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A study is made of the influence of polarization on the stimulated scattering of electromagnetic waves in 
an isotropic plasma. The nonlinear interaction in this scattering results in a coherent distribution of the 
polarizations, i.e., the radiation becomes completely polarized. It is shown that the distribution of 
elliptically polarized waves in the k space may be singular, i.e., it may be concentrated in streamlines. 
The degree of stability of such distributions is governed by the degree of circular polarization. In the case 
of linear polarization, the distribution is singular in a plane perpendicular to the polarization vector. 

PACS numbers: 52.25.P~. 52.40.Db 

INTRODUCTION 

Electromagnetic waves in an isotropic plasma have- 
in contrast to, for example, Langmuir waves-an ad- 
ditional degree of freedom, which i s  their polarization. 
Allowance for this polarization is important and some- 
times fundamental in the nonlinear interaction of elec- 
tromagnetic waves (see, for example, Berkhoer and 
ZakharovCl1 and ~ a n a k o v ~ ~ ] ) ,  particularly in the stim- 
ulated scattering, c3'51 which is the main nonlinear mech- 
anism when the wave intensity is sufficiently low. The 
usual approach to the kinetics of the stimulated scat- 

ture of steady-state spectra and their stability. In the 
anisotropic excitation case these spectra a re  the same 
as the spectra of the Langmuir turbulence of an iso- 
thermal plasma, being singular in the k space: the 
wave distribution i s  concentrated in streamlines. The 
degree of stability of such streamline distributions i s  
governed by the degree of circular polarization. In the 
case of linearly polarized waves the spectra are again 
singular but this time in a plane perpendicular to the 
polarization vector. 

1. BASIC EQUATIONS 
tering i s  based on the polarization averaging, C3*41 

It is known that the stimulated scattering of electro- 
which-strictly speaking-is valid only for isotropic 

magnetic waves in an isotropic plasma is, like the 
distributions of waves in the k space. 

scattering of the Langmuir waves in an isothermal plas- 
It i s  well known that in the Thomson scattering of ma, the main nonlinear mechanism if the wave intensity 

polarized light there i s  a correlation between the scat- i s  sufficiently low, This interaction represents the scat- 
tering angle and the scattered-wave polarization. For tering by low-frequency density fluctuations 6n, induced 
example, the scattering of a wave at an angle of n/2 by the high-frequency pressure of the hf waves. There- 
produces completely polarized light. It i s  therefore fore, the stimulated scattering of electromagnetic waves 
clear that the polarization effects are  as  important in can be described satisfactorily by a simplified scheme 
the stimulated scattering of electromagnetic waves. based on the averaging over the short time l/w,, where 

The present paper i s  concerned with the influence of 
these effects on the stimulated scattering kinetics. The 
kinetics will be described by a polarization density ma- 
trix whose diagonal elements represent numbers of waves 
of specific polarization and the nondiagonal elements 
are the anomalous averages associated with the polari- 
zation degeneracy, which is only possible in an iso- 
tropic plasma. 

The stimulated scattering of electromagnetic waves 
results in the polarization distribution of the waves at 
each point in k space to approach a coherent state, i-e., 
a completely polarized distribution, 

This important property largely determines the struc- 

w, = ( ~ 2 ,  + k2~2)1'2 is the natural frequency of the electro- 
magnetic waves. 

Following earlier work, C61 we shall introduce quan- 
tities a,,, which are the amplitudes of electromagnetic 
waves corresponding to different polarizations s,, and 
normalized in such a way that the total energy of the 
waves Xo is 

The behavior of the amplitudes a,, is described by 

aakl - + io*e=-i ~~~,<111l,h,>a~,~,6n.b(x-k+k,)dx dk,, 
at (1) 
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where the repeated indices X indicate summation, 

<UIl,hl)-- (skL, a,>), 

This equation describes the interaction of hf waves a, 
with low-frequency density fluctuations bn. The last 
quantity, due to the action of the hf force F = -VU with 
the potential 

i s  related to U, by the Green function G: 

Gk=G,U-, 

where 

are the partial permittivities. 

Equations (1) and (2) form aclosed system of dynamic 
equations. We shall go over to a statistical description 
in this system introducing a polarization density matrix 
6 (cf. Landau and Lifshitz's monographc7'): 

where parentheses denote averaging over the random 
wave phases. By definition, the density matrix i s  
Hermitian and at each point of the k space (but not 
generally over the whole space) it can be reduced to 
the diagonal form by some unitary transformation. The 
density matrix describes all the polarization charac- 
teristics of the radiation, the mostjmportant of which 
i s  the degree of polarization P .  If p i s  expanded in 
terms of the ~ma t r i ce s ,  p= (1/2)(p,+ p), then P = I p  I/p,. 
In particular, the radiation i s  completely polarized for 
P = 1 and completely depolarized for P = 0. In the former 
case we have detB= (1/4)p;(l - F) = 0, but this expression 
is finite for all other cases. The degree of circular po- 
larization is expressed in terms of the imaginary parts 
of the nondiagonal elements of the matrix 6 .  It should be 
stressed that the existence of such nondiagonal cor- 
relation functions is possible only in an isotropic plasma. 

The equations for the density matrix, which follows 
directly from Eqs. (1)-(2), are 

where 

H= k- 4, 52 = w* - wk, and vk= (1/2)~(w,/w,)~ isthedamp- 
ing due to collisions, which i s  included phenomenologi- 
cally, 

This equation describes the stimulated scattering of 
electromagnetic waves in an isotropic plasma, The 
first term in Eq. (3) is in the form of an anticommuta- 
tor, proportional to ImG, and it  represents the down- 
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ward energy transfer along the spectrum. It is of 
fundamental importance that this equation contains terms 
proportional to ReG, which rotate the plane of polariza- 
tion. This can be demonstrated as follows. Let us 
rewrite Eq. (3) in terms of the variables p, and p :  

where 

Hence, we can see that the vector H plays the role of 
an effective "magnetic" field which results in pre- 
cession of the vector p.  This corresponds to rotation of 
the plane of polarization. 

Another important property of the stimulated scat- 
tering of electromagnetic waves follows from the equa- 
tion for de@: 

a 
-det'p^-4r0 det 6. 
at 

If r, i s  negative, the polarization distribution approaches 
a coherent state in a time of the order of r;', i.e., the 
radiation becomes completely polarized. 

It should be noted that a similar property i s  exhibited 
by equations in the nonlinear theory of parametric ex- 
citation of waves (S theory).['' However, the existence 
of nonlinear damping, which transfers energy to longer 
wavelengths, i s  a cardinal difference which distin- 
guishes the above equations from those in the S theory. 

It should also be noted that the equations for the sti- 
mulated scattering of the (3) type are  invariant under 
generally time-dependent unitary transformations U: 

A transformation of this kind reduces to a change in the 
polarization vectors and additional precession of the 
vector p because of a change in H. Therefore, we can 
always adopt a system in which only the diagonal com- 
ponents of the matrix remain and these can be found 
from the equations 

containing 2 only in the form of the relationship 

i%l;Pt+Fltpo-~. 

2. STEADY-STATE SPECTRA. EXTERNAL 
INSTABILITY 

We shall now consider the question of steady-state 
spectra which appear because of the stimulated scat- 
tering. We shall assume that the sources of waves in 
the k space are concentrated in some finite region. 
Then, outside this region the steady-state distributions 
resulting from the downward energy transfer along the 
spectrum are found by solving the steady-state equa- 
tions (4) 
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These equations can be regarded as  a system of linear 
equations for p, and p, respectively, whose solubility 
condition has the form of a biquadratic equation for r,: 

Solving this equation, we obtain 

It is, therefore, natural to classify the steady-state 
solutions in accordance with the parameter r,. If 
r ,#0,  it then follows from Eq. (5) that the radiation i s  
completely polarized (detp = 0). It should be noted that 
the stability of such distributions in the presence of per- 
turbations accompanied by a change in the polarization 
requires that ro<O. This follows directly from Eq. (5) 
or  Eq. (6). However, if r, = 0, then de@ becomes an 
arbitrary quantity and the wave polarization is cor- 
respondingly arbitrary. 

We shall now consider the stability of the steady- 
state spectra. The stability problem can be divided 
into external and internal ~ tab i l i t i es . [~*~]  The former 
is easier to solve. 

Let us assume that the solution of the steady-state 
equations (6) differs from zero in some region of the 
k space. A t  each point in the external region the max- 
imum value of the increment of our problem can be 
denoted by v,,(k). The, the solution is externally 
stable if v,, is negative at all such points and has its 
largest value, equal to zero, at the boundary of the 
region where the solution i s  concentrated. 

The dispersion equation for external perturbations can 
be formally obtained by replacing r, with v - r, in 
Eq. (8) and hence we find that 

The sufficient condition for the external stability fol- 
lows from the above expression: 

In the specific case of [I' x H]= 0 this criterion i s  suf- 
ficient. 

3. DIFFUSION APPROXIMATION 

In this section we shall determine the spectral struc- 
ture of the turbulence excited by conversion of an ex- 
ternal electromagnetic wave whose wave vector i s  k, 
>> wdc. In this situation the downward transfer of 
energy along the spectrum is in the nature of a dif- 
fusion process: the step in this process Ak i s  small 
compared with I k 1 .  For this reason we shall expand 
the Green function G in Eq. (3) as a series in terms 
of derivatives of 6(wk - wy). We shall restrict this 
series to the first order's0 that ImG becomes (com- 
pare with earlier ~ o r k [ ~ * ~ ] ) :  

where p =rw~nomc4,  Nalaz = kZpalaz. 

The above expression i s  derived on the assumption 
that the frequency width of the spectrum obeys Aw 
>> max(wp, w,v,dc). This implies simultaneous allowance 
for the scattering by electrons and virtual plasma oscil- 
lations. The Kompaneets equation describing the evolu- 
tion of isotropic d i s t r i b ~ t i o n s ~ ~ ~  is valid precisely in this 
approximation, 

The function Re G is even in respect of Q = o, - w,, 
and, therefore, its expansion contains even derivatives 
of the 6 function. Consequently, the first term i s  mis- 
sing from this expansion because of the analyticity of 
G in the upper half-plane of Q. For this reason we can 
ignore H compared with I?. This i s  a feature of the 
diffusion approximation. In general, H is of the order 
of I' and there is only one possibility when H does not 
occur: it corresponds to Hllr. We shall show later that 
this i s  the situation which occurs in the example con- 
sidered. 

We shall now determine the steady-state spectra. 
We note first of all that the angular distribution of the 
scattering is largely governed by the factor (1 - 1.1,) 
in the integrand of Eq. (lo), which has the maximum 
value for the backward scattering. It is, therefore, 
natural to seek steady-stat? solutions in the form of 
a symmetric streamline parallel to  the vector =$/k,: 

The parameters N and fi are selected in such a way 
that the polarized and unpolarized states correspond 
to a= 0 and N= 0, respectively. The vector com- 
ponents 5, and 6 ,  represent linear polarization and, 
therefore, a suitable choice of the coordinate-system 
can ensure that 5 ,  = 0. The quantity [,N/(N+ N) is the 
degree of circular polarization. All these quantities 
are  found from the equations 

We note that 58 5/ak =O. Consequently, the system re-  
duces to the condition a[/ak = 0 and two scalar equa- 
tions: 

which have two solutions: 

and 

Hence, it follows that 
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The constants of integration are found from the condition 
of matching to the pump wave. Therefore, if the pump 
wave is partly polarized, the downward transfer of energy 
along the spectrum is accompanied by gradual dis- 
appearance of the unpolarized component with the po- 
larized component remaining constant: 

where so and No are the amplitudes of the unpolarized 
and polarized components of the pump wave. 

Below the point k,, where N vanishes, the polarized 
component also decays: 

Thus, the long-wavelength part of the spectrum is po- 
larized more strongly. It is important to note that the 
plane of polarization does not vary along a streamline. 
This implies that for these solutions the vectors H 
and r are generally parallel. 

We shall now consider the stability of the solutions 
(11) and (12). In investigating the external instability, 
it is convenient to introduce polarization vectors in the 
form 

In calculations relating to the external part of the 
matrix 

we shall use the property of completeness 

Then, in the range of the wave numbers where 5#-0 
the matrix f becomes 

where 8 is the angle between 1, and L Substituting this 
expression into Eq. (3), we can see that a partly po- 
larized streamline is  stable in the presence ofper- 
turbations of p,, and neutrally stable in the presence of 
linearly polarized perturbations p,,. This neutral 
stability means that there are steady states representing 
a partly polarized jet line with a linearly polarized 
background. We can show that all such states are de- 
generate for a given pump wave. They are described 
by 

N + N,, dl-eonst. 

The value of the constant is clearly 

The stability in the presence of other perturbations 

of p,, still remains in force. 

We shall now consider the stability of a completely 
polarized streamline. It is convenient to apply the 
criteria? (9) rewritten in terms of the components of the 
matrix r: 

Tr ?+[ Br f )'-4 det f ]  ' 9 0 .  

In calculating this expression it is simplest to u!e first 
the equality d e w =  0, which is equivalent to det[c + v] = 0, 
express detf in terms of ~ r f ,  and then find T r r  using 
the addition rule (13). Consequently, the criterion be- 
comes 

v sinz 8 
-2v/kolz--- [ ( l+e.) cos2 cp+g,' sin' q] 40, 

i+ES 

where so = [2(1+ [,)I" h[(l + [,)s, + i[p,] is the polariza- 
tion vector of an elliptically polarized streamline and cp 
is the azimuthal angle between the vectors 1 and el. 

An analysis of this expression shows that anelliptically 
polarized streamline i s  stable and the degree of its 
stability is governed by the degree of circular polariza- 
tion 5,. In the case of a linearly polarized streamline 
( k 2  = 0) we have a whole plane coscp = 0 of neutrally stable 
states. A s  in the case of a partly polarized stream- 
line, these states are degenerate and have linear po- 
larization with the polarization vector parallel to the 
streamline polarization vector. 

We note that in the external region the condition Hllr 
is again satisfied. 

CONCLUSIONS 

It follows from the above analysis that the polarization 
effects are important in stimulated scattering of electro - 
magnetic waves. In particular, these effects reduce to 
a stronger polarization of the long-wavelength part of 
the spectrum than of the short-wavelength region. We 
have seen above that this is related to the excitation 
anisotropy. Therefore, the degree of polarization of the 
long-wavelength part of the scattered-light spectrum 
can be used to deduce the anisotropy of the source. It 
should be stressed that all these conclusions apply at 
all wave numbers because the structure of the equations 
remains constant. 

These effects can be observed more simply in the 
stimulated Brillouin scattering in insulators at a low 
incident light intensity so as to avoid exceeding the 
excitation threshold of sound. Clearly, this situation 
is  identical with the stimulated scattering considered 
above. 

The authors are grateful to V. S. L'vov for valuable 
discussions. 
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A theory of magnetoplasma resonance (MPR) in electron-hole drops (EHD) in germanium is considered 
which takes account of the real quantum spectrum of the Ge carriers, as well as the shape of the drops in 
the magnetic field, H. The main laws governing MPH in EHD are analyzed. A number of principal 
parameters characterizing the electron-hole liquid in Ge are determined on the basis of a comparison of 
the theory with experiment. These are the effective camer masses, the variation of the equilibrium 
particle concentration in the drops under the action of up to 40-kOe H 11 [I001 and H 11 [I l l ]  fields, and 
the dependence of the carrier-momentum relaxation time on the photon frequency and the magnetic-field 
intensity. Various mechanisms of plasmon attenuation in EHD in Ge are analyzed. 

PACS numbers: 71.35. + z, 72.20.Jv, 72.20.My, 72.30. + q 

1. INTRODUCTION ac t e r  of the very magnetoplasma phenomena in EHD 
makes the extraction of quantitative information from 

As is well known, the condensation of excitons into experimental data substantially difficult. 
electron-hole drops (EHD) of the metallic type is ob- 
served in a number of semiconductors a t  low tempera- 
tures  and during intense optical generation of nonequili- 
brium carriers."] Of the wide range of qualitatively 
new phenomena connected with exciton condensation, [ 
the plasmac4-" and magnetoplasmac7-1" phenomena in 
EHD a r e  some of the most interesting. Caused by the 
interaction of the EHD with the electromagnetic waves 
in the region of the plasma and cyclotron frequencies of 
the c a r r i e r s ,  they have a strongly pronounced reso-  
nance character. 

The investigations of the magnetoplasma phenomena 
in EHD a r e  especially promising in connection with the 
study of the fundamental properties of the electron- 
hole liquid in semiconductors. In the f i r s t  place this  
pertains to the determination of the equilibrium density 
of the liquid, a s  well a s  of the parameters  of the energy 
spectrum of the elementary excitations of the liquid 
under different conditions. It i s  important to note that, 
a s  a result  of the smallness (on the atomic scale)  of the 
binding energy of the EHD, the application of a magnetic 
field not only allows a more thorough investigation of 
the properties of the electron-hole liquid, but also 
makes it possible to significantly change the ground 
state of the liquid under experimental conditions. This 
significantly broadens the potentialities of submillime- 
t e r ,  UHF and microwave spectroscopies of EHD in a 
magnetic field in comparison with ordinary metals  and 
semiconductors. At the s ame  t ime,  the complex char-  

In the present paper we formulate for  the magneto- 
plasma resonance (MPR) in EHD in Ge a theoretical 
model which takes into account the magnetic-field in- 
duced changes in the shape of the drops  and in the ener-  
gy spectrum of the Ge crystal ,  and allows a detailed 
quantitative comparison with the experimental data to 
be car r ied  out. The shape of the drops in a magnetic 
field i s  analyzed with allowance for the main influencing 
factors. A procedure for numerical computations is 
presented with the aid of which we determine on the 
basis  of a comparison of the theory and experiment a 
number of fundamental characterist ics  of the electron- 
hole liquid in Ge (part  of the results  of such a compari- 
son has been published in the form of short  communica- 
t i o n ~ ~ ' ' ~ ' ~ ' ) .  The obtained data on the properties of 
EHD a r e  discussed from the point of view of existing 
theories. 

2. A THEORY OF MAGNETOPLASMA RESONANCE 
IN EHD 

As shown in Refs. 5 and 6. Mle's general theory, ['" 
which describes the interaction of electromagnetic 
waves with spherical particles having arbitrary dimen- 
sions and characterized by a sca lar  permittivity E(QJ) ,  

can be used to  interpret the spectra o f  the plasma reso- 
nance (PR)  in EHD. Since the dimensions of EHD in 
undeformed crys ta ls  a t  T = 1.5 K usually do not exceed 
1-2 p , '4*61 the Rayleigh case k , ~ . .  I kl.1 . 1 (k, arid k 
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