
is seen from the table that the radius R, of the transition 
is only slightly larger than the combined dimension 
of the electron orbits 2/or2+ 2/02, i.e., the asymptotic 
theory determines the cross section at the limit of 
applicability of the theory. It is also seen that the 
Van-der-Wads contribution to the splittingc5] at R =R, 
is less  than the exchange contribution. The temperature 
dependence of the cross section is weak, o - W T ,  as 
seen from (37). 

'1n: Voprosy teorii atomykh stolknovenir (Problems of Atomic 
Collisions), ed. Yu. A. Vdovin, Atomizdat, 1970. 

'T. Watanabe, Phys. Rev. A 138, 1573 (1965): A 140, 135 
(1965). 

'E. L. Duman, B. M. Smirnov, and M. I. Chibisov, Zh. Eksp. 
Teor.  Fiz. 53, 314 (1967) [Sov. Phys. J E T P  26, 210 (1968)l. 

'M. I. Chibisov, Opt. Spektrosk. 32, 3 (1972). 

5 ~ .  Caves. J. Chem. Phys. 59, 6177 (1973). 
6 ~ .  M. Smirnov, Zh. Eksp. Teor.  Fiz. 53, 305 (1967) [Sov. 

Phys. J E T P  26, 204 (1968)l; Atomye stolkoveniya i Blemen- 
tarnye protsessy v plazme (Atomic Collisions and Elemen- 
t a ry  Processes  in Plasma),  Atomizdat, 1968; Asimptoti- 
cheskie metody v teorii atomnykh stolknovenir (Asymptotic 
Methods in the Theory of Atomic Collisions), Atomizdat. 
1973). 

'L. P. Gor9kov and L. P .  ~ i t a e v s k i r ,  Dokl. Akad. Nauk SSSR 
151. 822 (1963) [Sov. Phys. Dokl. 8, 788 (1964)l. 

8 ~ .  Herring and M. Flicker,  Phys. Rev. A 134, 362 (1964). 
M. Smirnov and M. I. Chibisov, Zh. Eksp. Teor. Fiz. 48. 

939 (1965) [Sov. Phys. J E T P  21, 624 (1965)l. 
'k. A. Andreev, Teor.  Acta Chim. (Berlin) B 30, 191 (1973). 
"M. I. Chibisov and G. V. Shlapnikov, Dokl. Akad. Nauk SSSR 

231, 1339 (1976) [Sov. Phys. Dokl. 21, 1339 (1976)l. 
1 2 ~ .  L. Landau and E. M. Lifshitz , Kvantovaya mekhanika 

(Quantum Mechanics) Fizmatgiz, 1963 [Pergamon, 19681. 

Translated by J. G. Adashko 

Strong fluctuations of electromagnetic waves in a random 
medium with finite longitudinal correlation radius of the 
inhomogeneities 

Institute of Atmospheric Physics, USSR Academy of Sciences 
(Submitted 13 December 1977) 
Zh. Eksp. Teor. Fiz. 75, 56-65 (July 1978) 

The propagation of electromagnetic waves in a medium with random inhomogeneities of the refractive 
index is considered in the parabolic-equation approximation. The statistical wave intensity moments <In> 
of arbitrary order are expressed as Feynman continual integrals (in operator form). Expressions are 
obtained for the higher intensity moments with account taken of the finite longitudinal correlation radius 
of the refractive-index fluctuations, for both weak and intense intensity fluctuations. The limits of 
applicability of the Markov approximation, in which this correlation radius is assumed equal to zero, are 
obtained in the course of the calculation of the intensity moments ( I n > .  

PACS numbers: 42.20. - y 

I. INTRODUCTION 

The passage of electromagnetic waves in a randomly 
refracting medium with inhomogeneities of a scale that 
i s  large compared with the wavelength i s  accompanied 
in a number of cases by concentration of the scattered 
radiation in a narrow angle interval around the initial 
propagation direction; this leads to a fast growth of the 
field intensity fluctuations, followed by their saturation 
a t  a certain level. This effect can ar ise  when radio 
waves propagate through the ionosphere o r  through in- 
terplanetary or interstellar plasma, o r  when light pas- 
ses  through a turbulent a t o m ~ s ~ h e r e . [ ' * ~ '  

A theoretical description of strong intensity fluctua- 
tions i s  based on methods that go beyond the scope of 
perturbation theory, and have been first  reported in 
Refs. 3 -6. These methods yield equations, in closed 
form, for the statistical moments of the field, suitable 
also in the region of strong fluctuations. The approach 
developed in one of the papersc4' i s  based on a model in 
which the longitudinal correlation radius of the permit- 
tivity & can be neglected in comparison with all the re- 

maining longitudinal scales; i t  is  also based on the as- 
sumption that the fluctuations of & have a Gaussian pro- 
bability distribution Such a model makes it possible 
to describe the wave-propagation process a s  a Markov 
random process, and has therefore been dubbed the 
Markov approximation 

The question of the applicability limits of the Markov 
approximation in the derivation of the mean field u and 
of the coherent-field function r2 was considered in Refs. 
7 and 8, while its use for the description of amplitude- 
phase fluctuations in the geometric approximation was 
dealt with in Ref. 9, where a successive-approximation 
method was developed in which the Markov approxima- 
tion serves  a s  the first step. This method has made it 
possible to estimate the limits of applicability of the 
Markov approximation for the first two moments of the 
field, but not for the higher moments, owing to the 
complexity of the resultant equations. 

The method used in the present paper was proposed 
by ~ r a d k i n ~ ' ~ '  in quantum field theory and yields an 
expression for an arbitrary moment of the field, in the 
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form of a Feynman continual integral o r  in the corres- 
ponding operator form, [I1' without resorting to the 
Markov-random-process approximation. This approach 
i s  used to derive corrections to the Markov solution for 
the intensity moments ( I  ") for both weak and strong 
fluctuations. These corrections a re  the results of al- 
lowance for the fact that the longitudinal correlation 
radius of the refractive index of the medium i s  finite. 

2. DERIVATION OF THE IMPROVED EXPRESSIONS 
FOR THE MOMENTS 

The existing theory of both weak fluctuations (the 
method of smooth perturbations) and strong fluctuations 
in the propagation of waves in a randomly inhomoge- 
neous medium, despite the difference between the meth- 
ods, makes use in fact, in all cases, the following mod- 
e l  for the permittivity &. The mean value of the permit- 
tivity B is assumed constant, and the relative fluctua- 
tions E = (E -E)/E a r e  assumed to be a delta-correlated 
Gaussian random field along the wave-propagation di- 
rection (in our case, along the x axis) in such a way that 
its correlation function is assumed to be 

- 
-4 (0) - A  (p) = ~ ( p ) = 2 n J J  cD.(O, x )  (1 - cos xp)d2r.. 

(2.1) 

- - 
The angle brackets denote here averaging over all pos- 
sible realizations of 8, while *,(x,,x) i s  the three-di- 
mensional spectral density of the fluctuations f .  

We consider the corrections to the Markov solution 
for intensity moments of arbitrary order, necessitated 
by the allowance for the finite longitudinal correlation 
radius of the fluctuations H. We assume, as before, 
that (x, p) i s  a Gaussian random field, but take ac- 
count of the fact that its correlation function (B,(x, -x,, 
p, - k),  while a sharp function of the argument x, - x,, 
i s  not a delta function. 

We consider the statistical moment of the field of the 
wave u : 

which i s  called the coherence function of 2n-th order. 
If we describe the wave propagation with the aid of a 
stochastic parabolic equation then, using the methods 
of Ref. 10, we can write its solution in operator 
formC1l1: 

Substituting now (2.3) in (2.2) and averaging over the 
Gaussian fluctuations z,  we get 

Q.V. :P.})=L~;; ({F+ J(cTG)]) 

where 

- 
= J J s ~  F, (zr-z", x )  exp (ixp,,), 

-- 

Here F,(xf - x" , x )  i s  the two-dimensional spectral 
density of the & fluctuations.L121 

The expression for I?,, in the Markov approxima- 
t i ~ n [ ' ~ '  can be obtained from (2.4) by substituting there 
F, (x' - x" , X) in the form 

F. (zr-z", X )  =2n6 (z'-z") CP, (0, x )  , (2.5) 

which corresponds to the approximation (2.1): 

m : 
~ e x p  g z (-y)jt' \ & D  (Pj - PI + f di (t) - T, R)I)] I-. 

j.i=l 0 X' 

(2.6) 
We shall be interested in the statistical moments of 

the intensity of a plane wave of unit amplitude, propa- 
gating in a randomly inhomogeneous medium. The ex- 
pression for ( In)  i s  obtained from (2.4) by putting in i t  
r;'= 1 and {p,}=~:  

In the region of weak intensity fluctuations, the argu- 
ment of the exponentials in (2.4) and (2.7) i s  small, and 
the exponential can be expanded in a series. Confining 
ourselves to the f i rs t  two terms of the expansion and 
applying the operator in them, we obtain 

n(n-l) 
(zn)=i+- [ ( I=) - i i+  ... , 

2 
(2.8) 

where 
(r)-l=p2 

(2.9) 
It should be noted that expression (2.8) for the n-th in- 
tensity moment of a wave in an extended randomly in- 
homogeneous medium takes a form similar to that of 
the expressions obtained in Refs. 14 and 15 for the in- 
tensity moments ( I  ") behind a phase screen. If we sub- 
stitute (2.5) in (2.9) and (2.8), we find immediately the 
expression that follows from the smooth-perturbation 
method for (In). Formula (2.8) shows that a l l  the mo- 
ments of the weak intensity fluctuations a r e  determined 
by the second moment. 

We consider now the region of strong intensity fluc- 
tuations, which i s  characterized by the fact that in this 
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region the parameter b2 calculated in first-order per- 
turbation theory tends to infinity. It i s  then convenient 
to represent I?,, in the form 

where rg is the coherence function of order 2n, cal- 
culated in the Markov approximation, and A r m  i s  the 
correction added to rg when account i s  taken of the fi- 
nite longitudinal correlation radius of z. On the other 
hand, we can write the identities 

r,, I irY2exp {-  $4 exp (- $ + ~p,} I G ~ ,  

= Er's exp (- h} (,a=o, (2.11) 

where $ i s  the argument of the exponential in (2.4) and 
+, i s  the same for (2.6). If the correction to the Mark- 
ov approximation is assumed small, then the second 
exponential in (2.11) can be expanded in a series in 
which only the f i rs t  two terms a r e  retained 

The correction Ar,, thus satisfies the expression 

Using the asymptotic method developed in Ref. 13, we 
can obtain from (2.13) the correction to the n-th inten- 
sity moment of a plane wave in the strong-fluctuation 
region: 

where 

The second term of (2.14) 

can be obtained from (2.15) by going in the limit to the 
6-correlation function B,(x, - x,). 

If we use in the pre-exponential factor of (2.15) the 
spectral expansion of the functions B,, and introduce 
the new variables 

then simple transformations convert this expression to 

x-2 " = 
- ~ o s ' [ [ ~ d ~ + j r , d ~ ] ) r x p { - ~ ~  h~ ( j d i r . ) ) I  . 

2 x *" I n %  0 R =r = u  
0 li 

(2.17) 
Applying the operators, we ultimately get 

where 6,, i s  the Kronecker symbol and B(( - x') i s  the 
step function. Summation over s and 1 yields 

x2 x cos -(2z-2'-x") 
2k 

(2.19) 
Substituting here F,(xl - xr l  ,x) from (2.5) and integra- 
ting with respect to xl '  we obtain for J: the expression 

nk' ' Y.= l,,M=n!n(n-i)- Jdz '  j j 8 ~  @ c ( O >  x )  {COST(z-zr) - l ]  
2 " 

If we now denote by J, and Jf the expressions (2.19) and 
(2.20) with n = 2, then it is seen that 

Thus, recognizing that in the region of strong fluctua- 
tions the Markov approximation yields['s' 

we obtain for the corrected moment ( In)  an analogous 
expression 

where (I,) ,  with allowance for (2.21), takes the form 

Consequently, just a s  in the case of weak fluctua- 
tions, the n-th moment of the intensity i s  expressed in 
terms of the second moment. It i s  then easy to oon- 
clude that the limits of applicability of the Markov ap- 
proximation, for both weak and strong fluctuations, a r e  
the same for all  intensity moments, These limits will 
be determined in the following sections for both fluctu- 
ation regions. 

3. LIMITS OF APPLICABILITY OF THE MARKOV 
APPROXIMATION FOR WEAK INTENSITY 
FLUCTUATIONS 

In the region of weak fluctuations, the expression for 
the dispersion of the intensity fluctuations, with ac- 
count taken of the finite correlation radius of &, is  
given by formula (2.9). If we change in this formula 
from the variables x' and x" to their sum and differ- 
ence 
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Substituting (3.8) in (3.6) and integrating, we get 

we obtain 

Substituting in turn R(&,q) in (3.5), we have 
The two-dimensional spectral density FC(Ef ,x )  corres- 
ponding to the structure function 

D. (r) =C.'r" (O<p<2), 

is of the form['21 

Calculating the integrals in (3.9), we get 

$'-N(1-lla-l/a1*+ . . .) . (3 .lo) 
If we substitute (3.2) in (3.1), then p2 can be calculated, 
but after rather cumbersome computations. The same 
result, apart from numerical coefficients, can be ob- 
tained much faster by approximating the function F, 
(5' ,XI by 

The f i rs t  term in (3.10) coincides with 82,, i.e., i t  i s  the 
Markov approximation for 192. Comparing the remaining 
terms of the expansions, we reach the conclusion that 
a t  p2<< 1 the Markov approximation can be used to cal- 
culate all the intensity moment, provided that 

a w l ,  or ( k z ) " ~ i .  (3.11) 

We now substitute (3.3) in (3.1) and introduce new di- 
mensionless variables 

4. LIMITS OF APPLICABILITY OF THE MARKOV 
APPROXIMATION IN THE REGION OF STRONG 
FLUCTUATIONS 

We then get the expression It follows from (2.21) that the correction to the Mark- 
ov expression for ( E )  i s  of the form A(~)=J!- J2. We 
consider f i rs t  the value of obtained from (2.19) a t  n =2. 
We make in J2 the same change of variables a s  in the 
preceding section: 

1 l -T/z  - 
J Z = N , ~ ~ E  drl I d q q ~ . ( q ,  t )  [c0sqaV2-cos q ' q ] e ~ p { - ~ N q ( p ,  q)ql+Y}.  

* V' . 
where~"CE2k'~-')'~x(*')/~-p~ i s  the variance of the 
intensity fluctuations, calculated in first-order pertur- 
bation theory a = (kx)'" is  a large parameter, and 

Here 2&(q, 5) i s  a function that can be obtained from 
(3.3) by going to the dimensionless variables 5 and q 
while P i s  a numerical coefficient of order of unity and 

where 

- ( I - f ) c o s - - -  - q' sin-cos -. 
2 qZ 2 2 

We represent J2 in the form The condition 25' -( 1 takes in terms of the dimension- 
less  variables (3.4) the form q2[ s l/&, s o  that q25/2 
satisfies the inequality 

- 
Jz=N J dq q-'-'R ( N ,  a, 9) , (4.3) 

0 

where 
1 

(4.4) Since the maximum value of q that can be of interest to 
us i s  of the order of q,-l,'(~/k)'/~, where l o  i s  the in- 
ternal turbulence scale, we have 

In the strong-fluctuation region, N i s  a large para- 
meter. On the other hand, &= (kx)'l2 i s  also a large 
parameter. At the same time, we shall regard N / &  
as a small  quantity, a s  i s  usually the case under real  
experimental conditions. We shall make use of this 
circumstance in the calculation of J,. 

and consequently q25/2<< 1 in our case and we can ex- 
pand in (3.7) the sine and the cosine, which contain 
q25/2: 

At 0 6 5 6 1 we can carry out the following expansion: 
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which leads subsequently to expansion in powers of the 
parameter  ~ a - ~ + ' ) *  We calculate the expansion co- 
efficients T(N, q ,  t) and substitute them in (4.6) : 

Substituting (4.7) f i r s t  in (4.4) and then in (4.3), cal- 
culating the integrals, and using then their  asymptotic 
form in  t e r m s  of the small parameter  N @ ' ~ + ~ ' ,  we ge t  

(4.8). 
To obtain 4 from J2 we must let a go to infinity in J2. 
We then get J;"N '2u1'/'1+u ). Thus, 

Comparing A(12) with ( I i ) = 2  + C N ( ~ ~ ~ ) / ( ~ + " )  , we 
obtain the condition 

The condition (4.10) can be written in the form 

If i t  i s  recognized that the combination (~ :k~x) - "~""  
i s  proportional to the coherence radius p,,,, then (4.11) 
goes over into 

This  condition can be recas t  in still another form: 
yo<< x , where ro= x/kpco, i s  the l a rge r  of the correla-  
tion sca les  of the intensity fluctuations at N>> 1. 

5. CONCLUSION 

The results  show that the stat is t ical  intensity mo-. . 

ments (I") calculated with account taken of the finite 
longitudinal correlation radius of the fluctuations K , 
a r e  expressed in t e rms  of (I2) just as in  the Markov 
approximation, but (I2) should now taken to mean the 
quantity corrected for  the finite radius of the correla- 
tion of z. In other words, the Markov approximation 
does not change the form of the probability distribution 
of the intensity fluctuation, and changes only i t s  para- 
meter  (12). 

In the weak-intensity-fluctuation region we find that 
the Markov approximation i s  valid when ( k ~ ) " ~  >> 1 ,  
which i s  equivalent to the inequality 

A< (AX) "w.x. (5.1) 

In the strong-fluctuation region we have the condition 
N" ""<< ( k ~ ) " ~ ,  which can be recas t  in the form 

The inequalities (5.1) and (5.2) have a simple physical 
meaning. 

F i r s t ,  i t  i s  easi ly understood why the l imits  of appli- 
cability of the Markov approximation are different for 
weak and strong intensity fluctuations. So long as the 
smallest of all the longitudinal scales in the problem 
of wave propagation in  a medium with random inhomo- 
geneities i s  the correlation radius of z (its ro le  i s  
played by the dimension of the Fresnel  zone), the Mark- 
ov approximation remains  valid, On going into the re- 
gion of s trong fluctuations, a new scale Ax- p, , (k~)l /~ 
appears  and decreases  gradually, s o  that if the para- 
me te r  N i s  la rge  enough the sca le  Ax can become smal- 
ler than the correlation radius of E. When th is  situa- 
tion a r i s e s ,  the Markov approximation can no longer 
be used. 

Second, the inequalities (5.1) and (5.2) can be regar-  
ded as lower and upper bounds of the sca le  of the cor- 
relation function of the intensities BI(x, pl - p,) = ( ~ ( x ,  p,) 
I(x, &))- (I(x,p1))(I(x,p2)). Actually, (xx)"~ i s  the only 
characterist ic  scale of the function B, at N<< 1. The 
quantities p,, and ro are respectively the smaller and 
la rger  sca les  of the function BI at N >> 1. Thus, the 
Markov approximation i s  valid only when arbitrary 
characterist ic  scales that appear when the wave propa- 
ga tes  remain small compared with the length of the 
route. It i s  interesting to  note that conditions s imi lar  
to (5.2) a r i s e  a l so  in the analysis of the l imits  of the 
Markov approximation fo r  the coherence function of 
the wave r2 in Ref. 8. 

The author thanks V. I. ~ a t a r s k i r  and V. I. Klyatskin 
for  useful discussions. 
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