background. 
A t  t empera tures  T Q 0.7 K t h e  contribution of the ro tons  
is exponentially smal l ,  and wil l  he reaf te r  be  neglected. 
Under ordinary conditions the phonon and impuri ty  sub- 
s y s t e m s  are strongly coupled with each  other ,  manifest,  
i n  part icular ,  by the fact that the macroscopic motionof 
e i ther  the phonon gas or of the impurity-quasiparticle 
gas is character ized by the s a m e  local-equilibrium vel- 
ocity of the normal  motion. Under c e r t a i n  conditions, 
however, which will  be  spel led out below, these two 
s y s t e m s  can  be decoupled and the contribution of the 
phonon p a r t  of the normal  component c a n  thus b e  sep-  
arated.  

Interactions of excitations in a solution are complete- 
l y  descr ibed  by the corresponding sca t te r ing  cross 
sections, which w e r e  calculated by Landau and Khalat- 
nikovcll and by Khalatnikov and ~ h a r k o v , ~ ~ '  and are of 
the following o r d e r  of magnitude: 

respect ively f o r  impurity-impurity scat ter ing,  f o r  pho- 
non-phonon interaction, and f o r  sca t te r ing  of a phonon 
by a n  impurity quasipart ic le .  Here  x is the  phonon in 
units of T/s (s is the speed of sound), y is the impuri ty  
energy i n  units of 3T/2, and 6' is a function of the o r d e r  
of unity. 
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Knowing the interaction cross  sections it is easy to 
verify that there exists a considerable region c >> 10 '2p  
(where c is the concentration and T is the temperature 
in degrees ~ e l v i n )  where all the collisions a re  deter- 
mined mainly by the impurities, and the phonon mean 
free  path I,, strongly exceeds the free path I, of the ~ e '  
quasiparticles: Xph>> A,. The number of hard phonons 
and impurities (with x >> 1 and y >> I), for which this 
inequality is not satisfied, is exponentially small. If 
we now place the solution in a capillary of diarnater d 
such that la>> d>> I,, then under conditions of diiiuse 
reflection from the capillary walls only the phonon part 
of the normal component will be stopped. The influence 
of the capillary walls on the motion of the normal im- 
purity part can in this case be neglected. The degree 
of diffuseness of sound reflection from a solid surface 
is proportional, a s  is well known, to ( 5 / ~ , ) ~ ,  where 
5 is the characteristic dimension of the roughness of 
the capillary wall, and X, is the thermal wavelength 
of the phonon. We consider next the case when the pho- 
non part of the normal component is completely stopped, 
corresponding to satisfaction of the condition f >> X,. 

The macroscopic motion of the phonon gas is accom- 
panied by transport of some He3 and He4 masses,c31 
whose determination reduces to calculation of the cor- 
responding fluxes j3 and j, which enter in the continuity 
equation of the Khalatnikov two-speed hydrodynamics of 
solutions[41 (for an unbounded liquid) at T = 0: 

where pi are  the densities of the particles of each spe- 
cies (i=3,4),  v, and v, are  the respective velocites of 
the normal and superfluid motions, p,, is the impurity 
normal density, and p, + p, = p3 + p4 = p (p, is thus the 
superfluid density of the solution at T=  0). 

As the ground state of the liquid we consider a solu- 
tion at rest  at T =  0. The weakly excited state of the so- 
lution will be described with the aid of a localized wave 
packetcs1 

v.=V-'" v,, exp[i(kr-o,t) ]+ c.c., 
t 

where w,=uk, u i s  the speed of first  sound in the solu- 
tion at T = 0. The connection between the quantities p,,, 
v,, and v, is determined with the aid of the ordinary 
equations of the hydrodynamics of solutionsc41 at T=O. 
Without dwelling on the straightforward calculations, 
we present the result: 

Here A,= p3a13/8p, + p48p4/api; y (  is the chemical po- 
tential per unit mass for each species of particle, and 
F = (A, -A4)/(u2 -A4). We expand expressions (1) in 

powers of bpi, v,, and vs. The linear term in this ex- 
pansion vanishes because the wave packet (2) that des- 
cribes the localized sound excitation in the solution de- 
creases rapidly with distance.c61 

In second-order approximation, using formulas (2) 
and (3), we obtain expressions for the fluxes j, and j: 

here 

On the other hand, the acoustic momentum j (per unit 
volume) can be represented in the formc3] j = pphv, where 
pDh = 2n2T'/45R3u5 and v is the velocity of the macroscop- 
ic motion of the phonon gas. 

In the case of complete stopping of the phonon normal 
component, the acoustic excitations do not participitate 
in the normal motion at all. Since the velocities enter 
in the expressions for the hydrodynamic fluxes linearly, 
it follows that to obtain the linearized hydrodynamic 
equations 1, >> d>> I, and f >> X,, without allowance for 
the dissipative terms, to gather in the mass and entropy 
fluxes the terms corresponding to the phonon-gas mo- 
tion. The system of hydrodynamic equations in the vari- 
ables p, c,o ( a = ~ / p ,  S) is the total entropy of the solu- 
tion takes then the form 

p+p. div v.+p., div v,=O, i.+V (p-cZ/p) -0, 
op+pu+ pol div w=0, cp+pi+ pc div w=0, 

p,ji..+p.i,+VP-SphVT-pphV (p-cZ/p) =O. 
(5) 

Here w= (1 - p,,/p,~)v,, 03= s3/p, S3 is the impurity en- 
tropy, p, = pn3+ p,,, p, = p - p,, P is the pressure, and the 
thermodynamic potentials p and Z are  connected with 
the chemical potentials of the solvent and of the dis- 
solved matter by the relationsc41 

p=cp,+(l-C) pi, Z=p(pr-~r). 

The last equation of (5) can be obtained in standard 
fashion with the aid of the equation of superfluid motion 
and the kinetic equation by going to the hydrodynamic 
equations. It must be recognized here that owing to 
the diffuse reflection from the capillary walls and to 
the satisfaction of the condition f >> X, the phonons are  
characterized by and equilibrium distribution function 
with a zero macroscopic velocity. Qualitatively, the 
term -sphvT corresponds to the partial contributions 
of the phonons I,,>> d to the thermomechanical effect, 
while the term -pDhV(p - c ~ / p ) =  pDhirs reflects the fact 
that a definite mass of liquid, equal to p,,, now no long- 
e r  transports any momentum. 

The acoustic solutions of the system (5) are deter- 
mined with the aid of the usual p r ~ c e d u r e . [ ~ * ~ l  We as- 
sume that small perturbations of all the equilibrium 
quantities vary in the sound-wave field like exp(ik - r 
- iwt), and s = w/k is the wave propagation speed. Using 
the hydrodynamic equation (5) and the thermodynamic 
identities, we readily obtain 
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The system (5) is then equivalent to two coupled wave 
equations 

a20 -- (D,r,+S&,r,) Ao+[ BJ,+ (I-Sfi3,) I?,] AP-0, (7) ar 

where 

The condition that Eqs. (7) be compatible leads to a bi- 
quadratic dispersion equation whose solutions a re  in the 
general shape quite cumbersome and will not be writ- 
ten out here. 

Thus, with decreasing diameter of a sufficiently 
rough capillary and when the condition ID,,>> d>> I is 
satisfied, the velocities of the first  and second sounds 
vary in accord with Eqs. (5) and (7). Their difference 
from the first- and second-sound velocities in an un- 
bounded liquid is greater the larger the relative contri- 
bution of the phonons to a-1 the thermodynamic quanti- 
ties, i.e., at possibly smaller concentrations and larger 
temperatures (T ~ 0 . 7  K, c 2 0.5%). 

At low concentrations and neglecting the thermal- 
expansion coefficient a, expressions (6) and (7) a re  
greatly simplified. Furthermore, by virtue of the con- 
dition c >> 10-2T2, the number of the phonons is still 
much laver  than the number of impurity atoms, and 
Eqs. (7) can be expanded in powers of &,/p3 and aDh/03. 
In first-order approximation in the small contribution, 
the system (7) splits into two independent equations that 
determine the velocities of the f i rs t  (s,) and second 
(s,) sounds in a narrow channel (s, >> s,): 

where c, is the velocity of second sound in an unbounded 
liquidC4*I1: 

and the function R,, is defined a s  

In the case of low concentrations, the function Q in 
the expression for R* can be calculated in explicit form 
with the aid of the hydrodynamic equations for a degen- 
erate solution at T = 0. Substituting in (4) the values of 
the chemical potentials p3 and p4 and of the f irst-sound 
velocity u at T=O for a degenerate solution,c81 retaining 
only the terms of f i rs t  order in the concentration, we 
get 

 ere m, and m4 a re  respectively the masses of the 
atoms ~e~ and He4; M = 2.3m3 is the effective mass of 
the solitary impurity quasiparticle, s o  that 

so is the speed of sound in pure ~ e ~ ,  and (-A) is the 
binding energy of the impurity He3 atom in superfluid 
He4. 

The function cQ depends, a s  it should, on the quanti- 
ties that describe the interaction of the impurity quasi- 
particle with the superfluid background, and is of the 
order of unity. The function R,, then takes the form 

Within the limits of accuracy, in all the terms of (8) that 
contain the phonon factors u,,,/03 or  pfi/p3, it suffices to 
consider only the contribution of the He3 impurity atoms. 

The relative change of the first-  and second-sound 
velocities is thus of the order of o,,/u and p,/p, and 
for  a solution with concentration 0.5% and temperature 
0.7 K it reaches I - 3% (for second sound) and can be 
observed in experiment. The condition on the capillary 
diameter then takes the form 0 . 9 ~  d>> 0.3 X cm. 
With further decrease of the channel dimension and if 
the conditions 2,,>> d and I ,  >> d a r e  satisfied, only on 
acoustic mode remains in the solution-fourth sound.g 

In all the arguments presented above we have neglec- 
ted the presence of second-sound phonons in the solu- 
tion. In the absence of a capillary, when the condition 
c>> 10'2T2 is satisfied, the contribution of the second- 
sound phonons to all the thermodynamic quantities can 
be neglected since it is cut off by the very stringent 
requirment X >> lDh>> I under which the hydrodynamic 
approach is valid. On the other hand in the presence 
of a capillary with lph>> d>> I ,  when the phonons do not 
take part in the hydrodynamic motion, the cutoff occurs 
at much shorter wavelengths, A>> 1, "a/c, where a is 
ihe mean distance between the He4 atoms, and at larger 
solution concentrations the contribution of the second- 
sound phonons can become substantial. However, the 
effect in question is most noticeable precisely at low 
concentrations, when there is no need to  take the sec- 
ond-sound phonons into account. 

The author thanks A. F. Andreev, L. P. ~ i t aeevsk i i ,  
and the participants of V. P. Peshkov's seminar for 
very useful discussions. 
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The ~o~ol~ubov-~itro~ol'skii averaging method is used to solve the two-band equation in the Kane 
model of a semiconductor and to investigate the quasienergy spectrum of electron-hole excitations in the 
field of a strong circularly polarized electromagnetic wave whose frequency w is closed to the band gap e, 
of the semiconductor. The main feature of the spectrum is that the electromagnetic wave lifts the spin 
degeneracy of the levels due to free electrons and holes. One of the split dispersion curves is shifted only 
slightly compared with the curve for a free particle and the other exhibits-under certain conditions-a 
discontinuity of the order of pc, (p is a parameter proportional to the electric field of wave). The gap in 
the spectrum appears for O<w-% <p%; the overlap of the quasienergy bands closes the gap for 
w-cK> peg but discontinuities of the dispersion curves remain. The absorption coefficient of a weak 
electromagnetic wave of frequency w, is calculated. It is shown that creation of electron-hole excitations 
at levels without a discontinuity in a strong field results in considerable absorption near the frequency 
0, = w. 

PACS numbers: 71.25.C~. 71.35. +z 

1. INTRODUCTION ta t ions . 

A s t rong  electromagnet ic  field act ing on a semicon- 
ductor  not only hea t s  the  carriers but c a n  also c a u s e  
m o r e  fundamental dynamic changes in  the electron-hole 
subsystem, deforming and modifying its energy s p e c -  
t ~ m . ~ ' - ~ '  Distor t ions of the  s p e c t r u m  are part icular ly 
l a rge  i n  var ious  resonance s i tuat ions,  f o r  example,  i n  - 
the case of cyclotron r e s ~ n a n c e , ~ ~ ~ ~ '  when a semicon- 
ductor  is subjected t o  electromagnet ic  radiation of f r e -  
quency c lose  to  the width of the band gap (forbidden 
band)C61 or of the  gap between two conduction bands.17' 
It is important to note that under  resonance conditions 
even a weak interact ion may alter radically thewenergy 
spec t rum of the s y s t e m  (see ,  f o r  example,  Oleinik's 
paper)F4] Physical ly ,  a change i n  the energy spec t rum 
of a part ic le  under  the  action of a n  electromagnet ic  
wave implies  the  appearance of collective excitations of 
the "particle (electron or hole)+ photons" type, which 
are states of e lec t rons  and holes  s t rongly coupled t o  
the electromagnetic wave field. In electromagnet ic  
fields causing rad ica l  changes i n  the energy spec t rum 
and,  consequently, a l t e r ing  the v e r y  nature of the e lec -  
t r o n  and hole motion, the behavior of the  s y s t e m  could 
be  described ent i rely i n  t e r m s  of these  collective exci- 

We s h a l l  u s e  the ~ o ~ o l ~ u b o v  - ~ i t r o ~ o l ' s k i i  averaging 
methodc8] to solve the two-band equation i n  the Kane 
model of a semiconductor  (Sec. 2) and we sha l l  inves- 
t igate  the  quasienergy s p e c t r u m  of electron-hole exci- 
tat ions i n  the  field of a s t rong  c i rcu la r ly  polarized 
electromagnet ic  wave descr ibed  by the potential1) 

A=a (cos kx, sin kz, 0) , 

where a =  cons t>  0 is the amplitude of the potential; 
k = (k,/c, 0 , 0 ,  k,) is the wave four  v e c t o r  of a photon; 
k,= c-I E ' ' ~  ko; e = const  is the permit t ivi ty  of the med- 
dium. We sha l l  cons ider  the  case of a p a r a m e t r i c  res - 
onance when the frequency of a n  electromagnet ic  wave 
w = ko is related t o  the band gap e, of a semiconductor  

by 

We sha l l  define a s t r o n g  electromagnet ic  field by the 
inequality 

where  52 is the frequency of t ransi t ions between the 
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