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The usual Biberman-Holstein theory of resonant-radiation transfer is valid only when the reradiating 
center "forgets," after absorbing the radiation quantum, everything but the fact that it is excited. This is 
possible if the center interacts strongly with the "thermostat." In a number of cases, for example for 
resonant phonons in ruby, this is not the case. It is also possible to formulate an alternative transfer 
theory, and this theory is developed in this paper. 

PACS numbers: 63.20.Dj, 71.36. + c  

INTRODUCTION functions in a number of papers.['-14] In all  these 
studies, however, the formulation of the problem was 

An alternative to the known quantum theory of Biber- the following: if at the initial instant of time there is 
man and ~ols te in[ '*  is developed here for resonant- one excited center o r  one radiation quantum, how will 
radiation transfer. The present work was stimulated the system evolve subsequently? Unfortunately, the 
by experiments on nonequilibrium phonons in ruby.[3* 71 solution of this problem does not answer the questions 
We shall therefore deal henceforth with phonons and that arise in the experiment. 
two-level impurity centers (rather than photons and 

We therefore obtain in the present paper a system of atoms). 
equations for the functions F(w; r, t ), which makes it 

The Biberman-Holstein equation, the derivation of 
which will be analyzed in Sec. 1, presupposes that a 
strong interaction exists between the impurity centers 
and the "thermostat." This is precisely why it suffices, 
for a description of the nonequilibrium state of the 
system of centers, to know only the concentrations N, 
and N, of the centers at the lower level 1 and at the 
upper level 2; all other nonequilibrium parameters 
"are forgotten" in the course of interaction with the 
thermostat. 

possible to determine the factually measurable quanti- 
t ies for a given spatial distribution and time dependence 
of the excitation of a system of centers and phonons. 
Concrete problems will be considered separately. 

1. THE BIBERMAN-HOLSTEIN THEORY 

The original radiation transfer equation derived by 
Biberman and Holstein is formulated a s  an equation for 
N,(r, t ) .  We present for this equation a somewhat dif- 
ferent derivation that contains the phonon distribution 
function n, (r ,  t)  of interest to us. This is done for two 

On the other hand if the system of centers interacts 
reasons: first, to make clear the assumption on which 

only with resonant radiation, then the description of i t s  
nonequilibrium state i s  much more complicated-the the derivation is based and, second, to be able to com- 

pare the equations for N, snd n,  with the equations we 
system "remembers" better the excitation conditions, 

obtain for F(w) and s(w, q). and more parameters a re  needed for i t s  description. 
Thus, for example, the excitation energy of the system 
of centers is described in the Biberman-Holstein equa- 
tions in integral fashion-by the parameter N,. If, how- 
ever, the system remembers the excitation conditions, 
then i ts  description calls for knowledge of the spectral 
density F(w) of the center excitation energy (w is the 
center excitation energy reckoned from the level h, = 0). 
The total number. N,, of the excited centers, is ob- 

The main premises on which the Biberman-Holstein 
equations a re  based a re  the following. For a complete 
description of the state of the system it  suffices to 
know the phonon momentum distribution function n, , the 
concentration N, of the centers located at the lower 
level 1 ,  and the concentration N ,  of the centers on the 
upper level 2. All these quantities (n, ,N,, and N,)  can 
depend on the position in space r and on the time t . 

tained a s  an integral of F(w) with respect to the fre- The probability that a phonon with momentum q (and 
quencies. Analogously, instead of the phonon distribu- energy w a )  will be absorbed is assumed to be 
tion function in the momenta n, there appears the spec- 
tral  density of the phonon field s(w,q), which i s  propor- A a N j ~ " ( a q ) ,  (1.1) 
tional to the degree of excitation of the mode q at the where Aa is a certain constant, and the function cp4 (w) 
frequency w. The fact that it becomes necessary to determines the absorption line shape, it is convenient 
'peak of the excitation of the q mode not at the to choose it such that (w) = 1 at the center of the ab- 
frequency w, but at an arbitrary frequency w means sorption line, i.e., at o = W E .  The absorption line width 
that the phonon field executes forced rather than natural 

is then 
oscillations. 

6m0= 5 du q a ( a ) .  
The spectral densities F(w) and s(w, q) a r e  closely (1.2) 

related with the Green's functions for the centers and The phonon-production probability i s  assumed to be 
phonons. The interaction of resonant radiation with 
two-level centers was investigated in t e rms  of Green's AeN2q'(o, )  ( n , + l ) ,  (1.3) 
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where Ae is a new constant, while the function cpe (w), 
normalized in analogy with cpa(w), describes the emis- 
sion line shape. 

Under these assumptions, the equation for the phonons 
takes the form 

where 

and the second term in the right-hand side of (1.4) is 
responsible for the phonon-phonon interactions. 

Since each phonon absorption act is accompanied by 
a transition 1 - 2, and each emission act by a transition 
2 - 1, we can easily write down the kinetic equations for 
N l  and N,: 

-= 1 aN' Bq C q { N , ,  N,, nql- --NI+G,, 
at I* TI 

Here Gl and G, describe the pumping of the levels El 
and E, by external sources, while 7,  and T, describe 
their depletion which is not connected with resonant 
phonons (for example in the E l  -E,  and E,  -E,  transi-  
tions to the lower level E,) .  

Let us discuss the premises on which the foregoing 
equations a r e  based. The most serious is the assump- 
tion (1.3) concerning the distribution of the phonons 
emitted by the excited centers. It means that the spec- 
trum of the phonons radiated by the system of centers 
depends neither on the system state nor on i t s  prior 
history, while the total number of emitted phonons de- 
pends on a single parameter N,. 

We emphasize first  of all that in the Biberman-Hol- 
stein theory the width 6we cannot be due to the natural 
width T-l, since an isolated center, a s  is known from 
the theory of resonant fluorescence, [ ls l  forgets the 
prior history only in the case of broadband excitation. 
The width bwe can be due to the scatter of the energies 
of the E,-El transition for different centers (inhomoge- 
neous broadening) o r  to splitting of the transition 
E, -El at one center (vibrational structure). In either 
case the assumption (1.3) means that the relative proba- 
bilities of filling different states of the "level" 2 a r e  
fixed, although the absolute ones a re  arbitrary and a re  
determined by the parameter N,.  This is possible only 
if the system of centers exchange intensively energies 
of the order 6we with the thermostat, and the distribu- 
tion over the states of the level 2 is determined by the 
thermostat. The arbitrariness of N ,  means that ex- 
change of high energies is difficult, therefore the inter- 
action with the thermostat does not change the total 
number of excited centers. 

One might think that the role of the interaction with 
the thermostat can be played also by an interaction V 
between centers, which satisfies the condition 
b o e  << V<< wozE, - E,. This interaction does indeed con- 
serve the number of excited centers and establishes 
some equilibrium between them. This interaction, how- 

ever, conserves not only the number of the excited cen- 
t e r s  but also their  energy. Therefore even the relative 
occupation numbers of the states of the level 2 should 
remember the excitation conditions. 

The situation is the same with the assumption (1.1). 

If we assume that Eqs. (1.4), (1.6), and (1.7) a re  
valid also for  the described states which a r e  closed to 
thermodynamic -equilibrium, then the parameters of the 
emission and absorption lines should coincide: 

In fact, under thermodynamic equilibrium we have 
C ,  EO. It is easy to verify that this identity is satisfied 
at temperatures T>> 6we '" only if (18) holds. 

The constant A' can be expressed in t e rms  of the 
probability 7-l of the spontaneous emission of the phonon. 
The number of phonons produced in 1 cm3 per  second in 
spontaneous emission is 

where po is the phonon-state density corresponding to 
the line center 

It is clear from (1.9) that 

The gist of the last remark, which pertains to the 
region of applicability of the system (1.4), (1.6), and 
(1.7), is the following. Since this system makes use of 
the phonon distribution function n,, this means that the 
width of the phonon distribution should exceed the re- 
ciprocal absorption time, i.e., 

In many cases the depletion of the lower level is 
negligible, i.e ., N, << N, .  Then, adding (1.6) and (1.7), 
we have 

This equation yields N, = ~ * ( r ,  t )  and we a re  left with 
two equations for N, and N,. If furthermore n, << 1, then 
these equations can be written in the form 

If we neglect the phonon-phonon interactions (this can 
always be done for photons), then we can use (1.14) to 
express n, in terms of N,. Substituting this in (1.15), we 
obtain an equation for N,; if we neglect retardation in 
this equation, i.e., the time of ballistic flight of the 
phonon through the active volume (this can always be 
done for photons), we obtain the well-known Biberman- 
Holstein equation. 

2. GENERAL EQUATIONS 

In this section we derive the equations for the propa- 
gation of excitation in a system of randomly disposed 
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two-level centers that interact with the phonon field. 
The reason why the system is not a t  equilibrium is that 
the centers are optically pumped also under the influ- 
ence of the phonon momentum injected on the crystal 
boundary. 

The nonstationarity and spatial inhomogeneity of the 
system are  determined by the excitation conditions, 
i.e., by the geometric dimensions of the excited regions 
and by the duration of the excitation (or by the duration 
of the relaxation of the consequences of this excitation). 

Owing to the microinhomogeneity of the crystal, the 
centers located at one macroscopic point r can have 
several different energies of the E,  - El transition. 
Writing this in the form E,  - El =wo +v, where wo is the 
average transition energy, we obtain the parameter v 
that characterizes the center. The distribution of the 
centers in v is  given by the function @(v), normalized 
by the condition 

The quantity A q  can be called the inhomogeneous broad- 
ening. 

Bearing applications to ruby in mind, i t  must be re- 
cognized that the levels E2 and E l  are  in fact Kramers 
doublets (see Figs. 1 and 2). The degeneracy of these 
levels can be lifted by an external magnetic field o r  by 
the random magnetic fields of neighboring centers. 
Therefore the magnetic field H at  the location of the 
center serves, in addition to v, as a parameter that 
characterizes the center. The components of each 
doublet will be marked by an additional index (spin 
orientation), and their splittings will be designated 
26, and M2. 

The state of the system of centers is described by 
Green's functions of the following type: 

G;: (R ,  R'; t,, t2)  ==(a: ( t i ) + ,  a?a,(tr) >, 

where (a,,*)+ is the operator of electron production on a 

FIG. 1. Levels of cr3+ ion in A1203 and transitions between 
them. P-optical pumping from the ground level 4 ~ 2  to the ab- 
sorption band 4 ~ 2 .  The populations of the metastable levels 
C E ) E  and C E ) P A  in nonradiative transitions are  g, and gz. 
Luminescence corresponds to the transitions R l  and Rz (radia- 
tive time r R ) .  The figure shows also the transition between 
metastable levels with emission of a phonon (time 7 ) .  In the 
right-hand side of the figure i s  shown the structure of the Kra- 
mers doublets E and 2 A  in a magnetic field and the transitions 
between them without spin flip (time 7' ) and with spin flip 
(time 7 ' ) .  

FIG. 2 .  Reradiation of spectral density. On the left is shown 
one of the four reradiation processes without spin flip: 1,-2' - l + ;  the ~emaining processes of this type are 1+- 2+- 1+ and 
I-- 2+- 1-. On the right i s  shown one of the four reradiation 
processes with spin flip: 1+ - 2'- 1'; the remaining processes 
of this type are 1+ - 2+ - 1- and 1' - 2* - 1+. The four pro- 
cesses with spin flip correspond to the four terms in the ker- 
nel (3.23). 

center located at the point R, in a state s =l or  2 and 
with corresponding spin orientation. We shall assume 
that the states of the different centers a re  not corre- 
lated, i.e., G =O if R +R', and that the centers are  
excited "incoherently," i.e., only the "diagonal" func- 
tions G::=G', and G;=G; differ from zero. We assume 
next that the inhomogeneity and the nonstationarity of 
the system are  weak. Therefore the dependence on the 
discrete R in the Green's function G:(R;t,, t2) is trans- 
formed into a dependence on the macroscopic coordinate 
r. The macroscopic time will be t =+(T, +t,), and i t  is 
natural to take the Fourier transform with respect to 
the difference ti - t2 and change over to the variable c. 
Thus the functions G:(r, t;&) figure in the theory. In 
view of the foregoing, these functions depend also on the 
parameters v and H that characterize the "type" of the 
center. 

The equations for these functions are  derived with 
the aid of the Keldysh diagram techniqueu6]; i t  is con- 
venient to transform these equations into generalized 
kinetic equations The generalized kinetic equations 
are  functions of the generalized occupation numbers 
n,f(v, H; &) , the level widths I':(v, H;c) , and the level 
shifts A%(v, H;E). The Green's functions a re  replaced 
by the generalized occupation numbers n(w, q), by the 
widths y(w, q), and by the shifts AW(W, q). All the oc- 
cupation numbers, widths, and shifts depend on r and t. 
The broadenings and the shifts of the levels lead to the 
appearance of broadened and shifted delta functions; fo r  
examples, for photons we get in place of 6(w - w,) 

The functions A:(&) for the centers are  determined in 
similar fashion. 

Having made these remarks, we can write down the 
generalized kinetic equations on the basis of their for- 
mal analogy with the ordinary kinetic equations .[17118] 

The balance equations for the centers is 

a 
A: (&)- I -  A,* ( e )  n.* ( E )  =g.-r.* (e)n.* (el +B,*(e)  . 

at 
(2.3) 

These include the broadenings of the levels of the 
centers 
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Here T' is the lifetime of level 2 relative to the transi- 
tion to level 1 in spontaneous emission of a phonon with- 
out spin flip, i.e., the time of the transitions 2* - I*; 
analogously, T" i s  the time of the 2* - 1' transitions 
with spin flip (see Fig. 1). The total lifetime T of the 
level 2 relative to spontaneous emission of the phonon 
is determined by the relation T" =T"' +?" ' I .  The times 
7, and T2 have the same meaning as in Sec. 1. 

Next, the arrival terms in (2.3) are  given by 

The terms g, in (2.3) describe the level population due 
to the optical pumping. The equations for the centers 
do not indicate explicitly the parametric variables 
v, H and r, t that are  contained in them and on which 
n:, r:, and At  depend. The variables v and H enter 
as parameters because the phonon-mediated transi- 
tions take place within one center. The pumps g, are  
assumed to be the same for all types of centers and for 
both components of the doublet. The variables r and t 
enter in the right-hand side a s  parameters for another 
reason: assuming the inhomogeneity and the nonsta- 
tionarity to be small, we calculated the interaction of 
the centers with the phonons in the same manner as  in 
a homogeneous and stationary system. 

The phonon balance equation i s  
a 

b(o.q)-' (%+*.v) A(o .q)n(o .q)  

=S(o,q)-r'(o,q)n(o,q)+B(o,q). (2.8) 

It includes the phonon width due to the interaction with 
the centers: 

The dots in the last formula stand for terms obtained 
from those written out by replacing (+) by (-) and vice 
versa. The symbols "Av" denotes averaging over the 
centers of all types, i.e. over v and H; the total con- 
centration of the centers i s  N. The arrival term due 
to the interaction of the phonons with the centers is of 
the form 

N 
B(o,q)=-Av j d e  h,+(~.+o)A,+(e)n;C(e+o)+. . . 

POT 

It is seen from the last two formulas that y * and B are  

in fact independent of q. The physical reason for this i s  
the random disposition of the centers. The term S(w, e) 
i s  responsible for  the phonon-phonon interactions. 

We have written out above only the broadenings I?: 
and y*;  the corresponding level shifts A E ~ ,  and AW can 
be easily obtained from (2.4), (2.5), and (2 9) with the 
aid of the dispersion relations. 

We discuss now the assumptions made in the deriva- 
tion of the equations for the centers and the phonons. 
The assumption that the excitations of various centers 
are  not correlated and that the excitation of each center 
is not coherent can be justified, of course, only for a 
definite form of optical pumping. Optical pumping in 
ruby is realized in nonradiative transitions to the levels 
1 and 2 from the broad absorption band which lies above 
them (Fig. 1). The details of the nonradiative tansitions 
a re  unknown, but i t  is most likely that if the pumping to 
the absorption band does introduce some degree of co- 
herence into the system, this coherence is lost in the 
case of a multiphonon nonradiative transition. (The 
energy of the 4 ~ ,  - ' E  transition in ruby i s  3500 cm-l. ) 
The same circumstance justifies the assumption that 
g, is the same for both components of the doublet. 

The correlations that a r e  established in the system 
independently of the degree of correlation of the ex- 
citation a re  determined by the "width of the band of 
occupied states," i.e., in our case by the total width 
6w of the 2 - 1 transition, which consists of the inhomo- 
geneous with Aw, and the "homogenous broadening" 
T-'. (The width 6w is the analog of the thermal width 
T for equilibrium systems with continuous spectrum.) 
The assumption that the system i s  weakly nonstationary 
is equivalent to assuming that the duration of the inves- 
tigated processes exceeds the correlation time 6w-', 
and the assumption that the inhomogeneity is weak is 
tantamount to assuming that the system dimensions ex- 
ceed the correlation length v6w-', where v is the speed 
of sound. 

Let us estimate these quantities for ruby. There a re  
no direct data for Aw,; judging from the displacements 
of the lines Rl  and R, upon d e f o r r n a t i ~ n , ~ ' ~ ~  AU,, should 
be approximately 20% of the width of these lines, which 
in turn is ~ 0 . 1  cm'l; in other words, Aw,-0.02 cm", 
which corresponds to a time 0.25 nsec. The time T is 
not known exactly; all that i s  known reliably is that T' 

+$' =15 nsec, a value determined from the Orbach 
data.L201 As to T, calculation yields T =  1 n ~ e c , [ ' ~ ]  while 
photon-echo experiments yield T =  4 n ~ e c . [ ' ~ ]  In any 
case i t  i s  seen from this that the correlation time in the 
system is of the order of a fraction of a nanosecond, 
and the correlation length of the order of hundredths of 
a millimeter (the average speed of sound is v=7.1 
x lo5  cm/sec, Ref. 23). Yet the time scales of the 
experiments range from several nonoseconds up to 
some microseconds, and the spatial scales are not less  
than a millimeter. 

3. WEAK DEPLETION OF THE LOWER LEVEL 

In all the experiments with nonequilibrium phonons 
in ruby, the number of nonequilibrium phonons i s  
small and almost all the metastable centers are  in the 
lower state. In this case the equations become much 
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simpler. 

At n << 1 i t  follows directly from (2.5) that r f  =ril +T" 
and A E ; = O .  The radiative broadening of T;' can be 
neglected, since T, = T, = T, =4 Therefore, 
reckoning the energy from El =0, we have 

A,* (v ,  B; e )  =6(7-'I e-wo-v*8r), (3 .I) 

where 

It is seen from (2.4) that r; consists of two small 
terms: one G~ and the other proportional to n. We can 
therefore attempt to seek a solution in which r:=0 and 
AEf=O, i.e., 

A,* ( v ,  H; e )  -6 (eT-6,). (3.3) 

In addition, we shall assume that nt>> nt. 

Substituting (3.3) in (2.7) and (3.9) we can see that we 
now have only the values nt(v, H;c) at c=* 6, ,  i.e., the 
true occupation numbers nt(v, H). Since optical excita- 
tion i s  assumed to be nonselective in spin and does not 
depend on v or  H, and the influence of the phonons on 
the depletion of the level 1 can be neglected, i t  is clear 
that nT(v, H )  =n,, i.e., i t  is independent of the spin 
orientation and of the type of center. We can write for 
n, the obvious balance equation 

a i - nt+ -n,=g,+g,-g, 
at 7. 

(3.4) 

which, of course, follows under the assumptions made 
also from the equations. 

We simplify f i rs t  the expression for y*(w). We in- 
troduce for this purpose the form factor of the transition 
between unsplit doublets 

cp(o)=-bo j,dv # (v)6(7- ' lo-oo-v) ,  (3.5) 

where 6w is defined by the condition cp(w,) =l. Then 
the H-dependent form factors of the transitions between 
individual components of the split doublets a re  

cp**(w) =cp(o*6,76r). (3.6) 

Substituting (3.1) and (3.3) in (2.9) we get 
1 

7 . ( o ) = = - 0 b ) .  T .  (3.7) 

where 

and 
1 

@ ( a ) = A 1  - 2 - ( f ' [ q + + ( ~ ) + ~ - - ( ~ )   iff'[^+-(o)+cp-+(o) 11, 
H 

~ ' = T / T ' ,  ~"=T/T".  
(3.9) 

The meaning of the time T* is clearest at H =0, when 
@(w) =cp(w). Omitting factors of the order of unity, we 
can write 

(3.10) 

where X, is the wavelength of the resonant phonon. It 
suffices now to note that N* is the concentration of the 
metastable centers, the parentheses contain the frac- 
tion of the centers that are  resonant for the givenphonon, 

and hi is the resonant-scattering cross section. Thus, 
T* is the lifetime of the phonon relative to resonant 
absorption (at the line center). 

We proceed now to the transformation B(w). Substi- 
tuting (3.3) in (2.10) we get 

N 
B (a )  - ----;Av{A2+ ( 0 + 6 , ) a +  (a+6,)+. . .) 

POT 

The dots stand here for terms in which (+) is replaced 
by (-) and the signs of 6 have been reversed. For n;, 
in turn, we get from (2.3), the equation 

where 

Since the true phonon occupation number is 

n,= I d a  s ( ~ , q ) ,  (3.14) 

i t  is clear that s(w, q)w, gives the phonon-field spectral 
energy density stored in the mode q, while wos(w) gives 
the total spectral density of the resonant phonon field. 

The solution n;(&) of Eq. (3.12) can be represented as 
a sum of two terms: one proportional to the optical 
pumping g,, and the other proportional to the phonon 
spectral density s(w). The former is equal simply to 
T g 2 ,  where 

and the second can be expressed in terms of a function 
F(w, t) that satisfies the equation 

(3.16) 

In the experiment one usually measures the total number 
of the metastable centers on the upper level, namely 

We introduce the total number of metastable centers 
produced by the optical pumping in 1 cm3 per second, 
i.e ., G =2Ng, as well as the fraction q of the centers 
excited on the upper level, i.e ., q =g2/gl. Then, using 
(3.1), (3.12), and (3.16), we can transform (3.17) into 

N , = = ~ G T + ~  d o  F ( o ) @ ( ~ ) ,  (3.18) 

where is calculated from G in analogy with (3.15). 
This relation reveals simultaneously the meaning of the 
function F(w): the spectral density of the excitation 
energy of the centers, due to the presence of phonons, 
is w,F(w)@(w) . 

If we substitute in (2.1) the quantity n$(c) in the form 
of a sum of two terms, then B(w) will also break up 
into two terms. The term proportional to the optical 
pumping i s  easy to calculate; i t  is equal to 

The second term, proportional to s(w), i s  expressed in , 

terms of F ( w ) .  We leave out the prolonged but rather 
elementary manipulations and present the final equation 
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for s(w, q), namely 

rlG +B'(o,q)+-A(o,q)@(o). 
p060 (3.20) 

The term responsible fo r  the phonon anharmonicity i s  

S ( o ,  q)==A(o, q)S(o,  q). (3.21) 

The terms responsible for  the reradiation of the phonons 
are  y+s and B*, where the corresponding arrival term 
is 
~'(o,q)----  A(o q, { ~ ( ~ ) m ( ~ ) +  ~~~~R(~..~)[P(~~)-F(~)I). 

Po r 
(3.22) 

The integral kernel in this equation is expressed in the 
form of a mean value over the magnetic fields: 

1 A (a, a') = R (a', a )  = E'T. Av {6  ( o  - o' + 2Q) [I$+ (a) + q' (a)] 
H + 6 ( o  - a'  - 281) (a) + q-+ (a)]]. (3.23) 

Using (3.16) to express F(w) and substituting in (3.22), 
we obtain ultimately 

' dt' t-t' 
~ ( o ; r , t ) -  j-exp[--] s(o;r,  t l ) .  

-- 
The term non-integral in the frequencies in (3.24) des- 

cribes reradiation processes that do not alter the spin 
state of the metastable center on the level 1 (reradia- 
tion without spin flip, see  Fig. 2), and the integral 
term stands for processes in which the spin state of the 
center on the level 1 changes after the reradiation 
(reradiation with spin flip). In the first  process are  
coupled only the components of the spectral density 
s(w,q) with a single frequency w, while in the second 
a re  coupled components with frequencies that differ by 
the splitting of the lower level 26,. It is obvious that 
the splitting of the upper level does not lead to such an 
effect. An indication that the frequency is changed by 
reradiation with spin flip is contained in Ref. 6. 

Equation (3.4) can be rewritten in the form 

(3.25) 

Its solution yields the distribution of the concentration 
of the metastable atoms N*(r, t). The width y*(w) then 
becomes, according to (3.8), a known function of r, t, 
and w; from the dispersion relations we can reconstruct 
Aw(w;r, t) and obtain A(w, q;r, t) from (2.2). It remains 
now to solve Eq. (3.20) for the function s(w, q;r, t) with 
an arrival term in the form (3.24). Calculating next 
s(w), we can find from (3 -16) the function F(w;r, t )  . 
Knowledge of F makes i t  possible to calculate from 
(3.18) the spatial distribution and the time dependence 
of the R2-luminescence, which is proportional to 
N2(r, t) . 

It is necessary to add to (3.20) the conditions imposed 
on s(w,Q) on the crystal boundary; these conditions are  
determined by the character of the phonon reflection 
from the helium-crystal interface. The excitation of 
the system by the thermal momentum also enters via 
the boundary conditions: besides the reflection condi- 
tions, an additional flux v,s,(w, q) is specified on the 

crystal-mitter boundary for v, directed in the interior 
of the crystal. 

In conclusion, we discuss the criterion for the validity 
of the approximations used to simplify the equations. 
The widths of all the functions in terms of w and o, a r e  
determined by the quantities 7*" and 6w. Therefore 
the approximation I?, =O means in fact that r, << 6w and 
r, << T * ' ~ .  On the other hand it  is seen from (2.4) that 
r, = +m". Since 6 0  k r1 >> the condition on r, 
reduces a t  n << 1 to the inequality n f  << T*" or,  equiva- 
lently, n << a, where a! =N*/poi3w. This parameter has 
a simple meaning: i t  is the ratio of the number of 
electronic degrees of freedom to the number of phonon 
degrees of freedom in the band 6w; in the theory of 
spin-lattice relaxation i t  is sometimes called the narrow- 
ness factor of the phonon bottleneck. Thus, the condi- 
tion for the applicability of the equations of the present 
section is 

By way of example, we mention that in ruby p,=1.3 
x107 ~ e c - c m ' ~  (for the three phonon branches), so  that 
a typical value is po6w = 10'' ~ m - ~ .  Typical values of 
iP range from loi4 to 1018 cmm3. 

4. SPECTRAL DIFFUSION 

If there is no external magnetic field, then the split- 
ting 26, is connected only with local magnetic fields. 
The splitting can be estimated in this case from the 
width of the EPR line on the metastable level 1. In 
ruby at N =2 x 1019 ~ m ' ~  (0.05 W of cr3+ by weight) we 
have 26, =1.5 x cm" according to Ref. 20. Since 
26, <<6w, the change of the frequency in reradiation 
with spin flip can be visualized as spectral diffusion. 
Expanding, as usual, in terms of 6, and 6,, we can 
easily transform the integral term of (3.24) into a 
differential term: 

We have introduced here the spectral-diffusion coeffi- 
cient 

where 

tiz--Av 6,'. ~--4t't"-4r/(~'+T") <i. (4.3) 
x 

The spectral diffusion is significant a t  times t such 
that 

The value of g in ruby, as seen from the data a t  the end 
of Sec. 2, lies in the interval from - 0.1 to - 1. A typi- 
cal time of the long-range R2-luminescence decay, ob- 
served in the experiment, is T,, = 1 psec. Therefore 
the spectral diffusion is. significant at N*2 loi6- loi7 
~ m ' ~ .  Experiments on the initial decay of R, lumines- 
cence yieldedc79251 7,,= 10 nsec; in this case the spec- 
t ra l  diffusion is apparently inessential. 

Spectral diffusion should be distinguished from re- 
distribution over the frequencies in the Holstein-Biber- 
man equations, although qualitatively i t  can sometimes 
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lead to analogous effects. First ,  spectral diffusion 
calls for splitting of the lower level; second, i t  i s  
characterized by a definite rate and is not instantaneous 
a s  in the Holstein- Biberman equations. 

Turning on an external magnetic field H, enhances 
the spectral diffusion. If the field H, i s  weak, s o  that 
the splitting 6,(Ho) it produces is small compared with 
6w, then this field can be taken into account by changing 
62 in the diffusion coefficient. On the other hand if the 
field is strong and 6 ,(Ho) 2 6w, then the redistribution over 
the frequency spectrum does not have the character of 
diffusion. It is seen from (3.4) that the role of the mag- 
netic field does not reduce in this case to a "dragging 
asunder" of the phonon packets, as is sometimes tacitly 
assumed--the redistribution among them must also be 
taken into account. 

5. COMPARISON WITH THE BIBERMAN-HOLSTEIN 
EQUATIONS 

If there is no external magnetic field, and the local 
fields can be neglected, then the equation for s(w, q) 
takes the following form: 

a 
( x + v a v ) s ( m , q ) =  -f(m)s(w,q) 

Let us compare this equation with (1.14) and Eq. (3.16) 
for F(w) with (1.15). It can be stated that the crossing 
terms of the system (3.16), (5.1) describe reradiation of 
spectral density s(w, q) with conservation of w and with 
variation of q (as should be the case with scattering by 
an immobile center); after the reradiation, the spectral 
density at a given o is distributed over q in accord with 
h(w,q). It is important, however, that the probability 
of the reradiation depends not on q but on w; therefore 
after the reradiation this probability does not change. 
This is the essential difference between our equations 
and the Holstein- Biberman equations. 

It is instructive also to understand when Eq. (5.1) re- 
duces to the ordinary kinetic equation for n,, in other 
words, when we can confine ourselves to consideration 
of s(w,q) on the mass shell o =,w,. It i s  seen from (5.1) 
that for this purpose i t  is necessary to be able to make 
the replacement A(w, q) - 6(w - w,). Only then can we 
seek a solution in the form s(w, q) =n,&(w - w,) and, 
cancelling out 6(w - w,), we obtain an equation for n,. 
This procedure is obviously possible only when the 
width of the function of A(u,q) in terms of w i s  less 
than the width of the function cp(w), i.e ., when T*-' 
~ 6 w .  

6. SPATIAL DIFFUSION 

It is known that the Biberman-Holstein equations do 
not go over into the diffusion equation for the total pho- 
non concentration n(r, t). The reason is that the rerad- 
iation process increases the number of phonons with 
larger mean free paths relative to resonant absorption. 
In our Eq. (5.1), a s  already indicated, the mean free 
path relative to absorption by the centers i s  not charged 
in the course of reradiation of the spectral density. 
Therefore in the case when the nonstationarity and spa- 
tial inhomogeneity are small not only compared with 

6w but also compared with r*", i.e., when the reradia- 
tion proceeds rapidly enough, Eq. (5.1) can be reduced 
to the diffusion equation for the total spectral density 
s(w;r, t). 

Naturally, the spatial diffusion can describe only the 
resonant components of the spectral density, i.e., s(w) 
with w close to w,-the other components of s(w) are  
infrequently reabsorbed. For  the components with 
o = w, we can approximate 

with a relaxation time r, that does not depend on w and 
q. Here s, is the equilibrium spectral density, whose 
value a t  w close to w, is 

(for ruby w, =29 cm-I =42 K). 

To obtain the diffusion equation, we resolve, as usual 
s(w, q) into two components s+ and s', even and odd in 
q. Subdividing correspondingly Eq. (5.1) and retaining 
only the principal terms, we get 

v q v s + ( o ,  q ) + y ( o ) s - ( 0 ,  q)  =O. (6.4) 

It follows from (6.4) that s- << s+. From (6.3) we have 

We integrate (5.1) with respect to q and add to Eq. (3.16) 
multiplied by cp(w). We then obtain the law of conser- 
vation of the spectral density in the phonons + centers 
system: 

We substitute here in place of F ( o )  i ts  expression in 
terms of s(w) from (6.5); i t  is possible to replace s by 
s- under the integral sign, and express s' in terms 
V s + =  V s  from (6.4). We then obtain the diffusion equa- 
tion of interest to us: 

where we have introduced the coefficient of spatial dif- 
fusion of the spectral density 

The presence of an additional term proportional to 
acp(w) under the sign of the time derivative is connected 
with the fact that part of the energy in the system has 
been accumulated in the form of excitation of the cen- 
ters .  This part, however, does not contribute to the 
energy transfer; there is therefore no such term in the 
flux. 

The author i s  grateful to R. Katilyus, V. Perel', and 
G. Pikus for a discussion of individual aspects of this 
paper. 
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Screening of charges and Friedel oscillations of the 
electron density in metals having differently shaped Fermi 
surfaces 
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Physics Institute, Ukminian Academy of Sciences 
(Submitted IS March 1978) 
Zh. Eksp. Teor. Fi. 75, 249-264 (July 1978) 

Analytic and numerical integration methods are used to obtain the spatial distribution of the screened 
Coulomb potential of point charges in the interior and on the surface of metals having different Fenni- 
surface shapes. It is shown that in isotopic metals with quasi-two-dimensional or quasi-onedimensional 
electron spectra the Friedel oscillations of the electron density decreases along normals to a cylindrical or 
plane Fermi surface, like r -' sin 2kFr or r -' cos 2kFr, respectively, and attenuate exponentially in 
perpendicular directions. Along the surface of an isotropic metal with a spherical Fermi surface, the 
Friedel oscillations decrease like r -'IZ cos 2kFr. In the Thomas-Fermi approximation, the screened 
charge potential in a homogeneous metal takes the form e */r regardless of the shape of the Fermi 
surface, and along the surface of a semi-infinite metal it decreases in power-law fashion like r -). An 
expression is obtained for the potential energy of the charges near the surface of a metal. This expression, 
together with the image forces, describes the Friedel oscillations and the dipole-dipole interactions. The 
results explain, in particular, the experimental data on the ordering of adsorbed Sr and La films on the 
(1 12) faces of W and Mo single crystals. . 

PACS numbers: 71.4S.Jp, 71.25-3, 71.90.+q 

1. INTRODUCTION 

It is known that the steplike character of the Fermi 
distribution of the conduction electrons in metals leads 
to the appearance of the so-called Friedel oscillations 
of the screened Coulomb potential, which by virtue of 
the spherical Fermi surface over large distances from 
the charge, Y>> k;l (k, is the Fermi momentum, A = 1) 
decrease like Y ' ~  cos 2k,~.[l*'-~ For the same reason, 
the Ruderman-Kittel-Kasuya-Yosida (RKKY) interac- 
tion between the magnetic moments of nuclei or para- 
magnetic impurities in an isotropic metal behaves 
asymptotically like rm3' 

The law governing the decrease of the Friedel oscil- 
lations depends, however, on the "dimensionality of the 
metal" d, i.e., on whether we are dealing with a bulky 
metal, with a film, o r  with a thin filament. Therefore 
even in the case of a three-dimensional isotropic elec- 
tron spectrum, as  shown by ~ d a w i , [ ~ I  the perturbation 
6n of the electron density decreases like Y'~/ ' -  cos 2 k , ~  
at d = 2 and like Y ' ~  sin %k,r at d = 1. If at the same time 
the electron spectrum is two-dimensional at d= 2 and 
one-dimensional at d =  1, then the screened Coulomb po- 
tential decreases respectively like Y" sin2k,r (Ref .5) 
and Y" cos 2 k , ~ . [ ~ ~  
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