
in terms of perturbation theory. In the approximation 
linear in the charge, the scattering amplitude is des- 
cribed by the Born formula with the interaction 

where v =&/m is the initial velocity of the particle 
and m is its mass. The condition of applicability of the 
Born approximation to the problem considered has the 
form 

For the amplitude we obtain 

Here k and kt = k + q  are  the wave vectors of the par- 
ticle before and after scattering, n i s  the normal to 
the plane of the solenoid, and G i s  the portion of this 
plane bounded by the magnetic lines of force. 

According to Eq. (18) the amplitude for scattering by 
180" is strictly zero. If k7> 1/2, where 1 is the length of 
the solenoid, scattering occurs mainly at small angles; 
here kt=k, and Eq. (18) is a limiting case of the eikonal 
formula. 

For-k<< 1/1 we have 

In particular, if  klln, then 

and the total cross section for scattering is 

Jf the solenoid has the shape of a thin torus with a 
hole radius a, the Born amplitude takes the form 

In the case where klln we have 

The authors express their gratitude to B. N. Valuev, 
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 he solution of the scattering problem at small  angles is 
given in Ref. 6. 

'Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959); 123, 
1511 (1961); 130, 1625 (1963). 

2 ~ .  L. Feinberg, Usp. Fiz. Nauk 78, 53 (1962) [Sov. Phys. 
Uspekhi 5, 753 (1963)l. 

'H. Erlichson, Amer. J. Phys. 38. 162 (1970). 
'M. Peshkin, I. Talmi, and J. L. Tassie,  AM. Phys. (N.Y.) 
12, 426 (1969. 

6 ~ .  I. vznshte in  and V. V. Sokolov, Yad. Fiz. 22, 618 (1975) 
[Sov. J. Nucl. Phys. 22, 319 (1975)l. 

6 ~ .  D. Landau and E. M. Lifshitz, Kvantovaya mekhanika 
(Quantum Mechanics), Nauka, 1974, Section 131, p. 617. 
English translation, ear l ier  edition. Pergamon Pres s ,  1959. 

IL. D. Landau and E. M. Lifshitz, Teoriya polya (Theory of 
Fields), Nauka, Moscow, 1967, Section 61, p. 203. 

Translated by Clark S. Robinson 

Contribution to the theory of excitation transfer in slow 
collisions of like atoms 

M. I. Chibisov 
I. V. Kurchatov Institute of Atomic Energy 
(Submitted 4 November 1977) 
Zh. Eksp. Teor. Fiz. 75, 4655  (July 1978) 

The exchange contribution, responsible for excitation transfer, to the term splitting is investigated. It is 
shown that the previously developed theory, in which no account was taken of the symmetry with respect 
to electron permutation, is inaccurate. In the case of alkali-metal atoms, the exchange contribution 
determines the effective excitation-transfer cross section at lo3 K. The van der Waals contribution is less 
than the exchange contribution. The cross section is of the order of lo-" cm2. 

PACS numbers: 31.30. - i, 34.50.H~ 

We investigate in this paper the excitation-transfer with the resonant charge-exchange process, it deter- 
process mines the coefficient of diffusion of the excited atoms 

A* in their own gas. If a dipole transition to the ground 
A-4-B-A+B'. (1) state from the excited state A* is allowed, then transfer 

of excitation i s  the result of dipole-dipole interaction 
In collisions of identical atoms (A = B ) ,  the effective of the atoms, which decreases aR-' when the atoms are 
cross section of this process is large and, in analogy diluted (R i s  the distance between nuclei). The process 
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(1) was investigated for this case, in a number of .. 
s t u d i e ~ . ~ ~ ' ~ ]  On the other hand, if the dipole transition 
A* -A i s  forbidden, then the principal role i s  assumed 
by interactions of induced d i p o l e ~ [ ~ ~ ~ ]  (ER-~ as R --) 
and by the exponentially decreasing exchange interac - 
tion. 

In this paper we investigate the asymptotic behavior, 
as R --, of the exchange interaction for a quasimole- 
cule consisting of two identical single-electron atoms. 
The previously proposed exchange-interaction theoryrs1 
is incomplete in that it does not take into account the 
symmetry with respect to electron permutation. The 
quasimolecule wave functions used by ~ m i r n o v ~ ~ ~  were 
not symmetrized with respect to permutations of elec- 
trons from different atoms. This symmetrization leads 
in our case to a different asymptotic dependence of the 
exchange interaction and to the necessity of using a 
different method for its calculation. 

We confine ourselves here to the case when the ex- 
cited s tated* i s  not degenerate. The cross section of 
the process (1) for single-electron atoms i s  then 

where a(*) are the cross sections for excitation transfer 
at total quasimolecule spin 0 and 1, respectively. Thus, 
it is necessary to determine separately for the singlet 
and triplet cases the exchange interaction that leads to 
excitation transfer. The sought interaction is deter- 
mined by that region of the electron coordinates on the 
axis between the nuclei in which perturbation theory can- 
not be used. It is therefore necessary to calculate first 
the wave function in the indicated region. 

We use throughout the system of atomic units (e2=m 
= A =  1). 

ASYMPTOTIC EXPANSION OF THE WAVE FUNCTION 

The wave function on the internuclear axis as R --- 
can be determined by the method of Gor'kov and 
pitaevskiC7] and of Herring and Flicker.[83 The earlier 
generalization of this method in the case of arbitrary 
 atom^[^*^' i s  suitable, as we shall see, only for interac- 
tions between atoms with equal (or close) ionization po- 
tentials. In our case, the difference of the potentials of 
ionization from the ground J ,  and excited J,  states i s  
of the order of these quantities themselves. 

We seek the wave function in the form 

I/*-I v Z A  - bryp-' exp ( - $ r A ) ,  rp,. - ar. e s p ( - a r , ) ,  
(3 ) 

r -- rBfC. 

where cp,, and cp,, are the unperturbed atomic wave 
function respectively of the excited state (2) on the atom 
A and the ground state (1) on the atom 3; X, is a new 
function that takes into account the interaction between 
the atoms (see Fig. 1). For this function we have 
according to Refs. 7-9 the equation 

. - 
FIG. 1. Arrangement of the electrons and nuclei for the col- 
lision of the atoms A and B.  

where z,,, are  the coordinates of the electrons along 
the internuclear axis, reckoned from the center of the 
system, which is the midpoint of the internuclear axis 
(see Fig. 1). Expression (5) for Wl is valid only in the 
asymptotic region r,,- r,,-R. 

The boundary condition x,--1 is imposed on the broken 
line z, = -R/2 and z,=R/2 (the electrons land in their 
own atoms) on the z,,, plane (see Fig. 2). Inasmuch as 
we have changed over in (4) to the variables 5 and 17, it 
is necessary to determine the mapping of this link on 
the (5,q) plane. We easily find that this line also goes 
over into a broken line ~ ~ ( 5 )  given by the expression 
(see Fig. 2) 

We then obtain 

or,  after elementary integration, 

The derivative of this function has a discontinuity (ccR-~) 
at 5 =to. 

The integration in (7) is carried out at constant 5. If 
(Y = p , then the condition 5 = const corresponds to con- 
stancy of the center of gravity of the electrons. To 
satisfy the boundary conditions it is necessary in this 

ax, 2 - + W,x,=O, 
d n  (4) FIG. 2. Regions of electron motion on the internuclear axis 

E=:,/a+z,lp. q=z,la-z21$; prior to their encounter, in terms of the variables z i , ~  and 
1 1 1 1  5, q. The arrows on the (5, q) plane indicate the direction of 

c(= ( 2 J , ) " ,  $- (2J2)'",  W ,  = - + -- - - -, 
R r , ~  r , ~  ~ Z A  (5) integration in formula (7). 
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case to move the electrons to the atoms with their 
center of gravity unchanged. If the center of gravity is 
closer to the atom B(z +z, >O), then in this case the 
electron 2 reaches the atom B earlier, so  that the 
function X ,  in the region z, + z, > 0 is determined by the 
condition r,,--0. In the region z, + z, < 0 the electrons 
interchange roles. Consequently, in the two regions 
z, +z, S 0 (at a = B) we have two different expressions 
for x,. On the other hand, if a f S,  then the c ndition e 5 = const corresponds to a more complicated motion of 
the electrons with changing 17. Fig. 2 shows a simple 
formal method of satisfying the boundary conditions in 
this case. 

Expressions (8) coincide with the corresponding ex- 
pressions obtained earlier; all that differ are the 
equations of the lines that separate these expressions. 
In Refs. 9 and 6 the two expressions analogous to (8) 
are separated by the line z,+z, =0, a fact true only at 
a =8. 

The function (8) is insufficient for the calculation of 
the sought exchange interaction, since it is va id  only 
for the region of electron coordinates prior to their 
encounter when each moves to its own atom. We, on 
the other hand, must know this function also in the 
region after the encounter of the electrons. At the 
very least, it is seen immediately that (8) is in- 
correct for the region where the electrons are  close to 
each other, since the gradient r;: of the interelectron 
interaction is not small here, and this should influence 
the function X. We cannot leave out of the SchrWinger 
equation the higher derivatives of this function (as was 
done in Refs. 6 and 9 in the derivation of an equation 
analogous to (4)). 

R was shown earlierclO*lll that the determination of 
the wave function in the region r,, << R and r,,, r,, -R 
can be reduced to the problem of scattering of electrons 
by each other, and this problem has an exact solution. 
For the problem considered here it is necessary to 
find the wave function not only at r,, << R, but also in the 
entire region of the electron motion after their encoun- 
ter  on,the internuclear axis. It was previously found 
that['0."1 

The expression in the curly brackets of (10) coincides 
with the expression in (8). If we use in (ll), at r,,-R, 
the asymptotic form of the confluent hypergeometric 
function F(. . . x )  as %--a, then we obtain expression (8) 
for x,. 

Let us show that the function (9) is valid in the entire 
region after the encounter of the electrons: rl,-R. 
Introducing in the SchrMinger equation for the two 
electrons the relative coordinate r,, and the coordinate 
r of their center of gravity, and discarding the Laplacian 
with respect to r (there are no singularities whatever 
with respect to the coordinate of the center of gravity), 

we obtain for X, 

The function (9)-(11) is a solution of precisely this 
equation. 

It is easily seen that (9)-(11) is a solution of Eq. (12) 
(accurate to  quantities e") in the entire region after 
the encounter of the electron. This can be verified by 
directly substituting the function (9)-(11) in (12) and 
recognizing that 

and that these quantities can be neglected. 

From among the properties of the solution (9)-(ll), we 
note the following. In the region after the encounter of 
the electrons and at r,,-R we cannot discard the Lapla- 
cian with respect to the relative coordinate. When 
the electrons are  scattered by each other, the function 
x acquires a gradient E R " ~  (whereas the gradient of 
the function (8) is ER"), which retains its form in the 
entire region z,>z, past the encounter of the electrons 
near the internuclear axis. The function (8) is identical- 
ly equal to  zero at z, >z, if the electrons are  located 
exactly on the R  axis. 

In the region past the encounter of the electrons and 
p,, <<R we must use the expansion 

rl2-nrl2=p111/2zIz, ~ , I = ~ I - P ? .  :,?=:I-zz; 

p lrcR,  zrz-R, z~?>O, (13) 
where p,,, are the distances from the electrons to the 
internuclear axis. 

We note that the obtained asymptotic expansion of the 
wave function and of the term spacings given below is 
valid for internuclear distances R much larger than 
the total dimension of the electron shells, i.e., for 

R>2/az+2/Ba. 

ASYMPTOTIC FORM OF THE EXCHANGE 
INTERACTION THAT LEADS TO EXCITATION 
TRANSFER 

The SchrCidinger equation for the wave function of, the 
system of two identical atoms is 

where the superscripts (i) label the spin state of the 
quasimolecule ((+)-singlet, (-) -triplet), while the 
subscripts g and u label the symmetry with respect to 
permutation of the states. For nondegenerate excited 
states it is necessary thus to consider four terms. 

The total wave functions are  equal to 

where the functions %,,, describe states when the ex- 
citation is on the atomA or  B. They are symmetrized 
with respect to permutation of the electrons and equal 
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The indices of the function x markthe electronpositions: 
l(2A) means that the electron 1 i s  located in the excited 
state on the atom A. All these functions are  obtained 
from the functions (8)-(11) by suitable permutations 
z,=z, and (or) C Y Z P .  

We multiply Eq. (14) for 9, by *,, the equation for 9, 
by *,, subtract one from the other, integrate the re -  
sult over the domain S2. We obtain 

We shall use this relation to determine the sought energy 
difference E, - E,. 

We introduce two operations: electron permutation 
P,, and inversion I of the coordinates of all the electrons 
in the center of the system 0 (see Fig. 1). As a result 
of applying the combined operation IP,,, any point of the 
plane (z, ,~,) (see Fig. 2) is mapped on the line z,+z, 
= 0. Let S2 in (17) be the ~or 'kov-~i taevskif  volume, [71 

defined by z, Sz, (on the (z, ,~,) plane of Fig. 2 this i s  
the area below the line z, =z,). It is easily seen that 
for this volume the two integrals in (17) are equal to 
zero. In fact, both integrands are symmetrical with 
respect to the operation PI,, since all the wave func- 
tions in them are taken at one value of the spin. With 
respect to the operation I, however, they are  anti- 
symmetrical, since they contain products of functions 
of unequal symmetry g and u (the Harniltonian H for 
the system of two identical atoms is symmetrical with 
respect to I and P,,). Consequently, the integrands in 
(17) are antisymmetrical with respect to the operation 
IP,,, or  reverse sign when a point from the (z,, 2,) 

plane is mapped on the line z, + z, = 0. Therefore the two 
integrals in (17) are in f a d  equal to  zero. 

We see thus that after introducing the permutation sym- 
metry it becomes impossible touse Smirnov's method.c61 
We consider therefore another volume. Let thevolume 52 
in (17) be defined by the inequality z, +z ,  < 0. The opera- 
tion IP,, takes each point of this volume to the outside 
of the volume and this operation cannot be used for the 
transformation of the integrals (17). Using the sym- 
metry with respect to permutation of the electrons, we 
readily obtain 

Differentiating only the exponentials, we get 
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the plus and minus signs pertain to the singlet and 
triplet, respectively. 

We note a necessary property possessed by the ob- 
tained expression. It follows from (21) that as a--0 
the separation E, - E,--0, as it should. In fact, as 
a -0 we should arrive at the case when atoms in identical 
states interact, and when there are  only two terms 
that differ in the value of the total spin. The first 
integral in (21) is given by the coordinate region of 
the electrons when they are  located in their atoms. 
This integral therefore determines the contribution of 
the induced dipoles to the splitting. The calculation 
of this contribution is a special problemc4] and will not 
be considered here. We calculate only the exchange 
contribution given by the second integral in (21): 

Using the same calculation method as bef~re :~-~]  and 
using the tabulated integral of the confluent hypergeome- 
t r ic  function, [I2] we obtain 

The constants C, for collisions of alkali-metal atoms 
a r e  given in Table I. 

The most difficult i s  the calculation of the integral 
I, defined by formula (20). It is given by the intra- 
atomic regions of the electron coordinates and it is 
therefore natural to use perturbation theory for its 
calculation: 

and an analogous expansion for $,(r,, r,). We expand 
also the perturbation 

TABLE I. The constants used and calculated for alkali-metal 
  airs (a.u.). 

Note. The quantities a and b were taken from Smirnov's paper, 161 

Cl was calculated by formula (24) , C 2  by (36). and D by (35). 
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where the axes of quantization on the atoms A and B 
(4 and q) are oppositely directed from each atom to 
the other. 

The contribution made to I, by the unperturbed atomic 
functions is  

where x, and x, are the coordinates of the electrons 
along the axes n, and q, measured from their own 
nuclei. 

Consider the operation I,-the inversion of the co- 
ordinates of both electrons in the nuclei of their own 
atoms. Under this operation, each point of the re-  
gion %,<%, goes over into the region x,>x,. Since the 
integrand in (29) is symmetrical with respect to I,, (the 
squares of the moduli of the atomic functions are sym- 
metrical with respect to coordinate inversion), it fol- 
lows that the integral (29) is  equal to half the integral 
in the entire region, which, in accord with the nor- 
malization condition, is equal to zero. Consequently, 
I?'= 0 .  

The contribution made to I, by products of the func- 
tions of the zeroth and first orders is 

In the second sum we interchange the designations r, 
tr,, n"-, A Z B .  The latter i s  possible because the 
atoms A and B are identical. We obtain 

The integrands in these integrals are now identical, 
and only the integration regions are different. These 
regions go over into each other when the operation I,, 
is  applied. It is  seen therefore that of the first term of 
the expansion (26) of the perturbation W causes the sum 
(31) to vanish, since this term is symmetrical with 
respect to I,,. In fact, the matrix element Cf,):; differs 
from zero when m and n are such that the product of the 
four wave functions is symmetrical with respect to I,,, 
and consequently the difference of the integrals in (31) 
is  equal to zero. 

For the next perturbation-expansion term, which is 
antisymmetrical with respect to I,,, the product of the 
four wave functions is also antisymmetrical, so  that 
the sum (31) can be easily transformed into 

( 1 1  I? =c?.~t-', (32) 

We write down the entire splitting in the form 

where the constants C,,, are given by (24) and (33). The 
pre-exponential factor in (34) is R4 times larger than 
the value obtained earlier.16' We note that in this case 
the Heitler-London method does not predict correctly 
even the exponential part of the splitting (34). According 
to this method, the splitting is  proportional to exp(-2m). 

ESTIMATES OF THE CONSTANTS AND OF THE 
EXCITATION-TRANSFER CROSS SECTION 

The exact calculation of the sum (33) is quite com- 
plicated. The construction of this sum i s  more com- 
plicated than that of the sums encountered in the theory 
of Van-der-Waals forces, since the term in (33) can 
have alternating signs. We confine ourselves here only 
to an estimate of the constants C, and D. 

Experience with the calculations of the Van-der-Waals 
constants shows that the order of magnitude of the 
sum (33) can be estimated by the first term: 

The subscript 3 marks here the lowest state to which a 
dipole transition from the ground state 1 is possible; 
AE = E, -El is  the energy difference of these states. 
Replacement of the matrix-element produd r13(13),, 
by the cube of the average dimension of the ground state 
'P9= ( 2 / ~ ~ ) ~  is more likely to increase the constant C,. 
Table I lists the values of these constants for alkali 
metals, and also of the constant D, as  calculated with 
the aid of the constants C, and C,. 

For cesium atoms C s(6s) + Cs(7.s) we have 

(E,-E,)eXCh =*3.2. iO-'o. Rll.hJ. e-o.'l*n 

and for lithium Li(2s) + Li(3s) we have 

( ~ , - ~ , ) ~ ~ ~ ~ ~ * 2 . 3 .  i0-*.Ri0.31. ,-I O l S R :  

The excitation-transfer cross section isr6' 

where v is  the relative collision velocity. Since the 
splittings differ only in sign for the different spins, 
we have in formula (2) o(+'=u(-'. 

Table I1 lists the excitation-transfer cross sections 
calculated from formula (37) for lithium and cesium 
atoms at a temperature lo3 K. The error  in the de- 
termination of the cross section is much less than the 
error  in the determination of the constant D, since the 
splitting changes strongly when the internuclear dis- 
tance is  changed. The error  in the determination of 
the cross section is  apparently not larger than 5%. It 

TABLE 11. 
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is seen from the table that the radius R, of the transition 
is only slightly larger than the combined dimension 
of the electron orbits 2/or2+ 2/02, i.e., the asymptotic 
theory determines the cross section at the limit of 
applicability of the theory. It is also seen that the 
Van-der-Wads contribution to the splittingc5] at R =R, 
is less  than the exchange contribution. The temperature 
dependence of the cross section is weak, o - W T ,  as 
seen from (37). 
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Strong fluctuations of electromagnetic waves in a random 
medium with finite longitudinal correlation radius of the 
inhomogeneities 
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The propagation of electromagnetic waves in a medium with random inhomogeneities of the refractive 
index is considered in the parabolic-equation approximation. The statistical wave intensity moments <In> 
of arbitrary order are expressed as Feynman continual integrals (in operator form). Expressions are 
obtained for the higher intensity moments with account taken of the finite longitudinal correlation radius 
of the refractive-index fluctuations, for both weak and intense intensity fluctuations. The limits of 
applicability of the Markov approximation, in which this correlation radius is assumed equal to zero, are 
obtained in the course of the calculation of the intensity moments ( I n > .  

PACS numbers: 42.20. - y 

I. INTRODUCTION 

The passage of electromagnetic waves in a randomly 
refracting medium with inhomogeneities of a scale that 
i s  large compared with the wavelength i s  accompanied 
in a number of cases by concentration of the scattered 
radiation in a narrow angle interval around the initial 
propagation direction; this leads to a fast growth of the 
field intensity fluctuations, followed by their saturation 
a t  a certain level. This effect can ar ise  when radio 
waves propagate through the ionosphere o r  through in- 
terplanetary or interstellar plasma, o r  when light pas- 
ses  through a turbulent a t o m ~ s ~ h e r e . [ ' * ~ '  

A theoretical description of strong intensity fluctua- 
tions i s  based on methods that go beyond the scope of 
perturbation theory, and have been first  reported in 
Refs. 3 -6. These methods yield equations, in closed 
form, for the statistical moments of the field, suitable 
also in the region of strong fluctuations. The approach 
developed in one of the papersc4' i s  based on a model in 
which the longitudinal correlation radius of the permit- 
tivity & can be neglected in comparison with all the re- 

maining longitudinal scales; i t  is  also based on the as- 
sumption that the fluctuations of & have a Gaussian pro- 
bability distribution Such a model makes it possible 
to describe the wave-propagation process a s  a Markov 
random process, and has therefore been dubbed the 
Markov approximation 

The question of the applicability limits of the Markov 
approximation in the derivation of the mean field u and 
of the coherent-field function r2 was considered in Refs. 
7 and 8, while its use for the description of amplitude- 
phase fluctuations in the geometric approximation was 
dealt with in Ref. 9, where a successive-approximation 
method was developed in which the Markov approxima- 
tion serves  a s  the first step. This method has made it 
possible to estimate the limits of applicability of the 
Markov approximation for the first two moments of the 
field, but not for the higher moments, owing to the 
complexity of the resultant equations. 

The method used in the present paper was proposed 
by ~ r a d k i n ~ ' ~ '  in quantum field theory and yields an 
expression for an arbitrary moment of the field, in the 
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