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Screening of charges and Friedel oscillations of the 
electron density in metals having differently shaped Fermi 
surfaces 
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Analytic and numerical integration methods are used to obtain the spatial distribution of the screened 
Coulomb potential of point charges in the interior and on the surface of metals having different Fenni- 
surface shapes. It is shown that in isotopic metals with quasi-two-dimensional or quasi-onedimensional 
electron spectra the Friedel oscillations of the electron density decreases along normals to a cylindrical or 
plane Fermi surface, like r -' sin 2kFr or r -' cos 2kFr, respectively, and attenuate exponentially in 
perpendicular directions. Along the surface of an isotropic metal with a spherical Fermi surface, the 
Friedel oscillations decrease like r -'IZ cos 2kFr. In the Thomas-Fermi approximation, the screened 
charge potential in a homogeneous metal takes the form e */r regardless of the shape of the Fermi 
surface, and along the surface of a semi-infinite metal it decreases in power-law fashion like r -). An 
expression is obtained for the potential energy of the charges near the surface of a metal. This expression, 
together with the image forces, describes the Friedel oscillations and the dipole-dipole interactions. The 
results explain, in particular, the experimental data on the ordering of adsorbed Sr and La films on the 
(1 12) faces of W and Mo single crystals. . 

PACS numbers: 71.4S.Jp, 71.25-3, 71.90.+q 

1. INTRODUCTION 

It is known that the steplike character of the Fermi 
distribution of the conduction electrons in metals leads 
to the appearance of the so-called Friedel oscillations 
of the screened Coulomb potential, which by virtue of 
the spherical Fermi surface over large distances from 
the charge, Y>> k;l (k, is the Fermi momentum, A = 1) 
decrease like Y ' ~  cos 2k,~.[l*'-~ For the same reason, 
the Ruderman-Kittel-Kasuya-Yosida (RKKY) interac- 
tion between the magnetic moments of nuclei or para- 
magnetic impurities in an isotropic metal behaves 
asymptotically like rm3' 

The law governing the decrease of the Friedel oscil- 
lations depends, however, on the "dimensionality of the 
metal" d, i.e., on whether we are dealing with a bulky 
metal, with a film, o r  with a thin filament. Therefore 
even in the case of a three-dimensional isotropic elec- 
tron spectrum, as  shown by ~ d a w i , [ ~ I  the perturbation 
6n of the electron density decreases like Y'~/ ' -  cos 2 k , ~  
at d = 2 and like Y ' ~  sin %k,r at d = 1. If at the same time 
the electron spectrum is two-dimensional at d= 2 and 
one-dimensional at d =  1, then the screened Coulomb po- 
tential decreases respectively like Y" sin2k,r (Ref .5) 
and Y" cos 2 k , ~ . [ ~ ~  
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On the other hand, as shown in Ref. 7, in a semi-infi- 
nite metal the behavior of the Friedel oscaillations can 
be greatly influenced by the metal-vacuum interface, 
which alters the symmetry and effective dimensionality 
of the problem. 

Finally, the character of the asymptotic behavior of 
the screeened potential changes with the shape of the 
Fermi surface of the conduction electrons, a s  shown by 
~ a l k a r e r  and ~ a n d o m i r s k i y ~ ~ ~  with the penetration of a 
homogeneous electrostatic field into a metal a s  an ex- 
ample, and also in an analysisc7] of the indirect inter- 
action of adsorbed atoms in the surface of a metal via 
the electron gas of the substrate. 

In the present paper, on the basis of expressions for 
the electron polarization operator for different Fermi 
surfacescg1 we obtain, by analytic and numerical inte- 
gration, the spatial distributions of the screened Cou- 
lomb potential of a point charge in the interior and on 
the surface of a metal. In Sec. 2 it is shown that in 
strongly anisotropic three-dimensional metals with cy- 
lindrical or  spherical Fe rmi  surfaces the Friedel oscil- 
lations, produced as a result of a root or  logarithmic 
singularity of the polarization operator at a momentum 
transfer q =  2kF, decrease along the normals to the Fer- 
mi surfaces like l/r2 o r  l/r, respectively, and attenu- 
ate exponentially in the perpendicular directions. The 
indirect interaction between the magnetic moments via 
the conduction electrons of the metal takes in this case 
a similar form, in contrast to the RKKY formula.c31 

It is shown in Sec. 3, on the basis of an expression 
obtained in Ref. 10 for the Coulomb Green's function of 
an inhomogeneous system, that in the case of a spheri- 
cal Fermi surface the law governing the decrease of the 
Friedel oscillations along the surface of the metal takes, 
by virtue of the symmetry of the problem, the form 
Y ' ~ ' ~ ,  as  against rm3 obtained in Refs. 11 and 12 o r  in 
accord with the numerical calculations of Ref. 13. In 
the case of a semi-inifinite metal with cylindrical o r  
plane Fermi surface perpendicular to the metal-vacu- 
um boundary, the electron-density oscillations decrease 
along the metal surface like F2 o r  r", and attenuate 
exponentially in the interior of the metal. 

We obtain also an expression for the energy of inter- 
action of two charges located near the surface of a me- 
tal, with account taken of the classical image forces; 
this expression describes both the dipole-dipole inter- 
action and the Friedel oscillations, something that 
could not be done earlier.[14] The results point to a 
substantial role of the indirect interaction between the 
charged atoms via the collectivized electrons of the 
substrate metal, and make it possible in principle to 
explain the structure of monatomic adsorbed strontium 
and lanthanum films on the (112) face of tungsten and 
molybdenum single ~ r ~ s t a l s . ~ ' ~ - ' ~ ~  

2. FRIEDEL OSCILLATIONS IN  THE INTERIOR OF A 
METAL 

I t  can be easily shown with the aid of the Maxwell ma- 
terial equation div D= 0 and the nonlocal relation be- 

tween the induction D and the intensity E of the electric 
field 

D~ (r) = drPe,j(r, r l ) E j  (rr) ,  

where ~ ~ ~ ( r ,  r') is the dielectric tensor of a medium with 
spatial dispersion, the effects of static screening of a 
point charge ~ ( r ) =  e6(r) in a metal with arbitrary Fer-  
mi-surface shape a re  described by the Fourier compo- 
nent of the potential cp(r) of the longitudinal field E 
= - Vq ;  his component is of the form 

where xij(q) is the tensor of the electronic polarizabil- 
ity of the metal. 

We consider hereafter, besides the isotropic case, 
also strongly anisotropic metals with quasi-two-dimen- 
sional or quasi-one-dimension& electron spectra, when 
in practice only the transverse component x, or  the 
longitudinal component x,,  (relative to some axis z )  of 
xij differs from zero. The screening is described for 
simplicity in the random-phase approximation (RPA), 
since the Fermi-liquid interaction between the elec- 
trons, at least within the framework of models such a s  
~ u b b a r d ' s , ~ ' ~ ~  does not influence the damping or  the pe- 
riod of the Friedel oscillations (see Ref. 2). 

2.1. Metal with spherical Fermi surface 

The potential Coulomb energy of the charge in an iso- 
tropic metal with a spherical Fermi  surface can be re-  
presented in the form 

Here n(q) is the static polarization operator of the elec- 
trons, given in the RPA by 

where N(k,)=nz*k,/21? is the state density per spin and 
nz* is the effective mass of the conduction electron. 

It can be easily shown by double integration by 
partsrzo1 that the weak logarithmic singularity of (2.3) at 
the point q =  2kF, where dIl/dq 1,,,,,= -00, leads to the 
appearance of singular terms of the type (q - 2kF)-' 
s inqr  in the integrand of (2.2), s o  that in the region 
r>> k,' there appear long-range oscillations of the type 
rm3 cos 2kF7. 

To  determine the amplitude and phase of these oscil- 
lations it is necessary to calculate the screened poten- 
tial V(Y) for all values of Y. T o  this end we used a com- 
puter to integrate numerically expression (2.3), which 
takes in dimensionless variables the form 

where 
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a$= l/m*e2 is the Bohr radius of the electron. 

Figure 1 shows the dependence of the potential v(p) on 
p at cu = 1, obtained with the aid of the special method 
developed by Longman to integrate numerically oscil- 
lating functions.c211 It is seen that the Friedel oscilla- 
tions set in already at p-1, and in the region p>> 1 their 
envelope approaches a p'= dependence (dashed curves). 
For  comparison, the dash-dot curve in Fig. 1 shows 
also the form of the screened potential in the Thomas- 
Fermi  approximation (TFA), which equals in our nota- 
t ion 

4 " d s  sinsp 2 
vr&)=?J--=- e x p ( -  p~T}.  

n ap s I + a / s 2  nsy, 

We note that a finite temperatures T z  0 the smearing of 
the Fermi  distribution functions makes the derivative 
dn/dq finite as q - 2kF and equal to 

where EF= k; /2m* is the Fermi  energy of the electrons; 
the result is additional damping of the Friedel oscilla- 
tions, with a characteristic length L,= kF/4?rm* T, in a 
accord with the law (r/L,) sinh" (Y/L,) (Ref. 4). At suf- 
ficiently low temperatures T<< O.lEF, however, when 
L, is much larger than the period n/kF of the oscilla- 
tions, this damping can be disregarded. For  similar 
reasons we can neglect the loss of coherence of the 
Friedel osclllations on account of the scattering of the 
electrons by the impurities, inasmuch a s  in sufficiently 
pure metals the mean free path is l>>r/kF-10" cm. 

2.2. Metal with cylindrical Fermi surface 

In real  metals one frequently encounters open Fermi 
surfaces of the slightly-corrugated-cylinder type.C221 

FIG. 1. Screened potential of a charge in the interior of a 
metal with a spherical Fermi surface: solid curve-random- 
phase approximation, dash-dot-Thomas-Fermi approxima- 
tion. Top-asymptotic form of the Friedel oscillations, bot- 
tom-static polarization operator of electron gas: ff = l/?rkFa$ 
= l;A=0.608. 

We consider in this connection the model of a strongly 
anisotropic metal with a purely two-dimensional elec- 
tron spectrum and with the symmetry axis of the cylin- 
drical Fermi  surface parallel to the z axis. The polari- 
zation operator lT(q,) m (q2,/e2)xL(q,) takes in this case the 
formcg1 

n(q,) Y, Re { I - [ I -  (2kz/qL)21'h), (2.6) 

where v o = m * q 0 / ~  is the two-dimensional state density, 
qo is the length of the cylindrical section of the Fermi  
surface along the z axis, and q, is the transverse mo- 
mentum in the xy plane. The screened potential of the 
point charge reduces then, after integration with re- 
spect to q ,  to the form 

where 

Jo is a ~essel ' funct ion,  and R,=(g+y2)1/2. 

Integrating (2.7) by parts and retaining the most sin- 
gular terms of the form (t2 - we have at p,>> 1 
and 6 >> 1 

Thus, the Friedel oscillations along the normal to the 
cylindrical Fermi  surface decrease like R12, and atten- 
uate exponentially along the z axis. 

Figure 2 shows the results of a numerical integration 
of expression (2.7). We see that with increasing p, the 
envelope of the oscillations acquires rapidly a pi2 de- 
pendence (dashed line). We note that if no account is 
taken of the root singularity in (2.7) under the assump- 
tion that II(q,) = vo = const, which corresponds to the 

FIG. 2. Screened potential of a charge in the interior of a 
metal with a cylindrical Fermi surface in the R P A  at 5 = 0 
(solid curve) and 5 = 2 (dash-dot). Top-asymptotic curve with 
envelope ~ / p '  (dashed line), bottom-polarization operator of 
two-dimensional electron gas with root singularity at the point 
q,=2kF; ff =u=l,B=0.12. 
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TFA, the integral (2.7) simplifies and reduces to an ex- 
pression of the type (2.5), from which it follows that 
notwithstanding the two-dimensional character of the 
electron spectrum, the screening of the charge, by vir- 
tue of the three-dimensionality of the metal, remains 
exponential just a s  in the isotropic case. On the other 
hand, in a two-dimensional metallic film the screening 
retains a power-law character in the TFAcS1: 

L.~,'(R) -e2(ap.) 2/4R3. 
- - 

(2.9) 

2.3. Metal with planeFermi surface 

A number of transition metals (W, Mo) a re  charac- 
terized by the presence of close-packed chains of atoms, 
so  that in some direction the Fermi  surface has 
nearly flat sections with negative curvature (see, e.g., 
Refs. 23 and 24). In this case the polarization operator 
II(q,) 5 (q;/e2)x,,(q,), a s  shown by Afanas'ev and ~agan,["  
diverges logarithmically a s  T - 0 at the point q,= 2k, 
(the z axis is perpendicular to the Fermi  planes). At 
arbitrary q, we have for II(q,) (cf. Ref. 9) 

where v, = m * SJ4f'k, is the one-dimensional density of 
the electronic states and S,= 1 dq,dq, is the area  of the 
flat section of the Fermi  surface. 

Assuming isotropy of the spectrum in the xy plane, 
the expression for the screened potential takes in di- 
mensionless variables, after integration with respect to 
q,, the form 

where o = 2ne2v,/k:, t = q,/2kF, and KO is a MacD0nak-J 
function. Integrating in (2.1 1) once by parts and retaining 
the most singular terms -1 t - 1 I -', and recognizing that 
the electron spectrum is not quite one-dimensional or 
that the temperature is not finite, we arrive at the fol- 
lowing asymptotic form of v(5, p,) at t;>> 1 and p,>> 1: 

o 2p, exp {- p, ('/20 In U) ") cos j 
v ( f , p , ) = - -  - 2a (T) ( i /20 In 5 1 (2.12) 

where U = min{E,/~,, E,/T}  and &, is the transverse 
electron energy and characterizes the degree of corru- 
gation of the flat Fermi  surface. 

As p,- 0 expression (2.11) reduces to 

hence we get at 5 >> 1 and p, = 0, in place of (2.12) (a+ 0) 

2 C O S ~  
u(L,O)=--. 

naln U 5 

Figure 3 shows the plots of the screened potential 
v(g, p,) calculated from (2.11) and (2.13). We see that at 
c>> 1 the amplitude of the Friedel oscillations decreases 
slowly like 5", in accord with (2.12) and (2.14). 

-2 

FIG. 3 .  Experimental potential of a charge in the interior of a 
metal with a flat Fermi surface in the RPA at p,= O(so1idcurve) 
and pi= 1 (dash-dot). Top-asymptotic Friedel oscillations 
with envelope ~ / b ;  center-polarization operator of one-di- 
mensional electron gas with logarithmic singularity at the 
point q , = 2 k F ;  a = u = l ;  C=0.84. 

If we neglect in the expression for the screened po- 
tential the logarithmic singularity of the p o l a z a t i o n  op- 
erator (2.10) at q,= 2k, and put n(q3 = v, = const, i.e., if 
we use the TFA, then we obtain an exponential charge 
screening similar to (2.5). Thus, if we disregard the 
Friedel oscillations, then in a three-dimensional metal 
consisting of one-dimensional conducting chains the at- 
tenuation of the Coulomb repulsionas a result of screen- 
ing has the same character as in "solid" isotropic me- 
tal. Direct calculation in r-space with allowance for  the 
discrete character of the ion chains[251 leads to a simi- 
l a r  result: 

vr,.' (r,) =e2 exp {-h (r,+b) )/ (r,+b) , 

where b is the distance between chains, Y,, are  the loca- 
tions of the ions, and X is the screening constant, which 
is particularly long in quasi-one-dimensional com- 
pounds. At the same time, in an individual one-dimen- 
sional metallic chain there is no 

Starting with the expression for the static paramag- 
netic s u ~ c e p t i b i l i t y , ~ ~ ~  we can also show that in aniso- 
tropic metals the oscillating indirect interaction be- 
tween the magnetic moments via the conduction elec- 
trons decreases with distance much more slowly (like 
R'2 or  2'') than in accord with the RKKY formula. 
Moreover, at sufficiently high degree of one-dimension- 
ality of the electron spectrum, the logarithmic singular- 
ity of the polarization operator n(q,) at the point q,= 2k, 
can lead to instability of the ground paramagnetic state 
of the metal and to antiferromagnetic ordering accom- 
panied by appearance of a static spin-density wave with 
a period L, = n/k, (Ref. 26). 

To  conclude the section, we note that the oscillating 
"tail" of the screened potential of a charged intertitial 
impurity in a metal matrix with a flat Fermi  surface de- 
creases in accord with the same law (-l /r)  a s  the fields 
of the elastic deformations of the crystal.c271 Therefore 
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the structure of the ordered interstitial alloys (includ- 
ing hydrides of transition metals) should be determined 
in this case by the joint action of both factors-the elas- 
tic stresses and the Coulomb interaction of the impuri- 
ties. 

3. OSCILLATIONS OF ELECTRON DENSITY ON THE 
SURFACE OF A METAL. INTERACTION BETWEEN 
ADSORBED ATOMS 

We proceed to consider the screening of charges near 
the surface of a semi-infinite metal. To  describe the 
Coulomb interaction in such an inhomogeneous system, 
with account taken of the collective effects of screening 
and retardation, which are connected with the excitation 
of virtual plasma oscillations, we start  with the tem- 
perature Green's function of a lognitudinal self -consis- 
tent field D(r, rt; io,), which satisfies the nonlocal 
Poisson 

V,ZD (I, r'; ion) - 4nez 5 drUlI(r, I"; io,) D (I", r'; ion) = 6 (r - r'), 

(3.1) 
where 

n(r ,  r'; io,) = 2T G(r, r'; ie,,,) G(r', r; i(e,, - en,))  C .' 
is the polarization operator, G(r, r'; iz,) is the temper- 
ature Green's function of the conduction electrons of the 
metal, while w,=2nnT and &,= (2n+ 1)nT are  the discrete 
even and odd "frequencies" (n= 0, r t l ,  &2, . . . ). 

Equation (3.1) was solved in Ref. 10 for a three-layer 
of the insulator-metal-insulator type with account taken 
of the continuity of the function D and of i ts  f i rs t  deriv- 
ative with respect to r and rt on the infinitesimally thin 
separation boundaries between the media. In the case of 
a semi-infinite metal, when the metal-layer thickness 
is L - 00, the potential electrostatic energy of two char- 
ges el and e, located in the vacuum outside the metal at 
points r, and r, and at clistances x, and x, from its sur- 
face (the x axis is perpendicular to the metal-vacuum 
interface, which coincides with the yz plane) can be re- 
presented in the form 

elel 
W = - 4ne,ezD (I,, I,; o. = 0) + - 

11,-rzl 

where 
e-""' I - qa (q) 

D(q,r)=-- 
2q  l + q a ( w '  

1 - 
a ( q ) = - - j  dkL 

n -- (kL2 +qz)e(k,,q) ' 

and ~(k, ,  q) i s  the static dielectric constant of the metal, 

The last term in (3.2) describes the energy of attrac- 
tion of the charges to the metal by the image forces due 
to the polarization (redistribution) of the electrons. 

In the TFA, when a(q)= (q2+ ~ : , ) - l / ~ ,  this energy per 
charge is giver. by 

where x ,, = 2 k F G  is the reciprocal Thomas-Fermi 
screening radius. At x>O the integral (3.4) can be re- 
duced by simple transformations to the form 

where H,, and H, a re  Struve functions, and No and N, a re  
Neumann functions. 

At a sufficiently large distance from the metal sur- 
face, when x>> xi:, this yields 

The principal term in (3.6) corresponds to the classical 
image forces. At x<< x;:, on the other hand, we get 
from (3.5) 

W ,  (5) =-'/3e2xr,{1+31,r.rpz[ln (r.,,z) +C-JI,]). (3.7) 

where C = 0.5772. . . is the Euler constant. The quantity 
W,(O) is finite and corresponds to the exchange-correla- 
tion part of the energy of the interaction of the charge 
with the semi-infinite metal.c281 Expression (3.4) thus 
contains information both on the image forces at large 
distances from the metal surface and on the multiparti- 
cle exchange-correlation effects inside the metal. 

The potential energy of interaction of two charges lo- 
cated at equal distances x, =x,=x from the metal sur- 
face is, according to (3.2) and (3.3) 

At x>> a(q), when the main contribution to the integral 
(3.8) is made by small momentum transfers q<< l/a(q), 
we obtain the well-known classical expression 

whence we get at R>> x the asymptotic expression 

W,,=2e,epzzIR3, (3.10) 

which coincides with the result of Kohn and ~ a u [ ' ~ ]  and 
differs by a factor of two from the energy of interac- 
tion of two dipoles. 

If one charge (e,) is in vacuum at a distance x from 
the metal surface, and the other (e,) is located at a 
depth xt  in the interior of the metal, the interaction en- 
ergy is given by 

d q  
W , ~ ( R ,  z ,  2') =4ne,e,j -D (q, z ,  z') eZqR, 

(2nIZ 
(3.11) 

where 
a(q,z' )  D (q, z ,  x') =e-P1" - 
l+qa(q)' 

cos k,z'dk, 

- - 
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3.1. Semi-infinite metal with spherical Fermi surface 

The dimensional potential interaction energy 
w = W,,a,*/e2 of two identical point charges (el = e, = e), 
one of which is on the surface of an isotropic metal 
( x =  0) and the other is in i t s  interior, is according to 
(3.1 1) and (3.12) 

where 

2 - 
h ( t ,  5')  = - Jds  cos ~ ' s  

0 

By integrating (3.13) twice by parts we easily obtain 
the following expressions for  the interaction between the 
charges over the surface (5'= 0) and in the interior of 
the metal (p=O) at large distances: 

Figure 4 shows plots of w(p, 0,O) against p and of 
w(O,O, 5') against 5' a s  calculated from (3.13). I t  is eas- 
ily seen that the osciIlations of w(p, 0,O) rapidly acquire 
the asymptotic p-'I2 dependence (upper dashed curve) 
and do not agree with the p-= predicted by Grimley and 
~alker" ' '  (lower dashed curve). 

In the TFA, expression (3.13) for a semi-infinite me- 
tal reduces to 

2 " exp (-E'(t2+a) '"1 
w A p ,  0 ,  "5) = -j tdt  JO (pt) 

xao t+ ( t ' fa) '"  ' 

In the particular case p=O the integral in (3.16) can be 
calculated exactly: 

FIG. 4. Screened potential of a charge on the surface of a 
metal with a spherical Fermi surface: solid curve-RPA, 
dash-dot-TF A, dashed curves-dependences of the type 
w =  L / 8 I 2  and L / $ ;  L = 0 . 1 6 .  Top-dependence of the poten- 
tial on the depth of penetration 5' into the metal. 

It follows from (3.17) that a t  large distances ( y  >> 1) the 
screened Coulomb potential in TFA decreases in the in- 
terior of the metal like exp (-tffi)/5', and this coin- 
cides with the solution (2.5) for a homogeneous metal. 
At the same time, the presence of other terms in (3.17) 
is connected with the diffraction of the electrons by the 
metal-vacuum interface. On the metal surface (5'=0) 
we get, accurate to the principal terms [cf. (2.9)], 

1 - 
S - 

const 
wrF(p ,O ,O)=-  J . ( u ) ~ u = -  

apJ " P 3  

Thedash-dot curve in Fig. 4 is a plot of w,,(p, 0,O) 
calculated with a computer in accord with formula (3.16) 
at 5' = 0. 

3.2. Semi-infinite metal with cylindrical Fermi surface 

Consider the potential of a charge near the surface of 
a metal with a cylindrical Fe rmi  surface whose sym- 
metry axis is parallel to the x axis (see Fig. 5). Using 
expression (2.6) for the polarization operator, we re- 
duce (3.11) to the form 

where 

y ( t )  =[ t2+v.  Re (1 - ( l - l l t z ) '" ) ] '" .  

Integrating (3.19) by parts and retaining the most singu- 
lar terms a (t2 - I ) ~ ' ~ ,  we obtain at p >> 1 and [' >> 1 

x t '  exp( - t ' ( l+x ) '" ) .  sinp - 
W(P'~~~')=-~~(~+~)'"~*+(,+~)'.>] p? . 

Figure 5 shows a plot of w(p, O , t l )  against p, obtain- 
ed by numerical integration for different values of ['. 

In the TFA, expression (3.19) agrees, when the sub- 
stitution 2- a i s  made, with expression (3.16), so that 
the results (3.17) and (3.18) a r e  valid in this case, too. 

We consider now in greater detail the question of two 

FIG. 5. Screened potential of a charge in R P A  on the surface 
of a metal with a cylindrical Fermi surface perpendicular to 
the metal-vacuum interface, for different values of the pene- 
tration depth ti; a =x = 1; B' = 0.066. 
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3.3. Semi-infinite metal with flat Fermi surface 

FIG. 6. Interaction energy of two charges located at different 
distances 6 from the surface of a metal with a cylindrical Fer- 
mi surface. Dashed curve-dipole-dipole interaction of the 
type ~ ' / d ;  A' = 2.70; ff =x= 1. 

charges in vacuum at  a distance x>> from the sur- 
face of the metal, and show that in the RPA, at large 
distances between the charges, the dipole dipole repul- 
sion (3.10) predomintaes. For example, in the case of 
a metal with a cylindrical Fermi surface the energy of 
interaction of the charges according to (3.8), with al- 
lowance for (3.20), i s  

Figure 6 shows the results of a numerical calculation 
by formula (3.22). With increasing . $ = 2 k ~ ,  i.e., with 
increasing distance between the charges and the metal 
surface, the Fermi oscillations become smoothed out 
and the dependence of the interaction energy w(p, 5) on 
p tends to the pg law typical of the dipole-dipole repul- 
sion. Consequently, i t  becomes possible to describe 
with the aid of (3.2) both the Friedel oscillations of a 
screened Coulomb potential and the direct dipole-dipole 
interaction of charges on the surface of a medal; this 
could not be done he re to f~re .~ '~ '  

-,fZzi 

FIG. 7. Screened potential of a charge on the surface of a 
metal with a flat Fermi surface perpendicular to the metal- 
vacuum interface; below-Friedel oscillations along the z 
axis at q = O  (solid curve) and q =  1 (dash-dot), top-fast falloff 
alongthey axis at b = 0 . 1 ;  f f = u = l .  

We proceed to the study of Friedel oscillations on the 
surface of a metal with flat sections of the Fermi sur- 
face. The geometry of the problem i s  shown in the in- 
s e r t  of Fig. 7. We confine ourselves to a derivation of 
the dependences of the screened Coulomb potential on 
the coordinates y and z along the surface. The dimen- 
sionless potential of the charge reduces, according to 
(3.11) and (3.12) with (2.10) taken into account, to the 
form 

where 

Integrating by parts and retaining the most singular 
terms -It - 1 I-', and taking into account the fact that the 
temperature o r  the transverse energy of the electrons 
is finite, we obtain the following asymptotic expression 
a t  b>> 1 and q>>1: 

20 exp (-q ( 'Iza l'n U) ") cos E 
w(L ,  q.O)= - 

a(2nq) ' "  ('/*o ln U)", E .  (3.24) 

It i s  easy to verify that the damping is exponential also 
in the interior of the metal [cf. (2.12)]. On the other 
hand, as q- 0 i t  follows from (3.23) that 

Integrating (3.25) by parts we obtain in place of (3.24), in 
analogy with foregoing, at g>> 1 and q= 0, 

2 c o s f  
w(5,0,0)=-- 

na 5 ' 

Figure 7 shows a plot of w(L, q,0) against 6 and q, ob- 
tained by numerical integration starting with formulas 
(3.23) and (3.25). It follows from Fig. 7 that the screen- 
ed Coulomb potential decreases slowly along the surface 
of the metal in the direction of the z axis, forming a po- 
tential relief of alternating sign, which i s  particularly 
deep a t  q = 0  (the depth of the negative minima reaches 
1 w,,, \-10'2 RY). 

The coordinate dependence of the screened Coulomb 
potential on the surface of a metal with flat sections of 
the Fermi surface takes in the TFA, according to 
(3.23), the form 

4 
w..(;. q, 0 )  = -{ cfZ+q2)-" - 2- ' ~ ~ ( ~ ~ + q ~ ) ~ ~ ~ ~ ( o x ( ~ ~ + n ' ) ~ )  ). 

n ao  ( n )  

At large distances from the charge, when c>> 1 and (or) 
q>> 1, the potential w,,=4/naap3 just as for metals with 
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spherical and cylindrical Fermi surfaces. 

The anlytic results obtained in this section, together 
with the numerical calculations, show that the charac- 
ter of the Friedel oscillations of the electron density on 
the surface of the metal depends substantially on the 
shape of its Fermi surface. In the case of a metal with 
a spherical Fermi surface, the Friedel oscillations 
along the metal-vacuum interface decrease according to 
(3.14) more slowly (-R-'") than in the interior, but the 
minima of the potential energy a r e  shallow and nowhere 
do they land in the region of negative values (Fig. 4). 

On the surfaces of metals with cylindrical and flat 
Fermi surfaces, the Friedel oscillations attenuate ac- 
cording to (3.20), (3.24), and (3.26) like R-' and z-', re- 
spectively. At definite distances R and z the potential 
energy of the interaction of like charges becomes nega- 
tive (Figs. 5 and 7), meaning attraction. 

The presence of such negative minima explains quali- 
tatively the results of experiments[15181 in which a pe- 
culiar pattern of ordering of monatomic La and Sr films 
on the anisotropic (1 12) faces of W and Mo single crys- 
tals was observed, with close-packed chains of W and 
Mo atoms disposed along the [iil] crystallographic di- 
rection. As a result, the electron Fermi surface has 
almost-flat sections perpendicular to the ['ill] direc- 
tion (see Refs. 23 and 24). When Sr and La i s  sputtered 
on the (112) face of W, monatomic films a re  produced 
with a primitive structure p(l X 7) (see Refs. 15-17), so 
that the equilibrium distance between the adsorbed 
atoms along the chains i s  equal to z,= 7a,= 19.2 A, 
where a, i s  the distance between the W atoms in the 
chain. When S r  i s  sputtered on the (112) face of Mo, at 
low concentrations of the adsorbed atoms, n,< loi4 cm", 
a p(1 x 9) structure i s  produced with z,= 9a,= 24.6 A, 
and at larger n ,  there i s  produced a structure p( l  x 5) 
with z0=5a2= 13.7 i6 (Ref. 18). It if i s  assumed that for 
the Sr and La films on W the equilibrium distance z, be- 
tween the adsorbed atoms corresponds to the position of 
the second negative minimum of the screened potential 
a t  the point ~21  = 12,8 or  z$:=6.4k;' (see Fig. 7), and 
it i s  recognized that for W in the [IT11 direction the 
Fermi momentum is %,=0.41 i6-' (Ref. 23), we obtain 
the estimate z,= 15.6 A, which is close to 6a,. In the 
case of S r  films on Mo, when kF=0.46 ' (Ref. 24), the 
second and third minima of the interaction potential a r e  
a t  distances z:::= 13.8A and z,$:=20.6 i6, which corre- 
sponds to z0=5a, and z0=7.5a,. 

We see that fair agreement i s  observed between the 
theoretical and experimental values of z,, even though 
the shapes of the real  Fermi  surfaces of W and Mo dif- 
fer substantially from flat. The indirect interaction be- 

tween the adsorbed atoms via the conduction electrons 
of the substrate metal can thus play an important role in 
the ordering of adsorbed films. 

In conclusion, we a re  grateful to V. K. Medvedev, A. 
G. Naumovets, V. L. Pokrovskii, Yu. G. ~ tush insk i r ,  
P. M. Tomchuk, and G. V. ~ r m i n  for useful discussions 
of the results. 
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