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Long-wave secondary radiation in polar semiconductors 
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A new type of secondary radiation is predicted upon excitation of a semiconductor with light of frequency 
ol in the region of intrinsic absorption. The radiation is the result of resonant Raman scattering of light, 
wherein an electron-hole pair and a certain number of longitudinal optical phonons are present in the final 
state of the crystal. Since the kinetic energies of the electron and hole in the final state can be different, 
the secondary radiation spans the band 0 5 o, 5 o,,,, in the long-wave band. The scattering cross section is 
calculated with allowance for the dispersion of the LO phonons. It is shown that the dependence of the 
cross section of the process in question on the frequencies ol and o, has a steplike character. Each higher 
step corresponds to turning on a process in which the number of emitted LO phonons increases by unity. 
It is shown that the scattering cross section is a quantity of zero order in the Frijhlich coupling constants 
of the electrons or holes with the LO phonons. The reason is that the secondary radiation is the result of 
a sequence of real transitions, each of which is accompanied by the emission of one LO phonon. 

PACS numbers: 78.30.Gt, 63.20.Dj, 63.20.Kr 

1. INTRODUCTION O<".< (i+m,lmh)-' (ol-E,lfi) -(k+l)w=o, (1.1) 

With the appearance of high-power laser s o u r c e s  of 
where  vne(m,) is the  effective m a s s  of the electron 

light, and with increasing r e c e i v e r  sensitivity, the cap- 
(hole), and E, is the  width of the forbidden band. In 

abilities of modern experiments  on regis trat ion of 
fact ,  if the kinetic energy of the  electron a f t e r  emission 

secondary radiation of condensed media have great ly 
of secondary radiation i s  equal  t o  zero, then 

increased. This  p r o g r e s s  gives grounds f o r  hoping 
that study of secondary radiation wil l  become a rel iable  w,-ol-Edfi- (k+ 1) (l~~~-E~~/ti. . (1.2) 
method of measur ing  a number of p a r a m e t e r s  of solids. 
The experimental  r e s e a r c h  in th i s  field h a s  stimulated where  E,, is the kinetic energy of the hole produced by 
theoret ical  investigations ( see ,  e.g., Refs. 1 and 2). light w,. Since the equality 

In th i s  paper  we predict  a new type of secondary rad- 
iation of po la r  semiconductors .  The  radiation is the re- 
sul t  of the following s e t  of real t ransi t ions:  p r i m a r y  
radiation with frequency w ,  produces a n  electron-hole 
pa i r  (EHP), the electron ( o r  hole) e m i t s  in succession 
k longitudinal optical (LO) phonons (we neglect inter-  
actions with acoust ic  phonons), and finally the elec- 
t ron ( o r  hole) e m i t s  a quantum Fiw, of secondary light, 
accompanied by s t i l l  one m o r e  optical phonon. No an- 
nihilation of the electron and hole t akes  place; the elec- 
t ron and hole, having lost  a n  energy Aw, + (k + l)AwL0 , 
can retain p a r t  of the i r  kinetic energy. Indirect  emis -  
sion of the quantum Aw, accompanied by the LO phonon, 
by the electron,  is a p r o c e s s  inverse  to indirect absorp-  
tion of light by f r e e  c a r r i e r s  that  interact  with LO 
p h o n o n ~ . ~  

It  follows f r o m  the energy conservation law that  when 
a n  electron emi t s  k + 1 LO phonons the secondary rad-  
iation spans the frequency band 

is sat isf ied in d i rec t  production of EHP,  it  follows that  
by substituting (1.3) in (1.2) we obtain the upper  bound 
f r o m  (1.1). T h e  lower bound w,=O corresponds to the 
maximum res idua l  kinetic energy of the electron. If 
secondary radiation with participation of k + 1 LO phon- 
o n s  i s  t o  take place at a l l ,  i t  is necessary  that the 
right-hand s ide  of (1.2) be  l a r g e r  than zero ,  i.e., that 
the following condition hold: 

If a hole r a t h e r  than an electron part ic ipates  in the 
radiation, then the m a s s  m e  in (1.1)-(1.4) must be  re- 
placed by JIZ , ,  and vice versa.  It  follows f r o m  (1.4) that 
the frequency w, should l ie  in the region of the intrinsic 
absorption of the semiconductor. 

An examination of the electron energy distribution 
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function readily reveals a few other features of features 
of the secondary radiation. At low constants of the 
coupling of the electrons with the LO phonons (but much 
larger than the constants of the coupling with acoustic 
phonons and with light), the most probable processes 
a r e  those in which one LO phonon is discarded. The 
electron then "cascades" over the band and forms (in 
the case of nondispersing LO phonons) a distribution 
that differs from zero only at the points where the elec- 
tron kinetic energy equals 

Of course, the energy region E <AwLo i s  excluded 
from consideration, since the energy relaxation of the 
electron o r  hole i s  determined by the interaction with 
the acoustic phonons, impurity centers, recombination, 
etc. It should be noted that the number of electrons 
with energy E, has no parametric smallness compared 
with the number of electrons of energy E,+ AwLo in the 
steady state, since the departure time and the arrival 
time a re  determined by the same electron-LQ-phonon 
coupling constant. Thus, owing to the initial isotropy 
of the momentum distribution, the electron distribution 
function differs from zero in thin spherical layers in 
K space. The same holds also for the hole distribution 
function. If we include in the consideration the inter- 
action of the electrons with light, it must be recognized 
that the contribution of the processes with photon par- 
ticipation to the distribution function i s  very small and 
can be discarded. As a result, radiation processes 
must be studied with the distribution function described 
above. 

A s  already noted, the most probable process is  
emission of a quantum Aws accompanied by an LO pho- 
non. It follows from (1.2) that the emission of a quan- 
tum Aw, is possible only from electrons having a kin- 
etic energy 

With increasing frequency w, of the incident light, the 
radius of the spherical layers increases. When the 
radius of the largest spherical layer reaches a value 
(2meEs)112/A, observation of secondary light of frequen- 
cy w, f irst  becomes possible. When the next spherical 
layers pass through the same threshold, they also 
"come into play" and increase the scattering cross sec- 
tion for the given frequency w,. This explahs the ap- 
pearance of threshold singularities in the scattering 
cross section a s  a function of w, (see Fig. 4 below). 
At constant w,, a different number of spherical layers 
contribute to radiation with different w,, and this num- 
ber depends on the value of w,. This i s  the reason for 
the presence of threshold singularities in the w, de- 
pendence of the cross section (see Fig. 3 below). 

The existence of LO-phonon dispersion blurs some- 
what the picture outlined above, but calculations show 
that all  the singularities of the distribution remain 
well defined. 

Examination of (1.2) and (1.3) shows that the second- 
ary radiation can be treated a s  a sort  of Raman scat- 
tering wherein k + 1 LO phonons and an EHP a re  pres- 

ent in the crystal in the final state. 

The cascade of successive real  transitions wherein 
the electron emits a certain number of LO phonons was 
first  considered by Martin and Varma4 for a descrip- 
tion multiphonon resonant Raman scattering (MRRS) 
of light, i.e., scattering with frequency w,= w, - nw,,. 
However, the application of the cascade model to the 
MRRS is made complicated by the fact that annihilation 
of the EHP, accompanied by secondary radiation, takes 
place during the last stage of the process, and this an- 
nihilation is hindered by the fact that the electron and 
hole a r e  separated in space. It i s  shown in Refs. 5-7 
that the cross  section for MRRS with participation of 
EHP has some additional smallness in terms of the 
electron-phonon interaction parameter compared with 
the results of Ref. 4. Owing to this smallness of the 
EHP contribution, it can compete in the MRRS cross  
section with the contribution of the hot e x c i t o n ~ . ~ . ~  

The scattering considered in the present paper dif- 
fers  from MRRS in that the electron o r  hole emits a 
quantum Aw, without annihilation, so  that this scattering 
can be described a s  a pure cascade process, i.e., a s  a 
sequence of known real transitions. In this respect it 
is  similar to MRRS by hot excitons. It is important 
that in any cascade process with LO-phonon participa- 
tion, in polar semiconductors an increase in the number 
of emitted phonons does not lead to an additional small- 
ness with respect to the electron-phonon interaction 
constant. 

The cross  section was calculated by us  by two meth- 
ods. The first  is  the one proposed in Refs. 7 and 9 and 
based on the use, for the scattering tensor of rank 4, 
of a general formula that describes in principle any 
type of secondary radiation with allowance for all inter- 
actions in the crystal in arbitrary sequence. The form- 
ula was determined with the aid of a diagram technique. 
The second method i s  based on solving the balance 
equation for the distribution function of the electrons 
(holes). It turned out that both methods yield the same 
result, a s  might be expected for a cascade process of 
pure type. We present below only the calculations by 
the second method, and in addition show, by way of ex- 
ample, one of the diagrams (see Fig. I), which corres- 
ponds to emission of two LO phonons and a quantum 
Aw, by an electron. In the diagram of Fig. 1, the pairs 
of the cuts 1-1' and 2-2' correspond to transitions 
through real  states, the pair of cuts 3-3' corresponds 
to a transition through a virtual state. The cut i cor- 
responds to the initial state, when there is one photon 
of incident light with frequency w,. In the final state 
(cut f )  there a r e  two LO phonons, a secondary-radia- 
tion quantum Rw,, an electron, and a hole. 

Thus, assume a direct-band polar semiconductor 
with me<m,. When an EHP is directly produced by the 
light, the hole kinetic energy i s  given by (1.3), and the 
kinetic energy of the electron a t  a light frequency w, is 

The total secondary-radiation cross  section consists 
of the cross sections that describe the processes of 
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FIG. 1. One of the diagrams describing resonant Raman scat- 
tering of light with emission of two LO phonons without anni- 
htlbtion of an electron-hole pair. 

photon emission by the electron and hole separately. 
Since these cross  sections a r e  functionally identical, it 
suffices to find the cross  section for secondary radia- 
tion from the electrons. 

The cross  section of the process, averaged over the 
polarizations of the incident light and summed over the 
polarizations of the secondary radiation, i s  given by 

6 0 .  V,'o.'n(o.) Wlo , ) ,  -- 
d a d o .  (2n) 'c 'n(ol )  

where Vo i s  the volume of the crystal, c is  the speed of 
light in vacuum, n(w) i s  the refractive index, V(w,) is 
the probability of emission of a secondary-radiation 
photon with frequency w, per unit time in a unit solid- 
angle interval, when the volume Vo contains one inci- 
dent-light quantum. By definition, the quantity W(w,) 
pertains to a medium with a unity refractive index. 
The probability W(w,) does not depend on the direction 
in which the secondary photon i s  emitted, and i s  given 
by 

where W,(E, w,) i s  the probability, averaged over the 
angle between the electron and photon momentum di- 
rections, of emission, in a unit time, into a unit solid 
angle, of a photon of energy tiw, by an electron having 
a kinetic energy E;P(E)dE is the number of electrons 
with energies in the interval from E to E +  dE. 

For the case when the momentum distribution of the 
electrons i s  isotropic, the balance equation takes the 
form 

- 
- P ( E )  1 W ( E .  E ' ) ~ E ' +  W,G(E-E, . ) ,  (1.8) 

0 

where W(Ef, E)dE is the probability of the transition of 
an electron from a state with energy E r  to the energy 
interval from E to E+dE;  W, i s  the number of EHP 
produced in a unit time in a medium with unity refrac- 
tive index if the volume Vo contains one incident-light 
photon with frequency w ,; E,, i s  determined by formula 
(1.5). In polar semiconductors, the interaction of the 
electrons with the LO phonons is  much stronger than 
all  other types of interaction, so  that for energies E 
>FiwLo we put W(E1, E) -WL0(E1, E), where wL0(E', E)dE 
i s  the probability of an electron transition from a state 
with kinetic energy E r  into a state with energy in the 

interval from E to E + dE, with emission of an LO pho- 
none We shall consider effects at a temperature below 
the Debye temperature, when processes with LO-pho- 
non absorption can be neglected. We shall solve Eq. 
(1.8) for the region E>AwLo. 

2. CALCULATION OF THE TRANSITION 
PROBABILITIES 

In the calculation of WLo(E, E') we choose the LO- 
phonon dispersion law in the form 

where 77 i s  a dimensional dispersion parameter that 
can be either positive o r  negative; q i s  the wave vec- 
tor of the LO phonon. The FrBhlich Hamiltonian of the 
interaction of the electrons with the LO phonons is 

- (Cqbqe'qr+C,'bq+e-iqr), (2-2) 
q 

where 

b,(b,*) is the phonon annihilation (creation) phonon, E, 

i s  the static dielectric constant, and E ,  is  the high-fre- 
quency dielectric constant. The probability that an 
electron with kinetic energy E will emit one LO phonon 
i s  

w ~ ~ ( E ) = % ~  ~(f~H~l-ph~i)~z6(Ef-Et). (2.3) 
I 

The quantity W,,,(E), calculated from (2.3) i s  equal to -- 

I h r o  
2mo.0 (T)" arch ( )'I' , E > h ~ ~ o ( i - q )  

l v~o(E)  = fioLo(l-sr) 
0. E < f i ~ ~ ~ ( l - ~ ) ,  (2.4) 

where 

i i = ~ l r n , l A  

is  the dimensionless dispersion parameter.' ' 
We calculate the probability WLo(E, E') in f irst  order 

in CY. Recognizing that 

w L 0 ( E )  =J WLO (E ,  E')dE' ,  (2.6) 

we get for WLo(E, E') from (2.3) 

U O Z ~ W  * 
W r , o ( E , E 1 ) =  2 ~ " ( E ' + f i w , , - E )  

0 outside the indicated interval l- 
where 

If the energy E'  i s  fixed, then WLo(l$Er) differs from 
zero in the energy interval 
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The Hamiltonian of the interaction of an electron with 
light in a medium having a unity refractive index is 
given by 

Introducing the dimensionless variables 

we have f rom (3.2), by taking (2.4), (2.7), and (2.9) in- 
to account. 

where p is the electron-momentum operator, w i s  the 
photon wave vector, %, is its polarization vector, and 
a,,, ,(d &) is the operator of the annihilation (creation) 
of a photon with wave vector w and polarization A. 

- G-(Z) dz' 
(x)- 4 arch [z  (1 - y)-l]'/a - $ @I) ( 2 f y / z  (z + f - 2 T )  

= 6 (z - x O e )  , 
r+(=) (3.5) 

From (3.5) we readily obtain 

For  the probability that an electron with wave vector 
K will emit in a unit time into a unit solid angle a sec- 
ondary-radiation photon with wave vector x, summed 
over the polarizations of the emitted photon, we have 

It is clear from the conservation laws that a t  not too 
large a phonoi dispersion the quantity F(x) differs from 
zero in discrete energy intervals. With increasing 

23-1 
W , , ,  =T IMl161E,--Ei), (2.11) 

I 

number of the phonons that the electron must emit to 
reach an energy E < E,,, these intervals increase, and 
if E,, i s  large enough, then at energies below a certain where in lowest order of perturbation theory 
value these intervals begin to overlap. For  that ener- 
gy region in which F(x) differs from zero only in dis- 
crete intervals, it is  convenient to break it up in the 
following manner: Here ( i )  is the initial system state with one electron 

with wave vector K; I f )  is the final state and includes 
an electron, one LO phonon, and a quantum with us. 
In the intermediate states In) are  present an electron 
and one LO phonon, while in states Inf) a r e  present an 
electron and a quantum with us. Calculations by for- 
mulas (2.11) and (2.12) yield a t  x,=O 

Equation (3.5) interrelates the function F,(x) with dif- 
ferent k. Substituting in the second term of the left- 
hand side of (3.5) the known function Fo(x) from (3.7), 
we get for F,(x) 

P, ( z )=O at z outside theindicated interval. 

Now, knowing F,(x), we can find P,(x) by an analogous 
procedure: 

In principle, it is  possible to find all P,(x) for any h.  
The practical difficulty i s  that the obtained integrals 
(say from the right-hand side of (3.9)) can not be ex- 
pressed in analytic form. 

E,, is  determined by formula (l.5), 0 i s  the angle be- 
tween the vectors K and us. The value of (2.13) averag- 
ed over the directions K i s  of the form 

2ne20LoKa E E' 2 
W ,  (E ,  a , )  = m.oSSA"V, ~ ~ ~ ~ 1 ~ f ( ~ , ~ ,  V. n )  

oe 
For the limits of the intervals where P,(x) differ 

from zero (we designate these limit x,,,,, and x,,,,, 
with x ,,,, <x,,,), we can write the recurrence rela- 
tions 

3. BALANCE EQUATION FOR THE ELECTRON 
DISTRIBUTION FUNCTION 

The balance equation (1.8) a t  E >EwL0 will be written 
in the form Z ~ + I , ~ ~ ~ = = V - ( G .  m i . ,  z ~ + I ,  -=cp+(z~.- ) .  (3.10) 

-= "(') j P(E')  WLo(E', E)dE'-P(E)  WLo(E ,  E1)dE'+W18(E-E.).  
a t  

(3.1) 

For a stationary distribution, allowance for (2.6) 
changes (3.1) into 

P ( E )  w,, ( E )  - I P ( E ' )  w,, (E', E )  ~ E ' = W J  (E-E,.). (3.2) 

In principle, these relations make it possible to de- 
termine the energy starting with which the intervals 
where F,(x) + 0 begin to intersect (if such an energy ex- 
ists at the given dispersion parameter for the given 
value of E,,), but even below this energy the procedure 
of successive substitutions makes it possible to deter- 
mine the solution of (3.5). 

It is  more convenient to solve (3.2) for the dimension- 
less quantity 

For dispersionless LO phonons, i.e., at 7 = 0, the 
probabilities WLo(E, E') a r e  proportional to 6(E - E' 
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- iiw,,) and the electron is thrown off from the level E 
to the level E - Aw,,, and not to an energy band a s  in 
the case of phonons with dispersion. Equation (3.2) re- 
duces then to a system of algebraic equations whose 
solution is of the form 

Wl6 (E-Eo,+kfiow) 
P(E)= C Wm(Eo.-kfio~o) (3.11) 

ocrc&ln.,-l 

4. SCATTERING CROSS SECTION 

The scattering cross  section is determined by form- 
ulas (1.6) and (1.7). Using (2.16) and (3.3), we have 

$0. Voe'oLo2an(o.) WW, -- 
dQ do. hZc4rn.o.n (of)  WLo (Eo.) 

where pk(x) is determined from (3.7) and (3.5), 

For the numerical calculations it is convenient to ex- 
press the probability of EHP production in the form 

where ko(w,) is  the coefficient of light absorption via 
direct production of an EHP in the medium with unity 
refractive index. The expression for k0(u,) i s  

where ~ ( w , )  is  the experimentally determined coeffic- 
ient of light absorption via direct EHP production in a 
medium with a refractive index n(w,). From (4.2), 
(4.3), and (4.1) we have 

,@or Voe'orok(rr) n(or) - = t o .  

dQ do. 8nzm.cao. arch[to. (1-4) -'I " 

Expression (4.4) yields the scattering cross section 
in the case when the photons a re  emitted by electrons 
only. It should be noted that this cross  section does 
not depend on a. When account i s  taken of the hole con- 
tribution, the total cross  section is 

80 d2d. + d20h 
-=- 
di!do. dado, dPcl". ' 

(4.5) 

where the expression for d2a,/d51dws differs from the 
first term of (4.5) only in that me is  replaced every- 
where by m,. Putting q = 0 and using (3.11), we readily 
obtain an expression for the scattering cross section 
given in Ref. 10 for the case of dispersionless LO 
phonons: 

d o  Voe2oL0k(ol) n (w)  ZoiI, 
-= 
di! do,  8x'rn,cJo. 

where xke = xoe - k. 

Formula (4.5) was obtained with the dispersion law 
(2.1). In order for the analysis to remain valid within 

the framework of the model it is necessary that the LO 
phonon with the maximum vector q = q,, be describable 
by the dispersion law (2.1). If the approximation (2.1) 
is valid only up to q = q,, then our results a re  valid for 

where 

a s  follows from (1.5) and from the expression for q,, 

where K i s  the absolute value of the wave vector of the 
electron that emits the LO phonon. 

5. DISCUSSION OF NUMERICAL RESULTS 

On the basis of (3.8) and (3.9) we calculated the func- 
tions F,(x) and F2(x). The results of the calculations a t  
ij=0.02 and xoe=3.4 a r e  shown in Fig. 2. It i s  seen from 
this figure that the electron energy spread increases 
with each emitted phonon. The maximum value of Fk(x) 
decreases a t  the same time. The energy spread of the 
electrons depends not only on the dispersion parameter 
but also on the level E,,. At x,,= 10 and T=  0.02 the 
electron energy distribution becomes continuous al- 
ready after emission of two LO phonons. At xoe= 5 a 
continuous distribution sets  in after four successively 
emitted LO phonons. 

At the numerical values 

we used (4.4) to calculate the quantity 

e2oLoV,k(o,) n (o.) -' 80 .= ( (5.1) 
8nZrnac30. ) dildo. 

a s  a function of ws/wLo. At the chosen values of the 
parameters, the holes make no contribution whatever. 
The results of the calculation a r e  shown in Fig. 3 by 

FIG. 2. Dimensionless density P of the distribution of the elec- 
tron energy, as  determined by (3.3), as a function of 
x = E/liwLo at 

(result of numerical calucations). The parts PI(.%) and B2 of 
the curve correspond to electrons after emission of one and 
two LO phonons, Po(%) = 6 (x-.roe). The range of x from 0 to 1 
was not considered, since in this region electrons can not 
emit LO phonons. 
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FIG. 3. Dependence of the dimensionless quantity A (5.1) on 
wdwLo a t  m / m h =  0.2 xk= 3.4 for  LO phonons without disper- 
sion (dashed line) and with dispersion (solid line) a t  f j =  0.02 
(result of numerical calculations). 

the solid line. The dashed line shows the same depen- 
dence, but for the case of dispersionless LO phonons 
calculated by formula (4.6) (see also Ref. 10). For  
the case of LO phonons with dispersion, the depen- 
dence continues to have a steplike form. Each higher 
step corresponds to turning-on of a process in which 
the number of emitted LO phonons increases by unity. 
The presence of dispersion leads to a smoothing of the 
threshold singularities characteristic of the case of 
dispersionless LO phonons and to a shift of the entire 
curve towards larger w,. The first  threshold appears 
at 

Figure 4 shows a plot (solid curve) of A against w,/ 
w,, a t  a fixed value of the ratio w,/wL, =0.3 and a t  ti 
=0.02. For comparison, the dashed curve shows the 
same dependence but for dispersionless LO phonons. 
The first  threshold appears at 

(5.3) 

It must be noted that the chosen value of Tj=0.02 i s  
much larger than those really existing (=lo4). Increas- 
ing the dispersion parameter leads to  greater smooth- 
ing of the thresholds but, a s  seen from Figs. 3 and 4, 
even at a larger dispersion they manifest themselves 
well enough. We emphasize that the distances between 
the thresholds on Figs. 3 and 4 a re  different: they a re  

1 1 f I 
0 U 5 

for-fm!/y. 
FIG. 4. Dependence of the quantity A (5.1) on ( u ~ - E J E ) u ~ ~  a t  
m&,= 0.2 wJwm= 0.3 for LO phonons without dispersion 
(dashed line) and with dispersion a t  f j =  0.02 (solid line). Re- 
sult of numerical calculations. 

exactly equal to unity a t  q = 0 on Fig. 3, while in Fig. 4 
they a r e  equal to 1 + m,/m ,. 

"~ttention must be called to the difference between the para- 
meter 11 and the customarily encountered disperssion para- 
meter. If the dispersion law is written in the form 

then the usual values of A range from 1/3 to 1/10; relating, 
however, the quantities and A, we get 

where a is the lattice constant. 
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