
ameters. 

The fact that Jc,, goes through zezo in a number of 
systems, however, is evidence that H, is apparently 
due to phonons in a definite range of impurity concen- 
trations. Numerical calculations have shown that the 
ratio (J , , /J , , ,~  at p = 8 can vary in a wide range: it is 
of the order of 0.5 for InSb, AlSb, and PN, i t  is equal 
to 4-6 for many alkali-halide compounds, ZnO, and 
Cu20, and exceeds 10 for CdS, FtbI, and CsI. Of 
course, the contribution of the phonons to J, increases 
when account is taken of other mechanisms that couple 
the electrons with the lattice vibrations (the piezo- 
electric effect, the optical deformation potential). 

Besides the spectroscopic manifestations (the values 
of the resonance frequencies, the widths of the EPR 
and APR absorption lines, etc .), interaction via phonons 
can manifest itself in principles in effects that depend 
on the magnetic ordering of the impurity. Of interest 
from this point of view is gallium arsenide, where f e r -  
romagnetic ordering of the iron impurity was observed 
a t  a concentration 1019 cmm3 (Ref. 5). At a* of the order  
of the lattice constant (-5.6 A), a - 15 eV, c, - 4 x105 
cm/sec, p, = 5 g/cms, E~ = 11.3, and E, = 10.6 it turns 
out that J ,  - J,, = 118 x 10" eV. This value of the ex- 

change energy accounts fully for the observed ordering 
temperatures (77-300 K). None the less ,  this  estimate 
is more readily qualitative, since the deformation- 
potential method is not valid for  impurities with smal l  
state radii, and to describe the electron-phonon coup- 
ling it is necessary to employ improved procedures. 

')one must not confuse the proposed intaraction with that 
considered by Aminov and Kochelaev. The latter is of 
relativistic character and is therefore smaller by several 
orders of magnitude. 
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On the renormalization of the velocity of sound in phase 
transitions involving a change in valency 
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The effect of the hybridization of conduction electrons with a localized f-electron energy level, cf, lying 
near the Fermi surface on the longitudinal sound velocity, C, is considered. It is shown that the 
hybridization enhances the screening of the ion-ion interaction as cf approaches the Fermi surface. This 
explains the experimentally-observed mimimum in the pressure dependence of the velocity of sound. The 
strong intrasite correlation of the f electrons leads to an asymmetry in the minimum of C(cf) as the c, 
level passes through the Fermi surface. The results are compared with the results of the measurement of 
the velocity of sound in Ce as it undergoes the y-a transition. 

PACS numbers: 64.70.Kb, 62.65. + k 

1. There occurs in a number of rare-earth metals and 
their compounds (e.g., in Ce and SmS) a s  the pressure 
and temperature a r e  varied an electron phase transition 
connected with the existence of a narrow localized-f - 
electron band near the Fe rmi  level.n1 A theoretical 
model for such a transformation has been worked out in 
a number of papersc4-81 on the basis of the transition of 
f electrons into the conduction band a s  the pressure i s  
increased.c2m 3 1  In this case  the presence of strong re- 
pulsion between the f electrons at  the same time lattice 
site turns out to be important fo r  the existence of the 
phase transition. 

Later, it was s h ~ w n ~ " ' ~  that allowance for  the hybrid- 
ization of the spd-f electrons enables us to account for 
the intermediate-valence state. It is known that an in- 

crease in the compressibility occurs in the vicinity of 
a phase transition involving a change in valency. 
In particular, it has been observed that the longitudinal 
velocity of sound C(P) in Ce has a minimum in the re-  
gion of the y-a! transition, which occurs in Ce at  a 
pressure -7 kbar.[O1 The y- 0 transition in Ce is iso- 
morphous, the number off electrons per  si te changing 
in the transition from nf =0.94 to nf =0.33."'"' 

In the present paper, using Ce a s  an example, we 
show that allowance for the hybridization of the f elec- 
trons with the conduction electrons enables us to ac- 
count for  the presence of the C(P) minimum associated 
with transitions involving a change in valency. This 
effect has been considered by Kocharyan and Khom- 
ski:, [I2 but their approach is  purely phenomenological 
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in character. In contrast to these authors, we develop 
in the present paper a microscopic theory of this 
phenomenon with a consistent allowance for the strong 
correlation of the f electrons localized a t  the same 
site. Allowance for this correlation allows the explana- 
tion of the experimentally observed asymmetry in the 
C(P) minimum. Physically, the C ( P )  minimum turns 
out to be connected with an increase in the screening of 
the ion-ion interaction as the f -electron level approach- 
e s  the Fermi surface. In this case the hybridization 
transitions of the f electrons into the conduction band 
increase the density of states near the chemical poten- 
tial. 

Below we f i rs t  describe the model and the main ap- 
proximations in which the standard expression for the 
longitudinal velocity of soundn33 can be used in this 
model. The main part of the work consists in the com- 
putation of the polarization operator. In conclusion, we 
compare the theory with experiment. 

2. Let us consider a system consisting of a lattice 
of collectivized and localized electrons, taking into 
consideration the Coulomb interaction between them 
and the hybridization. The localization of the f elec- 
trons leads to their strong repulsion a t  a site; to des- 
cribe this repulsion we have to take the f -electron 
operators in the site representation. The Hamiltonian 
of the system has the form 

H.,=N-% gx (e-'kR-a,+b,T+a. c.) +hl-KC v,'fe-'qR-~nm~Td~+qT,au,, 
rn.k.7  P+O 

k.T.T, 

Here we have separated out the mean values of the elec- 
tron-density operators Anrnf y =Gmf y -  (nmf y). The Ham- 
iltonian Hii describes the interaction of the ions; Hf 
corresponds to the (25 + 1)-fold degenerate single-elec- 
tron f -electron level, which will be assumed to lie in the 
middle of a wide conduction band J=5/2 in the case of 
Ce); y i s  the total-angular-momentum component; m 
is the number of the site; U is  the intratomic repulsion 
parameter-the largest energy quantity of the problem 
(in fact U-10 eV). Owing to the separation of the aver- 
ages of the electron-density operators, the level is  as- 
sumed, in accordance with the Falicov model,t43 to be 
already renormalized by the mean value, c ,  of the s-f 
Coulomb interaction E, = c:' +u (n, - n,). HSf corresponds 
to the Coulomb repulsion and the s-f hybridization with 
parameter g. Here, just a s  in Ref. 7, we assume that 
the s and f states with the same y hybridize; u , ,  and 
v,, are  the interactions of the electrons with the lattice, 

where, for simplicity, the pseudopotentials for the s 
and f electrons a re  assumed to be the same: 

v ,. =". 11- --4 nez(Z-n,) lqZQo+blRo. 

The density of states of each of the 2J+1 conduction 
bands is assumed to be a constant and equal to p. 

In the case when the electron-electron interaction does 
not depend on the position of the lattice sites, the sec- 
ond-order term in the expansion of the S2 potential in 
powers of the electron-ion interaction, 

gives the well-known expression for  the longitudinal 
velocity of sound n3  : 

psq =C a:+,,akT, p,' = ~ n , , ~ e - ' ~ ~ .  

Here we have neglected the Umklapp processes. 

For the Hamiltonian, (I), under consideration the ex- 
plicit electron-electron Coulomb interaction function 
leads to a situation in which the zeroth, S2'Ot, and linear 
52'", terms in the power ser ies  expansion of the 51 po- 
tential in H, depend on the positions of the lattice sites; 
consequently, these terms should make an additional 
contribution to the dynamical matrix. It can, however, 
be verified that each differentiation of Hf and H,, in 
52'O' and 52'" with respect to R ,  leads in the expression 
for  the dynamical matrix to a superfluous summation 
over the momentum q (in relation to the analogous dif- 
ferentiation in 62"'). Each such summation gives the 
power of the parameter t2 = rezp(&p)/p~, where p (E,) i s  
the density of states a t  the Fermi  surface andp, is the 
Fermi  momentum. 

We shall assume that the parameter t2 is  small, and 
use for CZ the expression (2). Suchanapproximation is, 
generally speaking, valid only in the limit of high elec- 
tron densities, and should f i rs t  break down when the 
level gets sufficiently close to the Fermi surface. But, 
apparently, a first-order transition with a change in 
valency occurswhen cf i s  still sufficiently fa r  from E,. 

In the case of Ce this is indicated by both a relatively 
small change in C (by 10-15%), which occurs in the 
vicinity of the transition, and the closeness of the val- 
ency to an integral value (3.06 for the y phase and 3.67 
for  the 0 phase). In the opposite case the expression (2) 
can be used only in a region far from the transition 
point. 

Finally, let us note that, because of the smallness of 
the hybridization parameter g a s  compared to v i e  (its 
characteristic value is g-0.3 e ~ ) ,  we can neglect the 
contribution to the dynamical matrix from the differen- 
tiation of the hybridization with respect to the coordi- 
nates of the lattice sites. 

Within the framework of the above-adopted approxi- 
mation (i.e.. the approximation that 5 ' <  1) the determi- 
nation of C reduces to the computation of the polarization 
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operator lI(0,O). In the absence of hybridization, ll(0,O) 
is simply the density of states of the s electrons a t  the 
Fermi surface. Physically, it i s  clear that i t  is  pre- 
cisely the electron transitions into the conduction band, 
which occur on account of the hybridization, that should 
have a significant effect on lI(0,O) and on the total den- 
sity of states at the Fermi surface. Therefore, incom- 
puting II(0,O) we shall take only the hybridization and the 
single-site Coulomb interaction U into consideration, 
and neglect the remaining Coulomb interaction., 

3. To determine n(0,O) i t  is convenient touse the Ward 
identity 

where g is the chemical potential and n is the total 
number of particles. 

Let us take the correlation interaction U into account 
a t  the level of the zeroth Hamiltonian by going over to 
the atomic-conf iguration-changing Hubbard operatorsr 14]: 

where X = I  O), I y) and the states 1 0) and ] y) correspond 
respectively to an empty f shell and a shell with one f 
electron having a total-angular-momentum component y. 
Here we consider the situation in which the single-elec- 
tron level cf with the single f electron lies near the 
Fermi surface and, consequently, because of the large 
U value, the single-electron level cf +U, which corre- 
sponds to the transitions I y) -- 1 yy), lies far  from E,, 

SO that such transitions a re  not realized. 

In the operators (4) the Hamiltonian determiningn, and 
n, assumes the form 

To compute nf , we apply to the Hubbard operators a 
technique similar to  the one described in Ref. 15, the 
peculiar form of the technique here being connected with 
the absence of Fermi commutation relations for  the X  
operators. We shall seek nf and n, with allowance for 
all the terms of f i rs t  order in the small parameter pg2/ 
IEf 1 (the characteristic values p-' -8 eV, g-0.3 eV, and 
1 Cf 1 "g give pg2/1cf ( -0.04). Below it will become ap- 
parent that pg2/) Cf I determines the deviation of nf from 
an integral value, so  that this approximation corresponds 
to the case of low f -electron o r  f -hole density. 

Let us represent 

in the form of an expansion in powers H E .  For  ( X r r )  
there ar ises  a ser ies  similar to the ser ies  for the aver- 
age spin in the Heisenberg model, a ser ies  which is con- 
sidered in Ref. 15: 

The index c denotes cumulant averaging. 

The computation of the X-operator T products is  car- 
ried out, using the method of Ref. 16, developed for 
spin operators (see also Ref. 15). The diagrammatic 
representation of the terms of the ser ies  (6) that make 
contributions of zeroth and f i rs t  order in p has the form 

a b C .  

Here to the closed and open circles correspond the op- 
erators Xz and =XG + X g  and to an oval corresponds 
their cumulant averaging; for example, 

A continuous line in (7) corresponds to (iw, - cf)-'; a 
dashed line, to the complete Green function G, (k, w, ) 
for  the s electrons: 

G,(k ,  on) = (ion-ek-ga2(w., k )  ) - I .  

It i s  shown in Ref. 17 that, correct to second order in 
pg2/1 Cf I, we can assume that E(w,, k )  does not depend 
on momentum. This implies independent scattering of 
an s electron on the various lattice sites. Thus, in the 
p =const approximation, the sum over the momenta that 
enters into the expressions for the diagrams b and c 
from (7) yields 

CG. (k, o,) =-inp sign on. 
k 

The analytic expressions for the diagrams b and c 
from (7) respectively have the forms 

The diagram b from (7) is proportional to T-l, and di- 
verges a s  T - 0. To the summation of such divergences 
(see Ref. 18) corresponds the ser ies  

in which each diagram contains a coefficient of the form 
T-" /n! The expression for the sum of this series has 
the form 

i.e., corresponds to the replacement of cf by Ef in the 
expression for P l  of the diagram a. To similar results 
leads the removal of the divergences of the type T-' in 
the Heisenberg model. c'51 

A more careful analysis of the diagram ser ies  for 
( X w )  shows that a renormalization of the level does oc- 
cur  in the expression, (iw,- Ef)-', for the continuous 
line, and that Ki in the diagram c should be replaced 
by the average over the states of the complete Hamiltonian: 

As a result, in the limit T- 0 we have for nf the follow- 
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on the bas is  of an  analysis of the phase diagram. Analy- ing expression: 

Fo r  the mean number of s electrons, we have f rom (8) 
the expression 

where m i s  the total number of degenerate electron 
bands. In the case of Ce there are 12 degenerate bands 
lying between the 5h and 6s2 atomic levels. We assum- 
ed that only six of them, with J =5/2, hybridize with 
the f level. 

Finally, f rom (2), (3), (lo), and (11) we obtain in the 
case of Ce the following expressions for  Il(0,O) and the 
square of the velocity of sound: 

n (0, O )  = - ~ p  ( ~ + ~ g ~ / e , ~ )  ), (12) 

where M i s  the ion mass.  

As can be seen, the role of hybridization in the compu- 
tation of n(0,O) led to the smooth dependence ?if (41, 
which makes a contribution to the density of s ta tes  in a 
finite range of Ef values. 

The change i n  C(P) occurring in the transition inques- 
tion may be connected with the changes under pressure  
in the quantities Z - nf, p , Ef, and a,. Experimentally, 

i t  i s  well knownB1 that in regions f a r  f rom the transition 
(i.e., f o r  1 Ef 1 >>g) the value of the quantity C in the y 
phase virtually does not differ from the value in the cy 

phase. Therefore, i t  can be seen from (12) that the 
quantity 

(Z-n,)'/l2p+?b(Z-t1/)/Q~ 

virtually does not change in the region of the transition. 

Thus, it can be assumed that the change in C2(P) 
should be determined by the position of the level z f ,  
which changes i t s  sign during the phase transition. The 
experimentally observed asymmetry in the minimum i s  
connected with the presence of K: a smoother decrease 
for  K = 1 /6 in the y phase and a steeper one when K 
~ 0 . 7 3  in the o phase. The neglect of the correlation of 
the f electrons at the s ame  s i te  corresponds to the re- 
placement of K by unity. 

Comparing (13) with the experimental data given in 
Refs. 9 and 10,  we find for  the dimensionless parameter  
p g  the value pg-0.03 - 0.05; this value agrees  in order 
of magnitude with the value pg=0.02 obtained in Ref. 19 

sis of the experimental curve fo r  C(P) given in Ref. 9 
with the aid of the formula (13) yields the following val- 
ues for  Zf/g: a t  the transition point on the side of the 
y phase Ef/g=- 0.5, while on the side of the a phase 
Ef/g=1.4. 

Thus, the analysis ca r r i ed  out above shows that the 
correct allowance fo r  the hybridization and the corre-  
lation of the f electrons within the framework of a rela- 
tively simple model describes quite well the behavior of 
C(P) and yields real is t ic  values for  the phase-transition 
parameters .  

The authors express  their  gratitude to L. A. Maksimov 
and R. G. Arkhipov for  useful discussions. 
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