
where A = (I', + r,)/2 and 

Rewriting (8) in terms of the Fourier components 
S ( x )  

we obtain ultimately 

s.0~80 (t) = - w 
(e-" - cAf cos Rt) + -2 s, (1 - c r ' ) ,  

52' n 
0' A m  

s'" (t) = s,e-=I - + (e-=' - e - A ' ~ ~ ~  Rt) + - s, (1 - e-=f), 
(26) 

o n 

which goes over into the Weisskopf-Wigner resultc1' in 
the limit a s  wl-0 and T--0.  As seen from (26), the 
stationary distribution, in the limit a s  t - m ,  is equal to 
s, and i s  directed along the "effective field." 

We can now answer the questions raised at the begin- 
ning of the article. First ,  there a re  no meinory effects 
in the stationary distribution, i.e., it does not depend 
on the initial distribution of the two-level system; 
second, there is a critical frequency 

such that a t  w c w, the second delta-function vanishes 
and we have 

which corresponds to a Boltzmann distribution with 

quasienergy w +St. At o > w, the terms with 6(51+ h,) 
begin to play an essential role and we find that a t  these 
frequencies the stationary distribution i s  determined by 
the matrix elements of the operator of the interaction 
with the thermostat. 

Turning to a practical application of (26), we note 
that it can have a bearing on the theory of quantum 
amplifiers. It is known that the relaxation processes 
due to interaction with thermal radiation a re  the cause 
of the noise in quantum amplifiers. The corresponding 
relaxation constants 

(29) 
A = 2n lc,I2(2N, + 1) ('l,u66 ( 8  - a,) + '/,v66(52 + a,) f (uv)'G (a,)), 

assume in the resonance case AW << W, << W, the values 

where r, is the reciprocal decay time in the absence of 
a signal (the Weisskopf-Wigner constant in the optical 
region), s o  that without a signal the noise in the amp- 
lifier i s  double the noise in the resonant case. 
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The linear and nonlinear responses to an external perturbing field in a plasma are considered. It is shown 
that, apart from the usual fluctuation-dissipation relation connecting the binary correlation function for 
the charge-density-fluctuations with the linear electric susceptibility, there also exist a number of 
additional relations connecting correlation functions of higher order with the nonlinear susceptibilities. A 
number of integral relations between the linear and nonlinear susceptibilities in a plasma are established. 

PACS numbers: 52.25.Gj, 52.35.M~ 

1. INTRODUCTION mined by the macroscopic coefficients in the linear re- 
lationship between the induced charges o r  currents and 

As is well known, in linear electrodynamics, for  sys- the fields, specifying these coefficients determines 
tems in thermodynamic equilibrium, a fluctuation-dis- completely the spectral distributions of the fluctuations 
sipation relation establishes a general connection be- of the electrodynamic quantities.['-*] For an equili- 
tween the dissipative properties of the system and the brium plasma the spectral distribution of the electro- 
fluctuations of various quantities. Since the dissipative magnetic fluctuations is determined by specifying the 
properties of an electro-dynamic system a re  deter- permittivity tensor. Conversely, knowing the spectrum 
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of the electromagnetic fluctuations, by inverting the 
fluctuation-dissipation relation we can find the permit- 
tivity of the medium.[51 

The fluctuation-dissipation relation can be gener i ;~  
alized to the case of a nonequilibrium (albeit in a stable 
steady state) plasma. In f a d ,  in the derivation of the 
fluctuation-dissipation relation for equilibrium systems, 
the relationship between the correlation function of the 
current fluctuations and the average energy absorbed by 
the system a s  a consequence of dissipation is used. 
An analogous relationship also holds in the absence of 
thermodynamic equilibrium, and this makes i t  possible 
to establish a generalized fluctuation-dissipation rela- 
tion describing the fluctuations in nonequilibrium sys- 
t e m ~ . [ ~ ]  

The fluctuation-dissipation relation connecting the 
linear electric susceptibility and the binary correlation 
functions for the fluctuations is valid for  both 1inea.r 
and nonlinear systems.') When treating the fluctuations 
in nonlinear electrodynamic systems, besides the usual 
fluctuation-dissipation relation i t  is possible70 estab- 
lish a number of additional relations connecting the non- 
linear electric susceptibilities with correlation func- 
tions of higher than binary order.181 In the case of a 
plasma, i t  is convenient to write the analogous extra 
relations in the form of a generalized fluctuation-dissi- 
pation relation connecting the discontinuities of the non- 
linear electric susceptibilities of the plasma across 
the cuts in the complex frequency planes with the spec- 
t r a l  correlation functions for the charge-density fluc- 
tuations. 

2. LINEAR AND NONLINEAR RESPONSES OF THE 
SYSTEM TO AN EXTERNAL PERTURBATION 

To describe the behavior of the system we introduce 
the microscopic distribution function D(t), the temporal 
evolution of which is described by the Liouville equation 

where { . . . , . . .} a r e  the classical Poisson brackets, H 
is the ~amil tonian of the system, and V ( t )  is the exter- 
nal, time-dependent perturbation. With neglect of the 
motion of the ions, the Hamiltonian H describing the 
plasma can be written in the form 

where p2,/2m is the kinetic energy of a single electron 
and U(r, -rut ) is the Coulomb interaction energy of two 
electrons (the summation in (2) runs over all the elec- 
trons). The Liouville equation (1) must be supplemented 
by the initial condition 

(Do is the microscopic distribution at the initial time 
t = -00). 

Introducing the Liouville operator 

L.. . ==-I {H . .  . .), (4) 

we can write the formal solution of Eq. (1) with the ini- 

tial condition (3) in the form 

Let the external perturbation be due to the action of an 
electric field characterized by the potential @(r ,  t ). In 
this case, 

where p(r, t ) is the microscopic electric-charge density 
in the system: 

(r,(t) is the position vector of electron a at  time t ). It 
is more convenient to rewrite the external perturbation 
(6) in the form 

where Qk and pk a r e  the spatial Fourier components of 
the field potential and charge density. We note that the 
quantity p,,, generally speaking, depends on the coordi- 
nates and velocities of all the electrons, and i ts  value 
at a given time is determined by the state of the system. 

In the absence of the external perturbation the average 
value of the total charge density (including the charges 
of the ions) pk is equal to zero, since the system is elec- 
trically neutral and spatially uniform: 

( d r  is an element of volume in the phase space of the 
whole system). The external perturbation leads to the 
appearance of a nonzero charge density. We shall de- 
fine the linear and non-linear responses of the charge 
density to the external perturbation by the relation 

where D(") (t) is the corresponding interational correc- 
tion in the external perturbation in the solution (5). For  
the linear, quadratic, and cubic responses, it is not 
difficult to obtain the following general expressions: 

where we have introduced the notation 

Y:;!!~. ( t n ) =  I d r p k e " ' L { p - k . ,  D.), (1 4) 
ytlQ, , -r , ( t , ,  t , )  = J d r  pke"lL{p-kt, e f l a L { ~ - ~ n I  D o ) ) ,  (15) 

~ ~ ~ ' k ~ , - k ~ , - k ~ ( t l ~  t*? tS) - j d r  pkeillL(p-t,, eit4{p-k,, e"'L{p-k,, D o ) } ) .  (16) 
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3. THE LINEAR FLUCTUATION-DISSIPATION 
RELATION 

We shall consider first  the linear response of the sy s- 
tem. It is easy to see that, because of the spatial uni- 
formity of the system, 

'if:,!!,. (t) = (2rr)'6(k - li')$!!' ( t ) .  (17) 

Substituting this relation into (11) and taking the tem- 
poral Fourier transform, we obtain the following formu- 
l a  for the linear response: 

It is not difficult to show that the quantity ~lk)(w) deter- 
mines the discontinuity of the linear electric suscepti- 
bility of the plasma across the cut in the complex 
w-plane. In fact, in the linear approximation the in- 
duced-charge density ( P)k)w in the plasma is propor- 
tional to the potential % w  of the external field: 

where 2") (w,k) is the effective electric susceptibility 
that takes into account the polarization of the field in 
the plasma. The effective electric susceptibility 
H(') (w, k) is an analytic function in the complex w-plane, 
with a cut along the real  axis. According to the princi- 
ple of causality, 

1 - Irn..ii"' (o', k) 
ii'" ( o ,  k) = - j do'  

IT -- 0 ' - 0 - ' 0  ' 

where ~m,;(')(w,k) is the discontinuity of the effective 
electric susceptibility across the cut: 

(We note that the discontinuity of the analytic function 
(w,k) across the cut simply coincides with the 

imaginary part of the electric susceptibility at real  
values of the frequency.) Substituting (20) into (19) and 
comparing the expression obtained with (18), i t  i s  not 
difficult to establish that 

We shall calculate the quantity +k) (w), assuming that 
the system is in a state of thermodynamic equilibrium 
in the absence of the perturbation. For  the equilibrium 
distribution function Do the relation 

Do ( A , D , ) = - - A  
T 

is valid (T i s  the temperature of the system), and, 
therefore, 

where ( p2) k, is the space-time Fourier transform of 
the quadratic correlation function for the charge-density 

fluctuations. 

Substituting the expression found into (22), we obtain 
the well known Kubo relationrQ1 

2n o 
Im, GI1) ( o ,  k) = -- 

k' T (pi)*., (24) 

which establishes the connection between the imaginary 
part of the effective electric susceptibility and the spec- 
t r a l  distribution of the charge-density fluctuations in 
the system. In principle, the Kubo relation makes it 
possible to  find the effective electric susceptibility if 
the spectral distribution of the charge-density fluctua- 
tions in the plasma is known. In fact, however, be- 
cause of the absence of direct methods for calculating 
the spectral distribution ( p 2 )  kw of the fluctuations when 
the Coulomb interaction between the particles is taken 
into account, this method of determining the electric 
susceptibility is found to be rather ineffective. 

Usually, the relation (24) is used to determine the 
spectral distribution of the fluctuations from the given 
value of the electric susceptibility of the system (in 
this case, it is called a fluctuation-dissipation relation). 
Noting that the effective electric susceptibility 

(o,k) is expressed in t e rms  of the usual linear 
electric susceptibility x(') (w,k) by 

where E ( w , ~ )  = 1 4  n(') (w,k) is the dielectric permittivity 
of the plasma, from (24) we find 

k2 T Im, (o, k) 
<pz).'" = -- 

2n o l e ( o , k ) l Z  ' 

We expand the left- and right-hand sides of the equality 
(26) in powers of e2 and retain the principal terms. 
Since the linear electric susceptibility of the plasma is 
proportional to e2, from (26) we find for the imaginary 
part of the electric susceptibility 

2n o 
~ m .  xl1) ( a ,  k)  = -- kz <~')r.4 (2% 

where ( p 2 )  iw  is the spectral distribution of the charge- 
density fluctuations with neglect of the Coulomb inter- 
action between the particles. The equality obtained can 
be regarded a s  the inverse of the fluctuation-dissipation 
relation (26). In the right-hand side of (27), unlike (24), 
there appears the quantity (p2)e , ,  which can be calcu- 
lated easily. Therefore, the relation (27), together 
with the Kramers-Krsnig dispersion relation, makes 
i t  possible to determine the electric susceptibility of 
the plasma completely, if the latter is in an equilibrium 
state. 

By making use of the general formulas (14) and (17), 
i t  is not difficult to find a generalized relation (27) that 
is valid in the case of a nonequilibirum (albeit in a 
stable steady state) plasma too. In fact, neglecting the 
Coulomb interaction between the particles, we have 

wheref ,(v) is the single-particle distribution function. 
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Thus, in the case of a nonequilibrium plasma the in- 
.verse of the fluctuation-dissipation relation can be writ- 
ten in the form 

Imn %ti' ( a ,  k )  = - -- 2n a (p'>t.o, 
m aa 

(29) 

where 

<p2>k,' = 2ne2j dv 6(o-kv)  f , (v ) .  (30) 

The relation (29) obtained connects the imaginary part 
of the linear susceptibility of the plasma (the Coulomb 
interaction between the particles in the plasma is taken 
into account) with the correlation function for the 
charge-density fluctuations with neglect of the Coulomb 
interaction between the particles. Together with (201, 
the relation (29) completely determines the electric 
susceptibility of a nonequilibrium plasma. 

The relations (27) and (29) a re  general and can be 
used to determine the permittivity not only of a hot 
plasma. Using (27) o r  (29) it is not difficult to obtain 
expressions for the permittivity of a degenerate plasma, 
a super-conducting plasma (for this, a s  (pZ) e,, it is 
necessary to use the correlation function for a system 
of particles with pairing but without Coulomb interac- 
tion), a solid-state plasma (in this case, in (p2)0,, it 
is necessary to take the interaction of the electrons 
with the lattice into account), etc. 

The spectral distribution of the charge-density fluc- 
tuations in a nonequilibrium plasma is described by the 
formula 

Unlike in the equilibrium case, when the spectral dis- 
tribution (p2) k, of the fluctuations is completely deter- 
mined by the dielectric permittivity ~ ( w ,  k) of the plasma 
and the temperature T, in nonequilibrium conditions the 
spectral distribution ( P ~ ) ~ ,  of the fluctuations is ex- 
pressed not only in terms of the permittivity t(w,k) of 
the plasma but also in terms of the spectral distribution 
(p2) iw  of the charge-density fluctuations in the absence 
of interaction between the particles. Consequently, in 
nonequilibrium conditions, specifying the permittivity 
of the plasma is not sufficient for a complete description 
of i ts  electrodynamic properties-in ~ a r t i c u l a r j  for the 
description of the spectral distribution of the fluctua- 
tions of the charge density and the field. However, such 
a description can be obtained by specifying the spectral 
distribution (p2)iw; knowing this, we can establish the 
permittivity ~ ( w , k )  of the plasma and then determine 
the spectral distribution (p2) k w  of the fluctuations with 
allowance fo r  the Coulomb interaction between the par- 
ticles. 

4. THE NONLINEAR FLUCTUATION-DISSIPATION 
RELATION 

We turn now to the analysis of nonlinear response in 
a plasma. The quadratic response of the charge density 
to an external perturbing field is defined by (12). Tak- 
ing the temporal Fourier transform and introducing the 
notation 

We can rewrite the relation (12) in the form 

On the other hand, the quadratic response ( p )  can 
be expressed in terms of the external field and the ef- 
fective second-order nonlinear electric susceptibility: 

4n(p)!:' - ik k~kt;'" (mi. k. ,  o ~ , k t )  @t,.,@k,,, . 
r'ccl,-" 

(3 4) 
k,+t,-k 

The effective nonlinear susceptibility C1") (w,, k,; w,,k,) 
is an analytic function of the complex variables w, and 
w2 and satisfies the dispersion relation 

~m-,-{Im-,~G(z' (ai' ,  k,;  a;. kz) l  
X ( m , ' + ~ , ' - ~ ~ - a ~ - i O )  (011-mz-i0) ' 

where 1mWl( 1m,,4(~) (w,, k,; w,, k,)} denotes the discon- 
tinuity of the nonlinear susceptibility across the cuts 
along the real axes in the complex o,- and w2-planes. 
Comparing (34) and (33), we find 

Thus, the quantity &$,(w, + w,, w2) directly determines 
the discontinuity of the effective second-order nonlinear 
susceptibility across the cuts in the complex a,- and 
w2-planes. 

According to (15), the quantity @p:k2(~1, 0,) is de- 
scribed by the formula 

(&)'6(k-ki-kr)$E:.(o~, 0 2 )  

= t i  t z  d p k l p k , ( - t i ) , p - k , ( - t - t ) ,  1 (37) 
-- -- 

Noting that the effective nonlinear susceptibility is con- 
nected with the usual nonlinear susceptibility by the re- 
lation 

%(')(0, ,  kt: az. k*) 
G ( 2 ) ( 0 1 ,  kt; at ,  k Z )  = 

e (oi, k , ) e  (ol ,k,)e*ja,  k )  ' 
(3 8) 

from (36) we find 

Im,lIm.. x") ( a , .  k t ;  at, kz )  - i&($~:,(o,+w2, a,) )", (39) 
I 2  

where the quantity (~~t,",&(w, + o,, w,))' corresponds to a 
system in which Coulomb interaction between the par- 
ticles is absent. A direct calculation gives 

where s(22) (a,, k,; 02, k,) is the differential operator 
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x 1 a a 
5?"z)(ol, k,; o , ,  kZ) = - i-- k k- k,k:- 

2mz k ,k ,k{  am, ( am, 

and (p3)elW1: k 2 W Z  is the cubic correlation function for 
the charge-density fluctuations in the system of nonin- 
teracting particles. The relation (40) expresses the 
discontinuity of the nonlinear electric susceptibility 
across the cut in t e rms  of a spectral correlation func- 
tion for  the charge-density fluctuations. Together 
with the dispersion formula (35), the relation (40) com- 
pletely determines the second-order nonlinear electric 
susceptibility for the plasma. 

In an analogous way, i t  is not difficult to show that in 
the general case the relation 

holds, where dnO (a,, k,; w,,k,; . . . ; w, , k, is a differen- 
tial operator of n-th order in the variables w,, w,. . . , 
w,, depending on the parameters k,, k,, . . . , k,: 

P denotes all possible permutations of k,, k,, . . . , k,, 
and (p"+ ' )~lw, ;  k z w z : .  ,. ; knw,  is a spectral correlation 
function for the charge-density fluctuations in the sys- 
tem of noninteracting particles: 

If n is odd, the quantity 

is real; but if n is even, i t  is imaginary. The disper- 
sion relation expressing the principle of causality for 
the n-th order nonlinear susceptibility can be written 
in the form 

1 "  - " 
x("'(o, ,k , ;  o r ,  k,;. . . ; w,,k,)=- j do, '  j do,'. . . j do.' 

?ln -- -- -- 
XImu,~{Itn*,~. . .{Im,.m~x'"l(o,',kl; 02', kt: . . . ; w"', L ) ) .  . .} 

x[ (a),' i 04 +. . . + 0.' - o ,  - o? - .  . . - on - i0) 
x + + - o - - w - 0 ) .  . o - on - 0 1 (45) 

This relation enables us to establish the nonlinear sus- 
ceptibility x ( " )  (w,, k,; w,, k,; . . . ; w,, k,) for all values 
of the complex frequencies w,, w,, . . . , w, from the 
discontinuities of the susceptibility across the cuts in 
the corresponding complex planes. According to (42), 
the discontinuities of the susceptibility across the cuts 
a re  determined by spectral correlation functions for 
the charge-density fluctuations of the noninteracting 
particles. 

The formulas (42) and (45) a re  general and make it 
possible to  find the nonlinear susceptibilities in a sys- 
tem of particles with Coulomb interaction from the cor- 
relation functions for the system without the Coulomb 
interaction between the particles. The relation (42) can 
be regarded a s  a generalization of the fluctuation-dissi~ 
pation relation for a nonlinear electrodynamic medium. 
We note that the usual fluctuation-dissipation relation 
(29) is a particular case of (42) with n = 1. According 
to  (42) and (45), the electrodynamic (linear and non- 
linear) properties of a plasma a r e  completely deter- 
mined if the sequence of correlation functions of dif- 
ferent orders for the charge-density fluctuations, with 
neglect of the Coulomb interaction between the particles, 
is given. 

5. THE SPECTRAL CORRELATION FUNCTIONS 

The n-th order spectral correlation function for  the 
charge-density fluctuations with the Coulomb interaction 
between the particles taken into account (in the polariza- 
tion approximation) can be represented in the form 

<~~+ ' )k ,o , ;  kfl,: ... : k,, 
(~"~ '> :~uh:  k*uz; ... ; k,,o,, 

(46) 
5 

e (01. kl) E (a2, k2) .  . . E (mn, k,) E * (wI + w2 + ... t (I),,. kl +- k. - . . . -+ k,,) 

By means of the general formula (42) the spectral cor- 
relation functions of different orders for the charge- 
density fluctuations in a plasma can be expressed in 
terms of the nonlinear susceptibilities. 

As an illustration, we quote the expression for  the 
third-order spectral correlation function: 

(PtZ'(w1,  kt; o;, kt)}-' I ~ . , ( I ~ , , x ( ~ ) ( w , .  kt; m?. kr)} 
( ~ ' ) k ~ - ~ : k ~ ~  = 

E(w,,  k , )e  (ox ,  k 2 ) ~ * t o l + ~ z ,  k,+kz) (47) 

If the plasma is in equilibrium, the &(") a re  multiplica- 
tive operators. In the case n =  2, we have 

. . 
Then the cubic spectral correlation function for the 
charge-density fluctuations takes the form 

The spectral correlation functions of higher order in 
the case of an equilibrium plasma can be written down 
in an analogous manner. 

According to (40) and (48), the second-order non- 
linear electric susceptibility for an equilibrium plasma 
can be represented in the form 

+ 0;' (o lk ,kz-m,k2z)k,k]<p3>~,e ,~  ,,*,* . 
02'-or-i0 

(50) 

Using this representation, by direct inspection it is not 
difficult to see that the following relation i s  valid: 
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Using this relation, it i s  not difficult to obtain an expli- 
cit expression for the discontinuity (40) of the second- ! 
order.nonlinear susceptibility across the cut. As a re- 
sult, the third-order spectral correlation function for 
the charge-density fluctuations in an equilibrium plasma 
is described by the formula 

T2 
(p3)rrste - - ktkzk 

n e (or, kt)e (us. k*)e'(w, k) 

(52) 
This formula was obtained earlier in Ref. 10. For the 
spectral correlation function for the fluctuations of the 
electric field, from (52) we find 

T' 
<E3>. ..,,t,=-i64nz 

E (o, ,  k,) e (o=, kl) e ' b ,  k) 
' k ;  o .  k )  ~ . ' ~ ' ( o . k ;  - k )  ~ " ' ( 0 ,  k; -or. -kt) 

x1m{- - ------ 
0102 a,o Ozo 1 .  

(53) 
We note that in this form the spectral correlation func- 
tion for the electric-field fluctuations i s  valid not only 
for a plasma but also for any other nonlinear medium. 
A similar formula for the spectral distribution of the 
field fluctuations in the absence of spatial dispersion , 

was obtained earlier in Ref. 11. 

6. SUM RULES 

Using the explicit form of the spectral correlation 
functions for the charge-density fluctuations in the ab- 
sence of Coulomb interaction between the particles, it 
i s  not difficult to establish a general integral relation 
connecting the linear and nonlinear electric suscepti- 
bilities of different orders for a plasma. In fact, ac+ 
cording to (44) the equality 

-- 
is valid, Using (42) to express the spectral correlation 
functions in terms of the discontinuities of the non- 
linear susceptibilities across the cuts in the complex 
planes of the corresponding frequencies, we obtain the 
following general formula: 

In particular, the dielectric permittivity and the quad- 
ratic nonlinear susceptibility for an equilibrium plasma 
are connected by the relation 

j do, Irn { v."'(o,, k,; oz, kz) G12'(0, k; -us, -kt) -- - 
- .D O l o z  oto 

x'?'(o, k; -az. -k?) e k, lm e(ot ,k1)  - l = n r , x  .I 

0 2 ' 0  
(56) 

Using (44), we can also obtain a number of other rela- 

tions between nonlinear susceptibilities d different 
orders. 

The nonlinear electric susceptibilities of a plasma, 
like the dielectric permittivity, satisfy definite sum rules. 
Using the formula (44), it i s  not difficult to integrate the 
spectral correlation f ~ n c t i o n ( ~ " + ' ) ~ ~ ~ ~ : .  . . :k,e over all , 
the frequencies. Then, using the relation (42) to ex- 
press the correlation function in terms of the nonlinear 
susceptibility x(")(w,,k,;. . . ; w,, k,,), we obtain the in- 
tegral sum rule 

XIm,,{Im., . . . (Im.nx'"' (ol, kt; OZ, kt; . . . ; on,  k.)). . .}= (2n)"e'"+"n0. 

(57) 
This relation turns out to be of practical use if the 
plasma i s  in a state of thermodynamic equilibrium. In 
this case, the quantity (.dnO (w,,k,:. . . ; w,,k,)}-' i s  a 
multiplicative operator. As an example we quote the 
sum rule for the quadratic nonlinear susceptibility: 

For an equilibrium plasma, sum rules of the form 

- - - 
j do, j do,. .. j do, oloz{S?'"'(ol, kt; 6J*,k2;. . . ;on. km))-' 

-- -- -- 
X I ~ .  . . . m ,  kt; 2 ; .  . . ; (59) 

T - (2n)*e'"+"no- k,kz 
rn 

also hold. In particular, for the quadratic nonlinear 
susceptibility we obtain 

- - nl')(w,, k,; 02, k2) n"] (0 ,  k: -o,, -kt) 
J dmt I doz wIo2 1- { - - 
-- -- o l o z  wto 

In an analogous way we can sum rules for the cubic 
nonlinear susceptibility. 

 he applicability of the fluctuation-dissipation relation for 
nonlinear systems was demonstrated in Ref. 6 (cf. the discus- 
sion of this question in Ref. 7 ) .  
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A study is made of the influence of polarization on the stimulated scattering of electromagnetic waves in 
an isotropic plasma. The nonlinear interaction in this scattering results in a coherent distribution of the 
polarizations, i.e., the radiation becomes completely polarized. It is shown that the distribution of 
elliptically polarized waves in the k space may be singular, i.e., it may be concentrated in streamlines. 
The degree of stability of such distributions is governed by the degree of circular polarization. In the case 
of linear polarization, the distribution is singular in a plane perpendicular to the polarization vector. 

PACS numbers: 52.25.P~. 52.40.Db 

INTRODUCTION 

Electromagnetic waves in an isotropic plasma have- 
in contrast to, for example, Langmuir waves-an ad- 
ditional degree of freedom, which i s  their polarization. 
Allowance for this polarization is important and some- 
times fundamental in the nonlinear interaction of elec- 
tromagnetic waves (see, for example, Berkhoer and 
ZakharovCl1 and ~ a n a k o v ~ ~ ] ) ,  particularly in the stim- 
ulated scattering, c3'51 which is the main nonlinear mech- 
anism when the wave intensity is sufficiently low. The 
usual approach to the kinetics of the stimulated scat- 

ture of steady-state spectra and their stability. In the 
anisotropic excitation case these spectra a re  the same 
as the spectra of the Langmuir turbulence of an iso- 
thermal plasma, being singular in the k space: the 
wave distribution i s  concentrated in streamlines. The 
degree of stability of such streamline distributions i s  
governed by the degree of circular polarization. In the 
case of linearly polarized waves the spectra are again 
singular but this time in a plane perpendicular to the 
polarization vector. 

1. BASIC EQUATIONS 
tering i s  based on the polarization averaging, C3*41 

It is known that the stimulated scattering of electro- 
which-strictly speaking-is valid only for isotropic 

magnetic waves in an isotropic plasma is, like the 
distributions of waves in the k space. 

scattering of the Langmuir waves in an isothermal plas- 
It i s  well known that in the Thomson scattering of ma, the main nonlinear mechanism if the wave intensity 

polarized light there i s  a correlation between the scat- i s  sufficiently low, This interaction represents the scat- 
tering angle and the scattered-wave polarization. For tering by low-frequency density fluctuations 6n, induced 
example, the scattering of a wave at an angle of n/2 by the high-frequency pressure of the hf waves. There- 
produces completely polarized light. It i s  therefore fore, the stimulated scattering of electromagnetic waves 
clear that the polarization effects are  as  important in can be described satisfactorily by a simplified scheme 
the stimulated scattering of electromagnetic waves. based on the averaging over the short time l/w,, where 

The present paper i s  concerned with the influence of 
these effects on the stimulated scattering kinetics. The 
kinetics will be described by a polarization density ma- 
trix whose diagonal elements represent numbers of waves 
of specific polarization and the nondiagonal elements 
are the anomalous averages associated with the polari- 
zation degeneracy, which is only possible in an iso- 
tropic plasma. 

The stimulated scattering of electromagnetic waves 
results in the polarization distribution of the waves at 
each point in k space to approach a coherent state, i-e., 
a completely polarized distribution, 

This important property largely determines the struc- 

w, = ( ~ 2 ,  + k2~2)1'2 is the natural frequency of the electro- 
magnetic waves. 

Following earlier work, C61 we shall introduce quan- 
tities a,,, which are the amplitudes of electromagnetic 
waves corresponding to different polarizations s,, and 
normalized in such a way that the total energy of the 
waves Xo is 

The behavior of the amplitudes a,, is described by 

aakl - + io*e=-i ~~~,<111l,h,>a~,~,6n.b(x-k+k,)dx dk,, 
at (1) 
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