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Amorphization is investigated for crystalline, magnetically ordered structures, each of which is 
characterized by two exchange parameters of different magnitudes and signs. The amorphous magnet is 
treated within the framework of the lattice model with fluctuating exchange bonds, by use of the coherent- 
potential approximation. Conditions are found under which the amorphized magnetic can be described as 
an effective ferromagnet; the coherent exchange parameter and the modified density of magnon states are 
also found. It is shown that amorphization of antiferrornagnets may, under certain conditions, be 
accompanied by a change of the type of magnetic order, an increase of the temperature of the magnetic 
phase transition, and the appearance of sinplanties in the density of magnon states. 

PACS numbers: 75.50.Kj, 75.30.Et, 75.40.Fa 

1. INTRODUCTION 

A broad class of magnetically ordered structures is  
known, which is  characterized by anisotropy of the dis- 
tribution of exchange bonds: for example, quasi-one- 
dimensional and quasi-two-dimensional magnets.[" In 
the simplest case, such structures are described by 
two exchange parameters; the type of magnetic order 
and the temperature T, of the magnetic phase transition 
in the crystal are determined by the weak exchange 
that binds the magnetic chains or planes. Amorphiza- 
tion of such structures may be accompanied by a con- 

now the A,, are fluctuating exchange parameters, diff- 
erent from zero only for NN. In general theA ,, fluc- 
tuate in magnitude and in sign. One of the methods for 
theoretical investigation of amorphous magnets is  the 
coherent-potential approximation (CPA). In this 
method, the amorphous magnet is approximated by a 
certain ideal crystal, in which the exchange between 
NN i s  represented by a coherent exchange parameter 
A ,(f -m, E). This parameter i s  found from the con- 
dition for absence, on the average, of spin-wave 
scattering, and it is a function of the excitation energy 
E. 

siderable increase of the temperature of the magnetic 
The problem of the present paper i s  the development 

phase transition and also by a change of the type of of a theory of amorphization of magnetically ordered 
magnetic order, since in this case the exchange i s  crystals with anisotropy of the distribution of exchange 
averaged and it is rather this averaged exchange that bonds. In a strict formulation, this problem is  in- 
determines the type and temperature of magnetic 

solubly complicated. Therefore we shall use here the 
~ rde r ing . [~*~]  Consequently, amorphization of this 

lattice model of an amorphous magnet and the CPA. 
class of magnetically ordered structures may prove For the case of amorphization of a ferromagnet, the 
to be an important method of obtaining new magnetic 

solution of the problem was given in a previous 
materials. 

paper.t31 The generalization of the theory to the case 
The magnetic state of nonconducting magnets is des- 

cribed sufficiently well by the spin ~ a m i l t o n i a n ~ ~ '  

where A, are the effective exchange parameters. Be- 
cause of the short-range character of exchange, it may 
be supposed that theA f, differ from zero only for 
nearest neighbors (NN). In ideal crystals, because of 
translational invariance, A ,, -A,(f - m) =A ,(h). In 
general the exchange parameter A, (h) depends on the 
orientation of the exchange bond in the crystal. For 
example, for quasi-low-dimensional crystals, in the 
simplest case, it is  necessary to introduce two ex- 
change parameters, A,(h,)=J andA,(h,)=K. In a crys- 
tal this automatically leads to anisotropy of the distri- 
bution of exchange bonds J and K. The anisotropy of 
the distribution of exchange is  characterized by the 
parameter A =  K/J. In quasi-low-dimensional magnets, 
( X I  << 1, and the temperature Tc= ~ ~ ( 1 ~ 1 ) ;  T,(O) = 0. 

The magnetic properties of an amorphous material 
can be described approximately within the framework 
of the lattice model C51 with the Hamiltonian (I), where 

when the exchange parameters J and K have different 
signs turns out to be significantly nontrivial, and it is 
this case that is the principal goal of the present art- 
icle. 

2. GREEN'S FUNCTIONS AND CHARACTERISTICS OF 
IDEAL CRYSTALS WITH ANISOTROPICALLY 
DISTRIBUTED EXCHANGE BONDS 

The equation for Green's function 

with use of ~yab l ikov ' s~~]  decoupling, has the form 

where 

(. . . ) is a thermodynamic average. The representa- 
tion (2) is  correct for description both of ideal crystals 
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and of disordered magnets (the lattice model). For 
definiteness we shall consider a simple cubic lattice 
(SCL) with z = 6 NN and with spin S = i. In this case 
the components of Sf are  expressed in terms of Pauli 
operators: 

St+--bt, St--bt+, 2SrZ=1-2btcbr. 

To facilitate comparison of the properties of amor- 
phous and of ideal materials, we shall f irst  consider 
the principal characteristics of ideal magnetically 
ordered crystals. For an ideal crystal, the matrix 
ah becomes translationally invariant, and the Green's 
function is found by Fourier transformation of equation 
(2). In the most general case of an anisotropic distri- 
bution of exchange bounds in a SCL, 

Ao(hi)-Ao(-h,)=A,, h,=ea. (3) 
where e,  a re  unit vectors in the directions i =  x ,  y ,z ,  
and a is the lattice parameter. 

Ferromagnetic ordering occurs when A,  > 0. In this 
case of = u, 

(c, zcosk, a), and the Curie temperature TO, isestimated 
by the relationc4' 

where g,(E) is the density of spin-wave states corres- 
ponding to the dispersion law E,Q. 

If A, = A, = A, = A ,  the spectrum is isotropic: 
E, (k )  =6Aek, ek=l-yk. 

In the presence of symmetry in a plane, when A, =A, 
= J andA,= K, the Curie temperature depends signifi- 
cantly on the ratio K/J=  x o r  J /K= q. The limiting 
cases of an anisotropic distribution of exchange inter- 
actions, X << 1 and q << 1, a re  called, respectively, 
quasi-two-dimensional and quasi-one-dimensional 
ordering. 

It is easily shown that for K--0 (A-0) o r  J -0  (77-0) 
the integral (5) diverges; that is, TO' (x = 0) = TO, (q = 0) 
= 0, which indicates the impossibility of plane or  one- 
dimensional ferromagnetic (FM) ordering, in agree- 
ment with the theorem of Mermin and Wagner.L6] The 
function TO, (X) is given by Lines.c71 

Antiferromagnetic (AF) ordering in SCL is possible 
when (a)Ai<O, (b)A,>O, A,>O, A,<O (FM planes 
coupled antiferromagnetically), or  (c) A, < 0, A,< 0, 
A, >O (AF planes coupled ferromagnetically). In AF 
ordering the crystal splits into two sublattices: F(fcF) 
F (fcF)  and M(meM);  N,= N,= N/2, and 

All cases of AF ordering can be treated in a single 
form by introducing the quantities 

which enable us to establish the membership of sites 

f + hi and m +  h, in sublattices F and M. On performing 
a Fourier transformation by sublattices, we find the 
matrix Green's function: 

Here u E,  (q) is the spectrum of AF spin waves: 

By using the spectral theorem, we obtain by the 
standard method an equation for the magnetization a of 
a sublattice and for the estimate of the NBel tempera- 
ture TO,: 

In the case of plane symmetry, A, =A, = J, A,= K, 
the NBel temperature depends substantially on I X I 
r ( K  I /J (or on I q I J/ I K I ) foi. all the cases enumera- 
ted, and it vanishes for I X I -0 (1 q I --O), which indi- 
cates the impossibility of A F  ordering in two-dimen- 
sional (one-dimensional) systems. Thus quasi-two- 
dimensional, I x I << 1, o r  quasi-one-dimensional, 
1q ( << 1, ordering of ideal magnets is characterized by 
small values of the temperature of the magnetic phase 
transition. 

3. THE PROBLEM OF THE GROUND STATE OF AN 
AMORPHIZED MAGNET 

In a description of the amorphized state of a mate- 
rial, we shall s tar t  from the following postulates: 

1) amorphization of the crystal leads to  complete 
isotropy of the macroscopic properties of the material; 

2) in the amorphized material, on the average, the 
short-range order characteristic of the original ideal 
crystal is retained. 

The plausibility of these postulates is confirmed by 
experimental fa~ts . [~* ' '  Investigations show that the 
amorphous structure contains coherent regions of di- 
mensions - 5 and that it is not characterized by 
closest packing of the atoms. Since the exchange in- 
teractions that lead to long-range magnetic order at 
T < T ,  are,  in magnetic dielectrics, short-ranged and 
consequently sensitive to a local change of the short- 
range crystallochemical order, it is natural to ex- 
pect, a s  a consequence of amorphization of nonconduc- 
ting magnets, not only mixing of different exchanges 
but also fluctuations of them. Besides this, there 
occur fluctuations of the effective spin at the sites, for 
example a s  a result of fluctuations of the deiisity of 
the material. 

As has already been mentioned in the Introduction, 
we shall describe an amorphous magnet within the 
framework of the lattice model with the spin Hamil- 
tonian ( I ) ,  with fluctuating exchange parameters A f,, . 
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We shall discuss the character of the ground state 
(T = 0) of an amorphous magnet. 

I. If in an amorphous magnet the fluctuating exchange 
parameters are of a single sign for an arbitrary pair 
of NN (f, m), then when A rm > 0 the ground state is 
ferromagnetic, and when At, < 0 antiferromagnetic. 

This statement is completely obvious. The first of 
these cases was treated in Ref. 3; the generalization 
to the second case is trivial. In the general case, 
when the exchange parameters fluctuate in magnitude 
and in sign, the magnetic ground state will depend on 
the relation of the magnitudes and numbers of positive 
and negative e x c h w e  bonds. 

11. On an alternating lattice, let there be prescribed 
a random isotropic distribution of antiferromagnetic 
(K<O) and ferromagnetic (J>O) bonds between NN, in 
concentrations v < v, ( 1 X 1 ,  z), where 1 XI = I K I /J, the 
ground state of the system possesses long-range FM 
order, with relative magnetization a< 1. 

We shall prove this statement. In a lattice consist- 
ing of N sites, the total number of bonds i s  N,= N/2, 
where z i s  the number of NN. At each site of the 
lattice there i s  a spin of magnitude S = Q; in the ground 
state, S;= +$ or -Q. We shall consider the energy 
E ,  of the amorphous material, for a prescribed ran- 
dom isotropic distribution of J and K bonds, as a func- 
tion of the relative magnetization 

where N, is the number of atoms with projections 
S K =  * Q. 

For complete FM ordering, 

all the J bonds are  energetically advantageous ("right"), 
and all the K bonds "wrong." Since in an alternating 
lattice AF ordering is possible, in this case 

with all the K bonds right and J bonds wrong. Only for 
an ideal crystal with an anisotropic translation-invar- 
iant distribution of bonds does the energy reach the ab- 
solute minimum for AF ordering of the spins: 

where vo= for FM ordering in the xy plane (case 
lob)) or  2 for AF ordering in the xy plane (case (10c) 
in SCL. For such ideal AF, all bonds are right. 

The further proof of the statement divides into two 
cases. 

1. When 1 - v -  1x1 v>Oor 

then c, (0) >c, (1). In the state with a= 1, it is 
possible for the spins on certain lattice sites to re-  
verse, tending to decrease the concentration of wrong 

K bonds. In general this leads to the appearance of 
additional wrong J bonds. The energy of a state with 
O<l  i s  

em(@) =-I[vJo-n,+ I h I (vxo-nK) 1, (12) 

where 4 and vO, are the concentrations of right J and K 
bonds; n, and n, are the concentrations of wrong J and 
K bonds, and 

It i s  obvious that in an amorphous material 0 =S n, c 1 - v, 
Oan,s  v. 

The statement reduces to a proof of the correctness 
of the inequality c, (1) > &,(a, which i s  equivalent to 

If short-range order is retained in the amorphous ma- 
terial, i.e., v= vo, then the energy difference is 

t aJ6) -eid (0) -AE=2J[n,+IE. I n,]>O. 

But the energy minimum of an amorphized material i s  
attained at minimum concentrations of wrong J and K 
bonds: n, = (n,),,, and n,= (n,) ,,,. Such a material 
will be an effective FM with-os 1. On combining (11) 
and (14), we find that the inequality 

is satisfied if the following one is: 

l -v  ZCIAIC-. 
1-n, 

(15) 
T 

The limiting case I X I  -0 (n,-0) corresponds to 
breaking of the AF K bonds. It is known from percola- 
tion that long-range FM order occurs only 
when vO,> 4, where v,P= 2/z is the "ferromagnetic per- 
colation" concentration. Thus 

The magnetization at I X I = 0, a s  a function of v, be- 
haves thus: 

Here 

2. When 1 - v - I X I v< 0, which corresponds to 

the energy c, (0) of the AF amorphous state < c, (1). 
If in such an AF state we reverse the spins at certain 
sites of the lattice in order to decrease the concentra- 
tion of wrong J bonds, this will in general lead to the 
appearance of additional wrong K bonds. It i s  clear 
that if v i s  less than the "antiferromagnetic percola- 
tion" concentration, then an effective FM order will be 
established in the medium, with o# 0. Here c, (0) > c, 
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(3, which, if we take account of (lob), 12, and (17), 
corresponds to the inequality 

1-v l-v-n, 
-<lkl<-. 

nx 

We shall consider the limiting case ( X I  -m (nK-0). 
At small I$, << 1, it is advantageous to retain the A F 
spin arrangement only within the bounds of individual 
sites and their nearest neighborhood. It is energetic- 
ally advantageous to polarize the rest of the spins; 
that is, to form a FM matrix. With increase of the 
concentration 4, the process of polarization becomes 
more and more difficult; and when 

corresponding to the "AF percolation " concentration, 
the formation of a FM matrix is  impossible and a= 0. 

For I X I  = m , the magnetization as a function of v 
behavesthus: 

A s  is evident, the character of the variation of 5 with 
v is  strongly dependent on the value of I X I .  The be- 
haviorofa(v, / X I )  for I X I = ~ a n d f o r  [ X I =  mis  shown 
in Fig. 1. For I X I- m and v 2 v, (m), the amorphized 
material remains AF. We note that when I x I = (1 - v)/v 
there is  degeneracy: & (0) = &, (1). For v, = $, the 
corresponding value of7 h 1 is 2. 

Thus we may draw the completely general conclu- 
sion that on amorphization of a magnetically ordered 
crystal, when the fluctuating exchange parameters 
have different signs, the amorphous magnet under cer - 
tain conditions will represent an effective FM with 
a#O. In the following sections, on the basis of a solu- 
tion of the self-consistent problem of an effective FM 
exchange parameter in an amorphous magnet with a 
prescribed exchange distribution function, the region 
of existence of ferromagnetism on the ( v ,  X) diagram 
will be found, and also the density of magnon states 
and a(T)/F(O). The question of the value of a(O) re- 
quires consideration of a concrete model, with inclu- 
sion of numerical combinatorial calculations. 

- - o n  + f ,-f " 

FIG. 1. Variation of the relative magnetization B with the 
concentration v of antiferromagnetic K bonds: a ,  when I X I 
= I K  I/J=~; b, when Ihl=0. 

4. DESCRIPTION OF AMORPHOUS MAGNETS BY THE 
COHERENT-POTENTIAL METHOD 

The coherent-potential method is based on represen- 
tation of a disordered material as a certain effective 
translation-invariant medium, in which the exchange 
interactions are brought about by one or more self- 
consistent potentials.[11'13] In the preceding section it 
was shown that under certain conditions the ground 
state of ?n amorphized AF may turn out to be ferro- 
magnetic. With application to this case, we shall des- 
cribe the amorphous material as  an effective transla- 
tion-invariant isotropic ferromagnet with o(O) c 1, in 
which the exchange interactions are determined by a 
coherent parameter A,(f -m). The method of finding 
A, has been set forth in detail in a previous paper of 
the authors.c31 Here we shall discuss the key aspects 
of the CPA. 

On introducing the fluctuations with respect to the co- 
herent-potential parameter 

and using the definition (3), where of = a, we get 

Equation (2) takes the form 

or in matrix form (a= E/F; f is the unit matrix) 

The zeroth approximat_ion corresponds to the trans- 
lation-invariant matrix H, and is described by the 
Green's function 

which in the site representation has the form 

The solution of (22;) can be expressed in terms of a 
scattering matrix T: 

A A  A 

? is determined by the equation ?=>+ VGC T. 
On carrying out a configurational average of (24), we 

get 

(6) describes the properties of the effective crystal 
that reproduces, on the average, the amorphous ma- 
terial. If (?) = 0, the amorphous material is  modeled 
by an ideal crystal described by the Green's function 
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Gc. Since the values of the matrix elements of the ? 
matrix depend on GC, (f)= 0 i s  the equation that deter- 
mines the coherent exchange parameter A, = A ,  (a). In 
its physical meaning, A, (a)  is the self -consistent ex- 
change parameter that insures, on the average, no 
scattering of spin waves by the fluctuations. 

In the approximation of statistical independence of the 
fluctuations of exchange bonds, 

where i s  a partial scattering matrix; and the re-  
quirement (?) = 0 is satisfied when (&) = 0 for all pairs 
a! = (f, m) of NN. The matrix & can be calculated ex- 
actly, and the equation for the coherent parameter A, 
has the formcs1 

where p(A)  is the isotropic distribution function of the 
fluctuations and where 

We shall consider amorphization of a EM with J >  0, 
K>O (X= K/J>O) and of an AF with J>O, K c 0  (XCO). 
Both cases can, from a formal point of view, be con- 
sidered in the same manner, because under certain 
conditions the amorphous material will be ferromag- 
netic. Let v,, be the fraction of K bonds (along the z 
axis) in the original ideal crystal. Since the short- 
range order i s  on the average retained in the amorphous 
magnet, it i s  reasonable to suppose that v- v,, X-A,. 
Then in accordance with Sec. 3, (0) = 1 for A > 0, and 
o (0) = F ( I X I ,  v) for X< 0; that is, on amorphization of 
the AF it is necessary to indicate the range of the para- 
meters X and v that insures the existence of ferro- 
magnetism. This existence region, within the frame- 
work of the CPA, will be determined from the condi- 
tion A, (0) > 0. 

In accordance with the postulates of Sec. 3, the dis- 
tribution function p(A)  must reflect an isotropic dis- 
tribution of J and K bonds in the AM, and also reten- 
tion of short-range order. If we take into account only 
the effect of mixing of J and K bonds, then 

p(A)=v6(A-K)+ (I-v)6(A-I), j p ( ~ ) d ~ = l .  (26) 

By use of (25) and (26), we get the equation 

Since 

where w = a/zJ,  (27) takes the form 

The left member of (28) must be interpreted as a 

principal value. Then the dimensionless coherent para- 
meter x = A d J  i s  a function of the dimensionless fre- 
quency w = a/zJ; that is, x =  x (w) .  

From (28) one can find the value of x(0) that are  
solutions of the equation 

-l/z(O)=Y (z(0); a, v). 

After elementary transformations, it reduces to a 
quadratic equation with the solutions 

When X > 0, there i s  always a real positive solution 
x+(O) > 0; that is, the ground state of the amorphous 
magnet is ferromagnetic if  the fluctuating exchange 
parameters are  positive ( J>  0, K> 0). 

When A =  0 (breaking of the K bonds), x+ (0) > 0 only 
when v< 1 - 2/z, whereas for v a 1 - 2/2 the solution i s  
x+ (0) = 0; this indicates the disappearance of ferro- 
magnetism. The value v, = 2/z corresponds precisely 
to the concentration that insures "percolation" of the 
ferromagnetic bonds. 

When A<O, the condition for existence of real posi- 
tive solutions of (29) has the form 

It follows from (30) that there exist critical values 
I A, 1 ,  functions of v, which determine the regions of 
existence of ferromagnetism. These regions are 
shown in Fig. 2. Since the CPA is  hardly valid when 
v << 1 (i.e., in the "impurity" range), the corresponding 
critical value I X, I = (1 - 2/z) (2/2)" at v= 0 will not be 
discussed here. These results obtained in the CPA 
agree completely with the results of Sec. 3. 

In our case of amorphization of a plane AF with the 
CPA and with z = 6, the fraction of K bonds is v= 2/2 
= 1/3. And it follows from (30) that the approximation 
of the amorphous material by an effective ferromagnet 
i s  possible when I X I  ci. Then the solutions of (29) 
take the form 

~*(o)='l , [ i*(l-s lxl)~I.  (3 1) 

FIG. 2. Region of existence of ferromagnetism (shaded) on 
amorphization of an ideal magnet with an anisotropic distribu- 
tion of exchange bonds. 

136 Sov. Phys. JETP 48(1), July 1978 E. V. Kuz'rnin and G. A. ~etrakovskil 1 36 



We turn now to analysis of the rea l  solutions x(w) >O 
of equation (28) when w # 0. The equation can be ex- 
pressed in the form 

where Go(u) is the Greefi's function of the ideal iso- 
tropic FM: 

go(&) is the density of magnon states corresponding to 
the dispersion law E ,  = 1 - y,. The density of states 
go(&) is nonzero on the interval [O, 21 and is conven- 
iently approximated by the half-ellipse 

By use of (33) ,  the principal value (9) of Green's 
function on the interval 0 cu c 2 is 

and Eq. (32) takes the form 

After elementary transformations, it reduces to a 
fourth-degree equation (z = 6, v = 4) 

The results of a computer solution of this  equation a r e  
shown graphically in Fig. 3. 

Analysis of (34) shows that when X> 0 and ( X I < A,, 
= 1 /34 ,  the solutions a r e  unique. When 1 X 1 > X,,, in the 
range O s w  s w  ,, three rea l  solutions appear. The 
physically admissible choice is the unique solution with 

FIG. 3. Variation of the dimensionless coherent exchange 
parameter X = A , / J  with w = E / [ Z  (0) - 6 J ] ,  when v= 1/3, for 
several values of X. 

FIG. 4. Density of spin-wave states g,(w)  of an amorphous iso- 
tropic ferrornagnet, in the CPA, for several values of A 
(v=1 /3 ) .  

a break at the point o,, a s  is shown in Fig. 3 for the 
solutions with I x I = 0.04 (w, = 0.07), When I x I -+, we 
have u s - 0 ;  and at I A I = $ there remain two solutions 
for the coherent potential: the isolated point x (0)  = f 
and the lower branch of the solution x, ( o ) ,  for which 
x. (0 )  = 0. 

5. DENSITY OF SPIN-WAVE STATES OF AN 
AMORPHOUS FERROMAGNET, AND CURIE 
TEMPERATURE 

Knowing the frequency dependence x = x ( o )  of the 
coherent potential, we can find the spin-wave spectrum 
and the density of states in an amorphous FM. Since 
the Green's function of an amorphous FM in the CPA 
has the form GE (w )  = [w - x ( w )  E,]-', the spin-wave 
spectrum is determined by the equation 

In order to calculate the thermodynamic characteris- 
t i c s  of an amorphous magnet, i t  is convenient to intro- 
duce the density of states g , ( ~ ) [ ~ ] :  

Figure 4 shows the densities of states calculated 
with formula (37)  for several  values of A. When I X I  
>A,, the presence of a finite discontinuity of the coher- 
ent parameter at the point w = w,  leads to  the appear- 
ance of a finite discontinuity of the density of states. 
The limiting point w m  of the spectrum is determined by 
the relation w d x  (om) = 2. The discontinuity of the 
coherent parameter leads to the occurrence of a finite 
flat section in the dispersion law E, at frequency w,. 
These singularities will presumably be smoothed out i f  
a "smeared out" 6 function is used in the distribution 
(26).  

With use of the relation Z=  o (0) - 2 (b + b)  ,? the equa- 
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FIG. 5. Ratio of the magnetic ordering temperature to the 
Curie temperature TcO(k=l)  of an ideal isotropic FM, as  a 
function of A, when v=1/3. 1, T ~ ~ ( A ) / T ~ ~ ( ~ ) ,  where T,O(~) is  
the Curie temperature of an ideal FM, A> 0. 2, T ~ ~ ( X ) / T ~ O ( ~ ) ,  
where TNO(h) is  the Nee1 temperature of an ideal AF, A < 0. 3, 
TCan(k)/TC0(1), where Tcan(X) is  the Curie temperature of an 
amorphous FM in the CPA (solid line, amorphization 2f an 
ideal FM; dotted, amorphization of an ideal AF). 4, Tc(X) 
/~ , ' ( l ) ,  where Tc(X) is  the Curie temperature of an amorphous 
FM in the approximation of a mean exchange parameter 
A = $ J ( ~ + ~ A ) .  - 

tion that determines the temperature dependence o 
= Z(T) of the magnetization, in the variables w = E/oJz 
and r = T/Jz, takes the form 

a (0) do - - 1+2J 
@ 

-&(a). exp (Gu/T) -1 

A t  low temperatures a deviation from the $-pmer law 
may occur i f  the behavior of gc (w) at small w differs 
significantly from a square root. The presence of a 
discontinuity of the coherent potential at w = us leads 
to a finite discontinuity of gc at w = w, and, as  a conse- 
quence, to a singularity in the temperature behavior of 
the magnetization at 7 -  w,. 

When 7-T,= T,/Jz, where T, i s  the Curie temper- 
ature, o-0, and the Bose distribution function in (38) 
can be expanded as a series in the quantity ~ w / r ,  << 1. 
Neglecting unity in comparison with l/o, we get an es- 
timate of the Curie temperature: 

In the relation (39), gc (o), o(O), and w, are functions 
of the number of antiferromagnetic bonds v, the coor- 
dination number z , and A = K / J .  

In amorphization of a FM (A > 0, I? (0) = I ) ,  one may 
consider the whole range of variation of the parameter 
A (0 s X c 1). Figure 5 shows the variation with X of the 
Curie temperatures (in units J) of an idem FM (accord- 
ing to Linesc7]) and of an amorphous isotropic FM. It 
follows from the figure that amorphization of a low- 
dimensional FM (X << 1) leads to a significant increase 
of the Curie temperature: T F  >: TO,. 

In amorphization of an AF (A < 0), the range of exist- 
ence of an amorphous FM in the case considered 
(Y= 4, z = 6) i s  bounded by the values 0 c I X I c i. The 
value of the integral (39) i s  4.3 for A =  0 and 7.8 for 

1 X 1 = 0.04. But because the value of F(0) is unknown, 
it is impossible to give a numerical estimate of the 
Curie temperature. 

It may be assumed that G(0) 5 1 when I A I -0 for 
v= $, since this concentration of broken K bonds is 
considerably smaller than the percolation concentra- 
tion v, (X= 0) = $. Then 7, (X = 0) S 1 (0)/2. On the other 
hand, we may expect a very rapid decrease of o(0) even 
at small I X I > 0 (ferromagnetism disappears when I x I 
= $). Therefore the function T,([ X I )  will be principally 
determined by the behavior of Z(0, I X I  ). Figure 5 
shows the assumed rC( I XI) relation, from which it i s  
evident that amorphization of a quasi-low-dimensional 
AF with 1 X I  << 1 can lead (under certain conditions) to  
formation of an amorphous FM with T y  > Ti. If the 
quasi-low-dimensionality i s  not so clearly expressed, 
then amorphization leads to a change of the magnetic 
order (AF-FM), but T?< TO,. 

CONCLUSION 

The analysis carried out above determines the be- 
havior of magnets characterized by the presence of two 
different exchange parameters J and K when the mag- 
nets are amorphized. We have shown that it is nec- 
essary to distinguish two cases of amorphization: 
a) J>O, K>O; b) J>O, K>O. In the first case, the 
ground state of the original crystal is FM. Amorphi- 
zation leads to averaging of the exchange interactions; 
and when X = K/J << 1 (a quasi-two-dimensional FM), 
the resulting amorphous FM may have a Curie temper- 
ature appreciably exceeding the Curie temperature of 
the crystal. The situation is considerably more com- 
plicated in the case of amorphization of an AF (X<O). 
In this case it i s  found that there exists only a bounded 
region in the (v ,  I X I  ) plane within which the amorphous 
magnet can be described as an effective FM with F(0) 
# 0. Because within the framework of the CPA method 
it is not possible to calculate G(0) for given v and 1 X I ,  
there is, correspondingly, no possibility of construct- 
ing a closed theory, for example in the sense of a de- 
termination of T,. Qualitative analysis, however, 
shows that in this case T, decreases rapidly with in- 
crease of I X I ,  and therefore amorphization of a quasi- 
low-dimensional AF with J>O and K< 0 can lead to an 
increase of T, only at very small values of 1 X I .  The 
presence of negative exchange also expresses itself 
very strongly in the character of the density of states. 
Thus under certain conditions a characteristic is the 
appearance of a sharp peak of g,(w), of the localized- 
state type. This must lead to anomalies of the spec- 
trum of spin-wave states and of the thermodynamic 
characteristics. The approximate nature of the theory 
makes it extremely desirable to perform experiments 
to reveal these anomalies. 
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A new type of secondary radiation is predicted upon excitation of a semiconductor with light of frequency 
ol in the region of intrinsic absorption. The radiation is the result of resonant Raman scattering of light, 
wherein an electron-hole pair and a certain number of longitudinal optical phonons are present in the final 
state of the crystal. Since the kinetic energies of the electron and hole in the final state can be different, 
the secondary radiation spans the band 0 5 o, 5 o,,,, in the long-wave band. The scattering cross section is 
calculated with allowance for the dispersion of the LO phonons. It is shown that the dependence of the 
cross section of the process in question on the frequencies ol and o, has a steplike character. Each higher 
step corresponds to turning on a process in which the number of emitted LO phonons increases by unity. 
It is shown that the scattering cross section is a quantity of zero order in the Frijhlich coupling constants 
of the electrons or holes with the LO phonons. The reason is that the secondary radiation is the result of 
a sequence of real transitions, each of which is accompanied by the emission of one LO phonon. 

PACS numbers: 78.30.Gt, 63.20.Dj, 63.20.Kr 

1. INTRODUCTION O<".< (i+m,lmh)-' (ol-E,lfi) -(k+l)w=o, (1.1) 

With the appearance of high-power laser s o u r c e s  of 
where  vne(m,) is the  effective m a s s  of the electron 

light, and with increasing r e c e i v e r  sensitivity, the cap- 
(hole), and E, is the  width of the forbidden band. In 

abilities of modern experiments  on regis trat ion of 
fact ,  if the kinetic energy of the  electron a f t e r  emission 

secondary radiation of condensed media have great ly 
of secondary radiation i s  equal  t o  zero, then 

increased. This  p r o g r e s s  gives grounds f o r  hoping 
that study of secondary radiation wil l  become a rel iable  w,-ol-Edfi- (k+ 1) (l~~~-E~~/ti. . (1.2) 
method of measur ing  a number of p a r a m e t e r s  of solids. 
The experimental  r e s e a r c h  in th i s  field h a s  stimulated where  E,, is the kinetic energy of the hole produced by 
theoret ical  investigations ( see ,  e.g., Refs. 1 and 2). light w,. Since the equality 

In th i s  paper  we predict  a new type of secondary rad- 
iation of po la r  semiconductors .  The  radiation is the re- 
sul t  of the following s e t  of real t ransi t ions:  p r i m a r y  
radiation with frequency w ,  produces a n  electron-hole 
pa i r  (EHP), the electron ( o r  hole) e m i t s  in succession 
k longitudinal optical (LO) phonons (we neglect inter-  
actions with acoust ic  phonons), and finally the elec- 
t ron ( o r  hole) e m i t s  a quantum Fiw, of secondary light, 
accompanied by s t i l l  one m o r e  optical phonon. No an- 
nihilation of the electron and hole t akes  place; the elec- 
t ron and hole, having lost  a n  energy Aw, + (k + l)AwL0 , 
can retain p a r t  of the i r  kinetic energy. Indirect  emis -  
sion of the quantum Aw, accompanied by the LO phonon, 
by the electron,  is a p r o c e s s  inverse  to indirect absorp-  
tion of light by f r e e  c a r r i e r s  that  interact  with LO 
p h o n o n ~ . ~  

It  follows f r o m  the energy conservation law that  when 
a n  electron emi t s  k + 1 LO phonons the secondary rad-  
iation spans the frequency band 

is sat isf ied in d i rec t  production of EHP,  it  follows that  
by substituting (1.3) in (1.2) we obtain the upper  bound 
f r o m  (1.1). T h e  lower bound w,=O corresponds to the 
maximum res idua l  kinetic energy of the electron. If 
secondary radiation with participation of k + 1 LO phon- 
o n s  i s  t o  take place at a l l ,  i t  is necessary  that the 
right-hand s ide  of (1.2) be  l a r g e r  than zero ,  i.e., that 
the following condition hold: 

If a hole r a t h e r  than an electron part ic ipates  in the 
radiation, then the m a s s  m e  in (1.1)-(1.4) must be  re- 
placed by JIZ , ,  and vice versa.  It  follows f r o m  (1.4) that 
the frequency w, should l ie  in the region of the intrinsic 
absorption of the semiconductor. 

An examination of the electron energy distribution 
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