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FIG. 7. Dependences of In r ( T )  on T' for: a) A1+ 0.048 
at.% Ag; b) Cu+0.17 at.% Al. In Fig. 7a we have r* (T)  
= [pd(T) - Pdminl/pam,n. The numbers alongside the curves give 
the numbers of the samples of the alloys (compare with Figs. 
4 and 1). 

slightly distorted and do not have an abrupt step, Eq. 
(2) describes the r ise  of r ( T )  from the minimum to al- 
most the point of transition to a plateau (case a in 
Fig. 7). 

The energy & calculated from Eq. (2) i s  within the 
range (0.7-1.2) x 109eV for the various C u  alloys 
and i t  amounts to (1.3-1.7) x 10" eV for the A1 alloys. 
In the case of samples with different dislocation struc- 
tures the value of E varies somewhat and clearly the 
alloys a re  characterized by higher values of & than the 
weakly deformed pure 

Our experiments give information mainly on the scat- 
tering by high-frequency vibrations. Clearly, the ex- 
perimental results give some particular value of & 

governed by the position of the maximum of the spectral 
density of phonons in the short-wavelength region. In 
this case the value of E i s  determined by the character- 
istic frequency w of the quasilocal vibration modes of 
dislocations. The temperature position of the step 
suggests that the characteristic frequency of these 
vibrations should be between 2 and 3 times less  than the 

Debye frequency. 

The results of our measurements show that if L, i s  
less  than 30 lattice periods, achieved in our experi- 
ments by the addition of Mg to aluminum o r  of Pt and 
Rh to copper, the characteristic dislocation scattering 
channel i s  then suppressed. 

" ~ s t i m a t e s  a r e  made on the basis of the value of ~ ~ ( 4 . 2  OK). In 
the case  of copper we find that ~ ~ ( 4 . 2  "K)/N= 1.8 x10- '~  Cl -cm3 
(Ref. 5) and in the case  of aluminum i t  is pd(4.2"K)/N= 1.8 
x10- '~  D -cm3 (Ref. 6) (N is the dislocation density). The 
presence of impurities should not a l ter  significantly the val- 
ue of this ratio.17] 
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The static solutions of the nonlinear differential equation describing the current distribution in a Josephson 
barrier of finite width are studied. All the possible types of distributions are described, and the stability 
of the obtained solutions is investigated. It is shown that the solutions corresponding to the presence of 
excited vortex states in junction with a transport current are unstable and, therefore, cannot be realized 
under ordinary conditions. Examples are given of self-oscillating solutions, which arise in a junction with a 
current whose strength exceeds the critical value. The dependence of the period of the self-oscillations on 
the parameters of the problem has been determined with the aid of a computer. 

PACS numbers: 74.50. + r 

1. The problem of the nature of the passage of a cur- who, by numerically integrating the corresponding non- 
rent through a Josephson barr ier  of finite width in the linear differential equation, found, in particular, that 
absence of an external (current-unrelated) magnetic in a wide barr ier  the transport current is largely con- 
field was considered earlier by Owen and Scalapino, ['] centrated near the barr ier  edges and does not penetrate 
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to the middle, a s  a result of which there ar ises  a cur- 
rent self-limiting effect.') (The current self-limiting 
effect was first  pointed out in Ferre l  and Prange's 
paper [a.) 

The present paper is devoted to a more detailed con- 
sideration of the problem. The detailed analysis car- 
ried out by us allowed the discovery of the existence of 
other solutions, in addition to the ones described in 
Refs. 1 and 2. Thus, for example, below we show that 
for a sufficiently wide barr ier  in the absence of an ex- 
ternal field there exist solutions describing anomalous 
(as compared with those presented in Ftefs. 1 and 2) 
current distributions, when the transport current flows 
mainly in the middle of the barrier,  decreasing toward 
the barr ier  boundaries, a s  well a s  more complex dis- 
tributions, when the currents in different sections of 
the barr ier  flow in opposite directions (see Fig. l c  be- 
low). Such excited current states a re  similar to vor- 
tices produced in a wide barr ier  upon the application 
to i t  of an external magnetic The analysis 
carried out by us (see below) shows, however, that 
such anomalous distributions a r e  unstable, only nor- 
mal states of the type described in Refs. 1 and 2 being. 
stable. For this reason the anomalous distributions 
cannot, under ordinary conditions, be realized in ex- 
periment. Nevertheless, below we describe both the 
normal and anomalous distributions, since the latter 
form part of all  the possible solutions of the static 

FIG. 1. a) Schematic representation of the 'bounded" solutions 
(5) of Eq. (1). The value of the phase at  x =0 is denoted by 
(~(0)  and dp/dx ) r=o=-HI. The two cases correspond to two 
possibilities: 0 <p(O) < r  and r <p(O) <2n. The points on the 
curves where the derivative assumes the value dq/& I z = L  =HI 
in accordance with (3) a r e  indicated. The numbers by these 
points correspond to the solution numbering system used in 
the present paper. F o r  example, solution No. 3 is represented 
by the section of the curve between the point q(0) and the point 
3, and similarly for  the other solutions. It is clear that in 
this way all the possible solutions of the problem can be enu- 
merated. b) The H(x)=dp/dx field distributions for  the various 
solutions; the numbers by the curves a re  the numbers of the 
solutions. c) Possible distributions of the current j = sinq in 
the junction (schematic). 

(time-independent) problem. It is also possible that 
these unstable distributions will be of interest under 
some specific conditions. 

In Sec. 2 we give an account of a l l  the possible types 
of current and field distributions in a Josephson barr ier  
of finite width (we consider the static case). In the 
present paper the boundary-value problem for the non- 
linear equation governing the field and current distri- 
butions in the junction is reduced to  the equivalent 
Cauchy problem (cf. Ref. 5), which allows us  to uni- 
quely associate with each solution a definite set  of 
"initial" data (i.e., the value of the function and the 
value of i t s  derivative at one of the boundaries of the 
barrier) .  Integral relations a r e  found which allow the 
determination of the "initial" data in terms of the para- 
meters of the boundary-value problem. The depend- 
ences, obtained with the aid of a computer (and, in a 
number of cases, analytically: see  Sec. 3), a r e  illu- 
strated graphically. 

In Sec. 4 we investigate the question of the stability 
of the obtained solutions. As has already been noted, 
the analysis carried out by us  showed that only the or- 
dinary Meissner-type solutionsc1*21 (corresponding to a 
monotonic decrease of the field from the boundaries to 
the center of the barrier)  a r e  stable. All the anomalous 
solutions turned out to be unstable. The result that the 
anomalous solutions a r e  unstable is supported by the 
results of the investigation of the dynamics of the dev- 
elopment of the solutions of the corresponding time- 
dependent nonlinear equation. 

In Sec. 5, with the aid of a numerical solution of the 
nonstationary equation, we present examples of self- 
oscillating solutions arising in the barr ier  upon the 
passage of current of strength higher than the critical 
value and find the dependences of the period of the self- 
oscillations on the parameters of the problem. 

2. The basic equation describing the steady-state 
field and current distributions in a Josephson barr ier  
has the 

The quantity q(x) (the so-called phase difference of the 
wave functions of the superconductors) is connected 
with the magnetic field in the barrier: 

In (1) and (2) we have used dimensionless quantities: 
the coordinate is measured in units of X, (X,-0.1 - 1 
mrh is the characteristic penetration depth of the field 
into the weak superconductor); the magnetic field is 
measured in units of H, = Q,/2nXJA (a, = 2 x lo-' G-cm2 
is the magnitude of a flux quantum and A -  cm is 
the penetration depth of the field into the bulk supercon- 
ductor; normally H,-0.1 - 1 G);  the density of the cur- 
rent passing through the barr ier  is  equal toj  = j c  sinq(x), 
where j ,  is the maximum value of the current den- 
sity. We consider the one-dimensional problem, when 
the current flows along the z axis and depends only on 
the x coordinate in the plane of the barr ier .  
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The boundary conditions for the problem of the pas- 
sage of a total current I through a barr ier  of width L 
in the absence of an external magnetic field have the 
form 

where H, is the self-magnetic field of the current, con- 
nected with the total transport current, I, by the re- 
lation 

(in dimensional units the relation (4) assumes the nor- 
mal form H,= 4 d / c ;  we assume that I >  0). 

Equation (1) has a general solution in the form of an 
elliptic integral, giving in a implicit form the function 
q(x) (cf. Ref. 5): 

t (2) =sign H(x) =*I, 

where the conditions (3) have been taken into account. 
The solutions q(x) can be expressed in terms of the 
Jacobi elliptic functions, but we prefer to deal directly 
with the integral representation (5). It is not difficult 
to verify that solutions of the type (5) correspond to a 
finite phase 0 c 1 q(x) 1 < 2n (see Fig. la) ,  the solution 
oscillating as the coordinate is ~ a r i e d , ~ '  while the field 
H(x) =dq/dx can change its sign along the junction (see 
Fig. lb). Since the solution of the problem (1)-(3) i s  
determined only modulo 2n (i.e., to the solution can 
always be added the constant 2nn), we can, without loss 
of generality, consider the interval 0 s q(x) c 2n the 
domain of variation of q(x) (see Fig. la) .  

According to (3), we have H2(0) =H2(L) =H;; there- 
fore, the function &) in (5) should satisfy the relation 
sin2[q(0)/2] = s in2[q(~) /2] ,  from which, with allowance 
for the requirement that 0 c p(x) s 2n, we have two pos- 
sibilities: q(L) = q(0) o r  q(L) = 2n - q(0). In accord- 
ance with these possibilities, the solutions to Eq. (1) 
can satisfy two conditions that follow from (5): 

Notice that if we define the quantity B in (5) a s  the prin- 
cipal value of the a r c  sine, i.e., if 

B (cp,) =2 arcsin (sinz ((cp (0) 12) -H,'/4} Gn, (8) 

then the values of q(x) at the points x,,, and x,, cor- 
responding to the extrema of p(x) a re  equal to 

With allowance for this remark, the relations (6), (7) 
can be rewritten in the form 

where we have set  q, = q(0) and 

The functions JN (x), computed from the formulas 
(lo), a re  shown in Fig. 2 for several values of HI. The 
points of intersection of the curves JN (X) with the hor- 
izontal straight lines JN = L coincide with the roots of 
Eq. (9), and allow us  to find the q,(O) = xN values cor- 
responding to possible solutions of the problem for 
given L and HI. The numeration of the solutions (PAX), 
adopted in (9) and (lo), coincides with the numeration 
of the solutions in Figs. 1 and 2. 

From Fig. 2, in particular, i t  can be seen that the 
boundary-value problem (3) i s  nonunique: several sol- 
utions a re  possible for given L and H,. Afterdetermin- 
ing the values of q(0) from (9) o r  Fig. 2, we can for- 
mulate in place of the boundary-value problem (3) the 
equivalent Cauchy problem for Eq. (1): 

The Cauchy problem (11) uniquely determines the par- 
ticular solution of Eq. (1) and, moreover, if q(0) is de- 
fined as indicated above (the formula (9)), then a solu- 

FIG. 2. The functions J,(x) ,  found from the formulas (10) for 
different values of H I ,  which are given by the numbers of the 
curves. 
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tion to the problem (11) will automatically satisfy the 
condition d q/dx 1, =HI at  the other edge of the barr ier .  
The reduction of the boundary-value problem (3) to the 
Cauchy problem (11) is expedient for  the computation 
and classification of all  the possible solutions of the 
problem (3), a s  well as for carrying out numerical 
calculations. 

3. The functions U, V, and W, determined by the 
formulas (lo), admit of the following representations: 

U ( X )  =2K(z)-2l7($, 4, V ( X )  =4F($, z), W ( X )  = 4 K ( z ) ,  

z=cos (A ( ~ ) / 2 ) ,  $=arc sin (I-H,'/4z2}",. 
(12) 

where 

a r e  respectively the incomplete elliptic integrals of the 
first  kind. 

In a number of limiting cases we can obtain analytic 
dependences in terms of elementary functions. Thus, 
in the vicinity of X =  & = 2 a r c  sin (HI/2) the quantity 
B(X) in (10) becomes small. Using this fact, we find 

Here 5 = X- &, and it  is assumed that 5 << 1 and, fur- 
thermore, that 5 << H,(4 - H,2)'/'; O(5) denotes the terms 
that vanish as 5 - 0. 

If, on the other hand, 5<<HI<<1, then &-HI<<l,  and 
from (13) we obtain 

The formulas (13) and (14) describe the behavior of the 
curves J,(x) in Fig. 2 in the vicinity of the asymptotes 
X =  &, where the values of J,(X) become large. 

In the case when HI<< 5 << 1, instead of (13), we have 

In the case HI << 1, but for arbitrary values of 5 = X- X, 
(though when the condition sin 5 <<HI is fulfilled) we 
have 

This formula describes the behavior of the curves J,(x) 
in Fig. 2 for HI<< 1 and arbitrary X, but not too close 
to the values x=0 and x=a .  

The minimum point of the J,(x) curves in Fig. 2 cor- 
respond at  a given L to the greatest possible value, 
H,,, of the field (or to the maximum current I,,= 
W,,). From Fig. 2 and from (16) i t  can be seen that 
for HI<< 1 the corresponding value x,,, = n/2. Substi- 
tuting this value into (16), we find from the equation 
L = U(X) (see (9), where J, = U) that 

Thus, for small L the maximum current through the 

junction I ,,= 2Hh, = L,  i.e., numerically equal to the 
barr ier  width (in the dimensionless units used here). 

From (9) and (16) we obtain the value of p, for solu- 
tions No. 1: 

cp,=arc sin (2H,IL) +HI, H I ~ I .  (18) 

The formula (18) is valid for La W,, i.e., for HI<H,, 
= L/2. 

In the case when L << 1 and HI << 1 (though when W d  
L G I), instead of (18) we find with allowance for (4) 
that 

qb=arc sin ( I / I - ) ,  I,=LaI. (19) 

Thus, in the case of barr iers  of small width we obtain 
the normal relation between the current and the phase: 
I=Z,,sin p,. In this case i t  is not difficult to obtain the 
general solution of the problem: 

(20) 
where q, is given by the formula (19). 

Inth i scasewhenH, -5=x-x ,<< lwehavex ,=H,  
and 

from which we find the value of qo for the solutions 
No. 1: 

Here it is assumed that q,-HI << 1 (i.e., the L values 
a r e  not too small). In this case the general solution of 
the problem has the form 

~ ( z )  =aer+be-', H (z) =aeZ-be-', j ( x )  -ae'+be-', (23) 

where 

Similarly, we can derive in the limiting cases ex- 
pressions corresponding to the other solutions; we 
shall not give them here. 

In the general case of arbitrary HI and L ,  Eq. (9) 
cannot be solved analytically, and numerical methods 
must be used. Figure 3 shows the numerically deter- 
mined dependences of q(0) on HI for L = 1,4,  and 9. It 
can be seen that the slopes of the N = 1 curves (solution 
No. 1) for low H I  satisfy the law d q , / d ~ , =  (eL + 1)/ 
(eL - I), which follows from (22). As H, is  increased, 
the linear dependence (22) goes over into the steeper 
dependence (18), a transition process which can be fol- 
lowed, in particular, on the N =  1 curve corresponding 
to L = 1 ( ~ i g .  3a). 

4. As is clear from the foregoing, for given L and 
HI there exists some set of solutions to the static 
boundary-value problem (1)-(3) (for example, there a r e  
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FIG. 3. HI dependences of ~ ( 0 )  found from (9) (see also Fig. 
2): a )L=l ;  b)L=4; c)L=S. The curves a r e  labeled by the 
numbers, N, of the corresponding solutions (cf. the J, curves 
in Fig. 2). The heavy curves correspond to stable solutions. 

two solutions for O<L<n,  four for a<2a ,  six for 2n< 
L <3a, etc. (see Figs. 2 and 3) ). In order that a given 
specific solution can be realized in the barrier,  i t  
should be stable against small perturbations. The sta- 
bility of the static solutions is investigated in the fol- 
lowing manner (cf. Ref. 5). 

Instead of Eq. (I), let us consider the more general 
partial differential equationc2* 

which goes over into Eq. (1) when the time derivatives 
a re  neglected. Here t is a dimensionless time, while 
/3 is a phenomenological parameter that takes into 
account the dissipative losses in the barr ier  that a re  
connected with the appearance of a nonstationary elec- 
tr ic field, E - aq/at, and a normal component of the 
current, j,=aE (a is the normal conductivity). Let us 
write the time-dependent solution to Eq. (24) in the 
form 

where q,&) is any of the static solutions to the problem 
(I), (31, while *&, t) is a small deviation from the sta- 
tic solution. Substituting (25) into (24), we find a lin- 
earized equation for the amplitude *(x): 

d2$/dzz+u (z) $=E$, 

v(z) =-cos rp,(z), E=02+Bo.  

Since the boundary conditions (3) a re  assumed to be 
given and time independent, the solution to Eq. (26) 
satisfies the conditions 

From Eq. (26) with the conditions (27) we can find the 
spectrum of the eigenvalues, E ,  of the problem. Know- 
ing the eigenvalue E ,  we can find the increments det- 
ermining the temporal evolution of the solutions: 

From (28) it is clear that for E > 0 there is sure  to be a 

growing solution of the form * exp(w+, t ) ,  w+ >0, i.e., 
such a solution is unstable. For  E < 0 there is no grow- 
ing solution, and the solution in question is stable. 
Thus, the problem of determining whether the static 
solution cp,(x) is stable or  not reduces to the problem 
of finding the smallest positive eigenvalue of Eq. (26). 

The numerical solution of the problem (26)- (28) 
showed that only the solutions No. 1, depicted in Figs. 
2 and 3 by the heavy lines, a re  stable. All the remain- 
ing solutions turned out to be unstable (including the 
solutions corresponding to vortices with an oppositely 
directed magnetic field-solutions Nos. 5 and 6 in Fig. 
lb). The conclusions drawn about the stability on the 
basis of the linearized equation (26) were verified by a 
direct numerical solution of the partial differential 
equation (24), and were confirmed by an investigation 
of the temporal evolution of the solutions. In particular, 
i t  was found that a l l  the unstable solutions eventually 
become transformed under the influence of weak per- 
turbations into stable solutions of the No. 1 type. No- 
tice that a similar conclusion concerning the instability 
of the anomalous solutions is arrived a t  Refs. 5 and 8, 
where other boundary-value problems a r e  considered. 
Examples of the temporal evolution of the solutions for 
different formulations of the problem can be found in 
Refs. 5, 8, and 9. Thus, in the absence of an external 
magnetic field in a barr ier  with a transport current, 
there cannot be vortex states (i.e., regions with op- 
positely directed currents). This conclusion, by the 
way, has been drawn only for the case of an ideal homo- 
geneous barrier.  It is possible that the inhomogeneities 
present in real  barr iers  can exert a stabilizing influ- 
ence on the unstable distributions, making them meta- 
stable (an effect similar to the effect whereby vortices 
a r e  pinned in a type-I1 superconductor). We did not, 
however, investigate this question in greater detail. 

5. As can be seen, in particular, from Figs. 2 and 3, 
for given L there exists some critical field value H, 
(or a critical value of the total current, I,= W,, the 
problem (I), (3) possessing no static solution when 
HI>H, (or when I >Ic). The dependence H,(L) for the 
No. 1 stable solutions is depicted in Fig. 4 by the con- 
tinuous line. (This dependence is equivalent to the de- 
pendence I,,(L), whose plot is shown in Owen and 
Scalapino's paperc1].) As is clear from Fig. 4, forL << 1 
we have, in accord with the formula (17), the linear 
dependence H,(L) =L/2. The dashed curve in Fig. 4 
gives the critical fields for  solutions Nos. 2, 3, and 5. 

It is natural to ask the question: Which nonstationary 
solution will be established in the junction if a current 
strength Z>Ic is maintained? The answer to this ques- 

FIG, 4. Dependence of the critical field HI ,3,, onL for the No. 
1 stable solutions (the continuous curve; cf. Ref. I),  as  well 
a s  for the unstable solutions Nos. 2 and 3 (dashed curve) and 
No. 5 (dot-dash curve). 
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FIG. 5. Dependence on HI of the period of the stationary self- 
oscillations in the barrier for L =1,4, and 7. The period of the 
oscillations becomes infinite at HI <HI,, (L) (see Fig. 4). For 
HI <HI,, a static solution is realized in the junction. 

11111 LIIII- 

tion can be obtained with the aid of the time-dependent ' 3 1 4  j z 4  

equation (24). The numerical calculation showed that FIG. 6. An example of a self-oscillatory process in a Joseph- 

after some time the solution got into a stable self- son junction with L =4, HI = 7, and j3 = 1. a) Distribution of the 

oscillating regime that did not depend on the initial electric field E= aq/ /at ,  and b) distribution of the current 
j, = sincp, a t  different moments of time. The E and j, distri- (cf. Refs. 8 ad lo). The Period of the butions shown follow each other (downward) at  time intervals 

tionary self-oscillations a s  a function of HI is shown At =0.2, and cover the full period, T = 1.2, of the self-oscilla- 
in Fig. 5 for L=1 ,4 ,  and 7 and P = l .  tions. c) Two limiting H =  acp/ax field distributions (the contin- 

In Fig. 6 we show the distributions of the electric uous and dashed curves), shifted in time by a half-period 
i ~ e 0 . 6 .  The self-oscillations of the H field occur in the fieldE = acp/~t, the superconducting currentj, = sincp(x), region enclosed by the indicated curves. 

and the magnetic field H = 8q/ax in a junction with 
L =4(HI=7) at different moments of time encompassing 
the total period of the stationary self- oscillations. (In 
the case of Fig. 6, the period T =  1.2 and the curves fol- 
low each other downward a t  intervals of at =0.2.) It can 
be seen that in the nonstationary regime there a re  real- 
ized in the junction current distributions that a r e  simi- 
lar to the anomalous unstable solutions of the static 
problem (compare the curves for the current in Fig. 6 
with the curves for the solutions 4 and 5 in Fig. lc).  

Notice that in the above-considered formulation of the 
problem the magnetic field a t  the junction edges is as- 
sumed to be time-independent (H = iH,= const). This 
means that outside the barr ier  the magnetic field par- 
allel to the surface of the conductor is also constant. 
In view of this, there ar ises  the question whether under 
such conditions the barr ier  can emit electromagnetic 
waves even if i t  is in the nonstationary regime (when 
Z>Z,). We shall present qualitative arguments showing 
that the emission is nevertheless in principle possible. 
Indeed, integrating Eq. (24) over the coordinate x ,  we 
obtain 

I(t)+Id ( t )  =2HI, 

where 

As can be seen from (29), the constancy of the mag- 
netic field i H I  a t  the junction boundaries is guaranteed 
by the presence in the junction, besides the electric 
current Z(t), of a displacement current, Z,(t), which ap- 
pears when W / a t  - a 'cp/at2 has a nonzero value in the 
barrier.  Thus, the electric current, Z(t), connected 
with charge transport in the system is time-dependent. 
Therefore, charge oscillations occur in a circuit con- 

taining a Josephson junction operating in a nonstation- 
ary  regime, and such a system can, in principle, rad- 
iate. However, in the above- considered regime (H, = 
const) only the magnetic-field component perpendicular 
to the current can vary. This condition imposes i t s  own 
limitations, in particular, on the polarization of the 
radiation coming out of the barrier.  The detailed con- 
sideration of the radiation of such a system requires the 
use of a more complete system of equations, and falls 
outside the limits of the present paper. 

Let us note in conclusion that the above-indicated 
distinctive features of the dynamic solutions can be 
used to analyze the operations of SKVID's in the non- 
stationary regime. 

' )we  shall call such type of current states "normal." In Ref. 
1 only sucl- normal states a re  investigated (see also 
Solymar's book,C2] where Owen and Scalapino's results a r e  
used for a qualitative description of the phenomena connected 
with the stationary Josephson effect). 

2)Solutions of Eq. (1) that increase with the coordinate a r e  
realized in a barr ier  located in an external field, and do not 
arise in the present problem (cf. Refs. 4 and 5). 
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Fluctuations of the surface potential in 
metal-insulator-conductor structures 
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The potential relief of the semiconductor-insulator interface, due to the inhomogeneity of the charge in 
the insulator, is investigated in MIS structures. Assuming no correlation between the positions of the 
charged centers and taking into account charge-density fluctuations of all scales, the mean squared 
fluctuations of the surface potential are determined as functions of the character of the location of the 
built-in charge in the interior of the insulator and of the electron density. The effective density of the 
surface electronic states due to the potential fluctuations is obtained, as well as the temperature 
dependence of the surface conductivity of the MIS structure. 

PACS numbers: 73.40.Qv, 73.20. -r, 73.25. +i 

In the overwhelming majority of cases, the thres- 
hold voltages of the characteristics of MIS (metal- 
insulator-semiconductor) structures and of devices 
on their basis a r e  shifted a s  a result of the presence 
of a certain fixed charge in the insulator layer. This 
'built-in" charge causes a corresponding bending of 
the bands in the surface region of the semiconductor 
in the absence of an external bias. I ts  magnitude i s  
characterized by the so- called flat-band voltage, i.e., 
the voltage that must be applied to the metallic elec- 
trode of the structure to compensate for the action of 
the built-in charge on the semiconductor. I t  i s  clear 
beforehand that the density of the built-in charge is not 
uniform over the area  of the MIS structure. One of the 
causes of the inhomogeneity is the imperfection of the 
methods used to prepare the MIS structure. However, 
even at  the most perfect technology, there remain stat- 
istical fluctuations due to the discrete character of the 
elementary charge. The inhomogeneity of the built-in 
charge, causing corresponding fluctuations of the sur- 
face potential of the semiconductor, can lead generally 
speaking to much more  substantial changes of the 
capacitive and current characteristics of the MIS struc- 
tures than a simple additive shift along the voltage 
axis. In fact, consider by way of example an MIS 
structure a t  T = 0, in which the average surface pot- 
ential corresponds to depletion of the majority ca r r i e r s  
from the surface layer (see Fig. 1). The Fermi  level 
on the surface l ies in this case much lower than the 
average position of the bottom of the conduction band. 
In the homogeneous case the surface concentration of 
the ca r r i e r s  at  such a bending of the bands would be 
zero. However, because of the inhomogeneity of the 
built-in charge, the position of the edge of the band 
fluctuates, and the bands cross  the Fe rmi  level in 
individual sections of the surface. In these sections, a 
certain electronic charge is accumulated, s o  that the 

average electron density becomes finite. I t  is clear 
that with increasing bending of the bands the fluctua- 
tion amplitude needed fo r  the formation of the electron 
"drop" decreases, the probability of such a crossing 
increases, and the average electron density increases. 
The actual situation is somewhat more  complicated, 
since the amplitude of the fluctuations is, on account 
of screening, itself dependent on the electron density, 
whose value must be determined in self-consistent 
fashion. The electrons, which accumulate in the min- 
ima of the potential relief, partially screen the semi- 
conductor volume, and this decreases the total-voltage 
fraction across  the space-charge layer, and leads 
therefore to an increase of the capacitance of the MIS 
structure,  similar  to what occurs when the surface 
states a r e  filled.c11 Thus, one of the experimental 
manifestations of the fluctuations of the built-in charge 
may be deformation of the C-V characteristics of the 
MIS structure.  

Another manifestation of the fluctuations of the built- 
in charge is a characteristic dependence of the surface 
conductivity on the temperature and on the bias voltage. 
In fact, when fluctuations a r e  present the surface 
electrons a r e  located mainly a t  minima of the surface 
relief. Therefore the flow of current in the system 
requires the surmounting of potential barr iers ,  and 

FIG. 1. 
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