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A meson theory in which a vector particle has a scalar partner is considered. The equations of motion 
remain causal and describe wave propagation for any type of interaction with the electromagnetic field. 
The bremsstrahlung cross section in the nuclear field is calculated in second-order perturbation theory in 
e .  
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INTRODUCTION 

There is now an extensive literature[l"' on different 
variants on the theory of vector particles. Most of 
these treatments a r e  found to be equivalent to the usual 
Proca theoryC9' both in the free case and in the presence 
of electromagnetic interaction. On the other hand, the 
Proca theory is known to suffer from a number of im- 
portant defects: (1) there a r e  no stable solutions in the 
Kepler problem when the anomalous magnetic moment 
(AMM) i s  zero, (2) renormalization cannot be achieved 
by the usual methods, (3) when the AMM is  introduced, 
the S-matrix loses its relativistic covariance, and (4) 
the quadrupole interaction leads to the propagation of 
the particle in an electric field with velocity greater 
than that of light, and to the absence of propagation 
when the magnetic field is  strong enough. There is also 
one further important point. In the f ree  case, the Proca 
equations 

In this paper, we propose a variant of the meson the- 
ory in which the vector particle can have a scalar part- 
ner. The arguments in favor of objects with such prop- 
er t ies  have already been mentioned. Thus, for example, 
the presence of daughter trajectories in dual mo- 
delsC the existence of "abnormal" solutions of the 
Bethe-Salpeter equations,[ and the expressions for the 
propagators introduced in connection with O(4) sym- 
metry[ 13]  predict for particles with higher spins (s a 1)  
the existence of partners with lower spins. There i s  
also the weak interaction model proposed by Lee,[14' in 
which the intermediate vector boson and i t s  scalar part- 
ner have different masses. This theory does not lead to 
a discrepancy between the experimental and theoretical 
values of the K ,  - yip- decay rate and the mass  differ- 
ence between K ,  and K, if i t  i s  assumed that the inter- 
mediate boson masses a r e  -10 GeV.[l5] Finally, there 
a re  papers outlining possible experimental searches for 
such particles. In this connection, we note the paper by 
~ o u g e ~ " '  on the detection of the scalar partner 0, of the 
hypothetic vector particle 0, in decays of the form 

lead to the condition Y (3.1 GeV) + 0,0, + hadrons. 

a,y,=o, (2) In this paper, we begin, in Sec. 1, with the procedure 
for the quantization of the meson field. In Sec. 2, we 

which enables us to exclude zero-spin quanta. When the consider the bremsstrahlung process on a nucleus. The 
electromagnetic field is turned on, Appendix treats problems connected with the motion of 

D,Y,-m2Y,=0, D,=a,+ieA,, 

and (2) i s  replaced by 

(3) the meson in external fields with a view to establishing 
the connection between spin-1 and spin-0 states. The 
system of units in which ti= c = 1 is used throughout. 

ie 
D,Y,=-F,Y,, 

2mZ 
(4) 1. QUANTIZATION 

where We s tar t  with the Lagrangian density 

It then no longer follows from (4) that 9, = 0. Thus, 
the absence of scalar quanta in the initial and final 
states is  ensured by (2), but the S-matrix elements con- 
tain contributions due to 90.[53 In our view, this ex- 
clusion is not logically satisfactory and i s  fundamentally 
different from the situation in quantum electrodynamics 
and in the current-conserving theory of interactions of 
neutral vector mesons in which conditions analogous to 
(2) a r e  satisfied whether the interaction is present o r  
not. We therefore feel justified in searching for  other 
formulations of the theory of the vector field. 

~ = 1 ~ 2 ~ , , ~ ( 1 ~ , ~ , , - a I ~ ~ ~ l ) + ~ ~ ( 1 / 2 ~ - a A ~ i ~  
+llzY,.(lhYi.'-arrY.,') +Y (1/2Y'-aA~;) -may,'y,, (1.1) 

from which variation with respect to 9, *,, and *, 
yields the following equations of motion: 

dAYA.-m2Y.+d.Y =0, (1.2) 

Y , ~ = ~ ? Y ~ - ~ ~ Y ~ ,  (1.3) 
Y =&Y& (1.4) 

(+conj). Standard methods can then be used to obtain 
the following expressions for the dynamic variables: 
for the energy-momentum tensor 

T;" =T.,Y' +a,f,,,,,, (1.5) 
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where 

T.'="=Y,,'~.Y~+Y'~~Y~+co~~-~~~~, (1.6) 
f , ~ l v = ~ , ; ~  . - s ~ ~ Y . ~ P ~ + ~ ~ ~ Y Y " ~ ' +  conj, (1.7) 

and for the total angular momentum density tensor 

M*I~I=M:P.I+sCI~,* (1.8) 

where M ~ c , , l  and Sub,, are  the orbital and spin angular 
momentum density tensors 

The following expression for the intrinsic spin of the 
field follows from (1.9): 

where 8,=i9,,. 

The formula given by (1.10) describes a spin-1 par- 
ticle and i s  identical with the analogous formula in the 
Proca theory. 

The equal-time commutation relations have the form 

[Y,(r, t ) ,  nV(r1, t)l=-iG,S(r--r'), (1.11) 

where 

The fact that the time component of rLu contains the 
canonically conjugate momentum suggests that Yo -- and - *, are  present in the theory with equal validity, i.e., 
the quantization process extends not only to the vector 
field but to the scalar field as well. We recall that Il, 
= 0 in the Proca theory, which i s  a source of difficulty 
connected with the divergence and noncovariance of the 
elements of the scattering matrix. 

The nlane-wave expansion for 9, has the form 

where a: and a, a re  the particle creation and annihil- 
ation operators, and 5; are  the polarization vectors. 

If the direction of the x,  axis is parallel to the direc- 
tion of propagation, then, by using the explicit form of 
the projection operators onto the spin 1 and spin 0 
states 

we can show that the choice of polarization vectors in 
the form 

is unambiguous in the helicity basis. 

For the Hamiltonian density, we have 

The creation and annihilation operators satisfy the 
commutation relations 

It follows from (1.15)-(1.17) that the vector and scal- 
a r  particles have opposite metric in precisely the same 
way a s  in the Lee model.c141 The associated difficulties 
can be removed by introducing an indefinite metric. We 
shall not reproduce all the intermediate steps involved 
in the redefinition of the various quantities in Hilbert 
space with indefinite metric, o r  develop the quanti- 
zation procedure. This is done in a general form for 
high spin fields (s 2 1) by Barut and ~ u l l e n . ~ " '  How- 
ever, this leaves as an open question the unitarity of 
the S-matrix. Within the framework of our assump- 
tion, i.e., the simultaneous existance of the vector and 
scalar particles, this can be resolved by showing that 
the Hamiltonian for the system is positive-definite, 
i.e., that EZ i s  always greater than zero. Thus, we 
must show that, for any type of interaction with the 
electromagnetic field, the set  of equations of motion 
describes causal propagation of the particles. Let us 
examine our equations of motion by the method pro- 
posed by Velo and ~ w a n z i n ~ e r . ~ ' "  Wave propagation i s  
usually associated with a hyperbolic set of partial dif- 
ferential equations. Their solutions have wave fronts 
that propagate in space time along the characteristic 
surfaces. These surfaces form the characteristic cone 
which divides space time into the past, the present, and 
the future. The characteristic cone is not necessarily 
identical with the light cone. If causality i s  not violated, 
the characteristic cone lies inside the light cone, 
whereas, in the case of signal propagation with velocity 
greater than the speed of light, it l ies  outside the light 
cone. To verify whether a particular set  of equations i s  
hyperbolic and casual, we must evaluate the character- 
istic determinant 

D (n) = 1 An'...wn,, . . . n,. 1 , 

where Aul"-"n i s  the term in the equation of motion with 
highest-order derivative and n, is the normal to the 
characteristic surface. 

If for any n the solution no of the equation 

D (n) =O 

is real, then (1.2)-(1.4) are  hyperbolic equations. The 
maximum velocity of signal propagation i s  then 

When the electromagnetic field i s  present, (1.2)-(1.4) 
assume the form 

The characteristic determinant corresponding to 
(1.18) i s  

It follows from (1.19) that 
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canonical energy-momentum tensor (1.6) can be writ- 
ten in the form (AMM+O) 

Thus, the system given by (1.18) is hyperbolic and cau- 
sal (no/lnl= l). Introduction of the dipole magnetic and 
quadrupole interactions lead to the equations 

[ (D,z-m')6,,-ie(l+k) F,,]Y',,=O, (1.20) 
[ (D,2-m') 6,"-ieF,,] Y , - iq  [aJpaD,YI+L),(aIF,,) YI l  =O. (1.21) 

where k i s  t h e - - & I ~  in units of e/2m and q is the quad- 
rupole interaction in units of e/m2. 

The determinant of (1.20) and (1.21) is identical with 
(1.19). Consequently, the S-matrix i s  unitary for any 
type of interaction with the electromagnetic field. 

We note that, if the masses  of the vector particle 
and i t s  partner a re  not equal, which is the case in the 
Lee model, the Lagrangian (1.1) must be replaced bv 

1 
2 = 1 u , . ; ( , ~ , . - o , , ~ . ,  v -a .~ ,  +conj -m, 'Y:Y~ .  - ) 

(1.22) 
from which we have the following equations for the field 
potential: 

where q =  (mi - m:)/mE, and m, and m, are  the masses 
of the vector and scalar particles, respectively. 

Thus, even in the free case, there i s  an interaction 
between the vector and scalar parts of the field, which 
i s  characterized by the parameter q. It i s  easily seen 
that this interaction will mix the longitudinal and scalar 
parts of the field, whereas the transverse part will re- 
main free. It i s  known that the Lagrangian given by 
(1.1) i s  invariant under the gauge transformation 

provided the arbitrary scalar function A(%) satisfies the 
equation 

If we choose this function so  that 

the transformation given by (1.24). (m = m,) will induce 
a'change in the mass of the scalar particle from mo to 
m:, in (1.22). 

We shall now show that there i s  a class of interac- 
tions between bosons and the electromagnetic field 
which admits of separation of the spin states. Thus, let 
us introduce the proper vector in an arbitrary Lorentz 
reference frame, nu,  for which 

It gives the origin for the the two projection operators 
~ ( s ) :  

UY 

the first  of which segregates from ?Lr, the part connec- 
ted with spin 1 and the second the part with spin 0. The 

T:;"" -T;:)+T::L' +T::"", (1.26) 

where 

~ ~ ~ ~ ~ ' = - ~ , ~ a ~ ~ ( ~ ; ~ ~ ) - i e ( l + k ) ~ ~ ~ ~ ~ ) ~ ~ )  Y;Yp (1.28) 

It is readily seen that, by virtue of the Gauss the- 
orem, T',"ier will not provide a contribution to the ener- 
gy-momentum vector field 

Similarly, the current i s  given by 

where 

The total charge of the field i s  given by 

It follows from (1.29) and (1.32) that, if the initial and 
final states lie on spatially similar hypersurfaces, 
whose unit normals n u  are  equal, the spin-1 and spin-0 
states will not interfere. An example of this interaction 
i s  the motion of a particle in the field of an arbitrarily 
polarized plane wave, the potential for which i s  nonzero 
only in a bounded region of space (see the Appendix). It 
i s  readily seen that interference between the vector and 
scalar  particles will also be absent in the free case. In 
all other cases, the electromagnetic interaction will 
mix the spin-1 and spin-0 states. 

The S-matrix i s  given by 

where .-> 

Relativistic covariance of the S-matrix was demon- 
strated by ~ o ~ a r k i n ~ ' ~ '  for nonzero AMM. The expres- 
sions for the one- and two-photon vertices in momen- 
tum space have the form 

V,,,=ie(&, ,,plx+Bvv aap21), (1.35) 
V,,,.=-2eZ6,,,6a., (1.36) 

where p ,  and p ,  are  the momenta of the incident and 
emitted mesons, p and v a re  the coordinate indices of 
their polarization vectors, the indices a are given in 
(1.35), and a and X in (1.36) a re  connected with the pho- 

15  Sov. Phys. JETP 48(1) ,  July 1978 0. M. Boyarkin 15 



ton polarizations. 

The meson propagator i s  

evaluated exactly with the aid of the results  reported by 
Gliickstern and ~ ~ 1 1 ' ~ ~ ' :  

It follows from (1.13) that a particle in the initial (final) 
state corresponds to the following factor in the matrix 
element: 

The meson field can therefore assume four polari- 
zation states, two of which a re  purely vector states and 
correspond to transversely polarized particles (k = 1,2) 
and the other two are  mixtures of longitudinal and sca- 
lar  states (k = 3,4) because of the interaction. 

2. BREMSSTRAHLUNG 

We now consider the bremsstrahlung process for a 
meson on a nucleus in second-order perturbation theory 
in e. We shall assume that the particles a re  unpolar- 
ized in the initial and final states. The diagrams provid- 
ing nonzero contributions to the matrix elements a re  
shown in the figure. 

The matrix elements are  given by the following ex- 
pressions: 

M~ brn 
ip,-k)'+m2 

A.'(q) I B , , r ( p , - k ) . + B n m , ~  2 ,  G ' ( P z ) ~  (El-Ez-ko), 11 
(2.2) 

where e, is the photon polarization vector, A: is the po- 
tential fo r  the nuclear field, and q = p, + k - p,. 

The differential cross  section is 

p,p2 sin 8 ,  sin 0, cos q - 2 [US* - ; ( 1 + 1 ) ~ ~ ' +  (l+k).k.' 
AtA2 1 

( i+k) '  +'- k,l(pr2 sinZ Bl+p,l sin' B2-2p,pz sin 0, sin 0: cos q )  - - - 
8 [j, L2n9 

(2.3) 
where A,,, = El,, -PI,, cosO,,,; 0, and 0, are  the angles 
between the vectors k, p, and k, &, respectively; cp is 
the angle between the (k, p,) and (k, p,) planes; dS2, and 
d51 a re  solid-angle elements containing the vectors & 
and k;  and^,,,= I R . ~ ~ .  

We must now integrate with respect to the directions 
of the secondary meson. The integrals in (2.3) can be 

16E:- (l+k)'(3E,'-3m2-2E,E2) -- plf-k,' 

PI'AII 
E,'(32E,Ez-2iEI2-12E,Z) + mz(22E,'-8ErEz-7,?P) 

8 2pj481' 
+ koE,'(4E,2-4E,E2)+k,rn2(12E,2-8E,E2-4m2) 

P ? ~ ' A <  

- L ' ( 4 ~ z + 2 E t ' )  . + 10p.'-6kO2 - 3(p,2-k,')' 
pt6mz 2T2A? ZT'A,' 7 (2.4) 

where 

Integration of (2.4) with respect to 51 leads to the fol- 
lowing expression for the differential c ross  section for 
emission in the frequency band k,, k,+dk,: 

Z2a3 p2 dk. { L [ 8E;E2 do,=--, - -+ k,'(l+k)' 

m' pi ko PZPI  4 
(2E1'Ez'+2m2E,E2+2p,2p?Z) + kornZ(l+ k)' 

X. 
pt'pr2 4 

16 

E 8 ( l + k ) z  
- 2 4 ) ] - T  pl-m2 + - 2 [ 4 - 2 E , E , ! ? ? C  

ptZpr2 

where 

It follows from (2.5) that the emission intensity k,du, 
diverges logarithmically a s  k ,  - *. 

In the ultrarelativistic case (El, E, >> m), the spectral 
distribution of the radiation i s  given by 
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This expression can be used to determine the energy If, in the initial state, we have a transversely polar- 
lost by a meson traveling through matter by radiation. ized meson and, in the final, a mixture of longitudinal 
The energy loss will be defined a s  follows: and scalar states, then 

then have 

Thus, in the ultrarelativistic case, a increases a s  the 
square of the logarithm of the energy. This result i s  
valid only if we neglect the screening effect which be- 
comes important for energies E l >  1 3 7 ~ - " ~ r n .  The en- 
ergy loss u tends to a constant in the case of complete 
screening. The bremsstrahlung c ross  section within 
the framework of the Proca theory was determined by 
Christy and ~ u s a k a [ ~ ~ ]  and Bludman and ~ o u n g [ ~ ~ ]  using 
the Weizskker-Williams. It was found that the cross  
section was a linear function of the energy of the initial 
meson. It i s  well known that a more rapid variation 
with energy in the Proca theory i s  due to transitions 
with boson spin flip.C221 Since the evaluation of the 
cross  sections for polarized vector particles i s  very 
laborious, and the resulting formulas a re  very unwield- 
ly, the situation is usually illustrated by the scattering 
of particle by the Coulomb field of the nucleus (first- 
order perturbation theory). We shall also use this ex- 
ample to illustrate the behavior of the cross  sections 
for polarized particles. The differential c ross  section 
for scattering by the Coulomb field of the nucleus i s  

where a, =[Ze2/2pv ~ i n ~ ( 8 / 2 ) ] ~ ;  p and v are  the momen- 
tum and velocity of the meson, respectively; t ,  i s  the 
polarization index of the i-th meson; and 8 i s  the angle 
between p, and R. 

Summation over the polarizations i s  performed with 
the aid of the formula 

If the initial and final mesons a re  transversely po- 
larized, then 

If, prior to and after scattering, we have a mixture 
of longitudinal and scalar states, then 

The expressions given by (2.10)-(2.12) can be used to 
obtain the cross  section for unpolarized particles: 

Thus, in this particular variant of the meson theory, 
transitions with spin flip (t - I + 0) do not result in a 
r i se  in the cross  section with increasing energy. This 
conclusion can also be reached in other ways. In the 
Proca theory, the degree of divergence of the expres- 
sions corresponding to the Feynman diagrams i s  given 
byC231 

where E, is the number of external meson lines, E ,  is 
the number of external photon lines, and N, and N, a re  
the numbers of one- and two-photon vertices, respec- 
tively. The dependence of D on N, and N, leads to an 
infinite number of primitive divergences, i.e., to a non- 
renormalizable theory. It turns out that, if the longi- 
tudinal component of the meson field is absent, the num- 
be r  of primitive divergences becomes finite since 

a s  in scalar electrodynamics,C241 and the theory is re- 
normalizable. In our case, the convergence condition i s  
also determined by (2.15). Consequently, the presence 
of longitudinal quanta is unrelated to the presence of any 
additional divergences. 

It is also important to recall the most successful 
variant of the Proca theory, namely, the theory of 5 -  
limiting formalism of Lee and ~ a n g . [ ~ ]  This formalism 
can be used to construct a relativistically covariant S- 
matrix for nonzero AMM, to achieve renormalizability, 
and to ensure that the S-matrix is unitary. In fact, 
unitarity and renormalizability a re  achieved for differ- 
ent values of 5.C71 The quantity ( i s  allowed to tend to 
zero  in the final stage of the calculation, and the re- 
sulting scattering and reaction c ross  sections turn out 
to be exactly the same a s  in the Proca theory.c251 Thus, 
the cross  sections exhibit a persistent increase with the 
energy of the initial particles, which i s  due to the con- 
tribution of the longitudinal quanta. 

APPENDIX 

1. Particle in the field of an arbitrarily polarized plane wave 

The wave potential will be taken in the form 

where 8 = x A n , , n , = ( 0 , 0 , 1 , i ) , m = l , 2 , n , a , " = n ~ = 0 .  

If we substitute 

17 Sov. Phys. JETP 48(1), July 1978 0. M. Boyarkin 17 



we find that the equations of motion (1.18) assume the 
form 

where p is the free-particle four-momentum and 

d A m  
A,,,' (0) = x. fvvm=nvavm-n+m. 

The solution of (A.l) is 

The constants b, a r e  determined by the initial con- 
ditions. The existence of the constant of motion 

~n"n,--const (A.3) 

shows that the particle has only three independent po- 
larization states in the wave field. 

We now assume that the wave potential satisfies the 
condition A, I,, = 0. We take the initial state of the par- 
ticle to be  the spin 1 state, i.e., 

where N is the normalization constant and k, is an ar-  
bitrary four-dimensional constant vector. 

We now substitute k,=n, and obtain the following ex- 
pression: 

In the final state with A, = 0, the wave function is 
then again transverse, i.e., sca lar  particles do not ap- 
pear in the scattering process. If we take a scalar init- 
ial state, then, after scattering, we obtain only a spin- 
0 particle. In this situation, therefore, there a re  no 
transitions between different spin states. However, if, 
prior to scattering, we have a vector particle with i ts  
scalar partner, then, a s  can readily be  notedfrom (A.21, 
we will have both spin-1 and spin-0 particles after the 
scattering event. Thus, the plane wave cannot be  used 
to separate the scalar partner from the vector particle. 

2. Magnetic field 

Consider a magnetic field parallel to the z axis, 
which i s  uniform in space and constant in time. The po- 
tentials can then be taken in the form 

YH xH A==-- A 
2 ' 

, -, , A.=A,=O. 

The equations given by (1.20) then assume the form 

(Dc-m2) Y.=(DLz-m') \Y.=O, 
(DP-m') Y.- ie( l+k)H\YYyO, 

(A.5) 

( ~ , ? - m ' )  Y , t . i e ( l + k )  HY,=O. (A.6) 

The solution of (A.5) i s  known to beCze1 

where I is the azimuthal quantum number, s i s  the ra- 
dial quantum number, L is the edge of the cube contain- 
ing the particle, p, i s  the eigenvalue of the momentum 
projection operator on the z axis, L: a re  the Laguerre 
polynomials, and E is the particle energy. 

The functions Y, = (9, * 9,)/fl satisfy the equations 

The solution of this i s  

We note that the eigenfunctions of the total angular 
momentum projection operator in the direction of the 
magnetic field a re  9, and 9- and not 9, and 9,. 

The energy levels a re  then given by 

where q = * l  for transverse (relative to the field) states 
and q = 0 for both longitudinal and scalar  states; n i s  the 
principal quantum number. 

The above results a r e  valid for 

since otherwise E2 <0. TO remove this formal defect 
(classical field theory becomes invalid well before H,, 
is reached), we can introduce terms representing the 
magnetic polarizability of the particles into the equa- 
tions of motion in the same way a s  in the Proca the- 
ory.Cz71 

The evaluation of D,9, leads to a nonzero result 
which enables us to conclude that there is interference 
between spin-1 and spin-0 states. Thus, the magnetic 
field can be used to separate transverse quanta, but the 
behavior of the longitudinal and scalar quanta i s  iden- 
tical. 

3. Electric field 

Let E = (0, 0, E). The potential can then b e  taken in the 
form 

The equations of motion (1.18) then take the form 

(DLz-mZ) I.== (D2-m2) Y , - 0 ,  (A.10) 
(DLz-ma) Yo-ieEY.=O, b.11) 
(D2-m2) Y.- ieEYa-0.  (A.12) 

The solution of (A.lO) is known to betzs1 

where 5 = -ieE(z +&/eE)', & is the particle energy, p,  
and p, are,  respectively, the momentum components 
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along the x and y axes, a = (aE + iM ')/4eE, F i s  the con- 
fluent hypergeometric function, and M ' =p: + p i  + m2. 

Let 

From (A. 11) and (A.12), we find that the equations f o r  
g* a re  

(D:+ieE) g+-0, (D2-ieE) g-=O, 

The solution of this i s  

where 

The constants c,, c,, c,, and c, can be determined 
from the initial conditions and from the normalization 
condition. Direct evaluation leads to D,@, # 0, i.e., in- 
terference between vector and scalar states also takes 
place. It is easily seen from (A.13) that the longitudinal 
and scalar parts of the field a r e  coupled. 

Borgardt and ~ a r p e n d k o ~ ~ ~ ]  have demonstrated the 
existence of stable solutions of the Kepler problem for 
the charged vector boson. The Lagrangian density in 
the form given by (1.1) was taken a s  the starting point. 
The condition D,@, = 0 was imposed on the asymptotic 
behavior at long distances from the force center. This 

fixed the constants in the solution of the equations of 
motion, so  that the scalar part of the field cancelled by 
the longitudinal part. The result was that the vector 
meson could be only in transversely polarized states. 
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The Aharonov-Bohm effect in a toroidal solenoid 
V. L. Lyuboshitz and Ya. A. Smorodinski 
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We consider the Aharonov-Bohm effect in the case in which the magnetic field is concentrated in a finite 
region of space (a closed solenoid). Formulas are obtained for the scattering of charged particles in a 
toroidal solenoid in the eikonal and Born approximations. 

PACS numbers: 03 .65 .B~ 

1. INTRODUCTION 

Aharonov and Bohrn called attention to the fact that a 
magnetic field affects the interference of coherent 
beams of charged particles propagating outside the re- 
gion of localization of the field.(" They also discussed 
the scattering of charges in an infinitely long solenoid 
and showed that the scattering is due to the change in 
phase of the wave function in the region in which there 

is no magnetic field but in which the vector potential i s  
not zero; here the total cross  section for scattering 
turns out to be infinite. Subsequently a large number 
of articles have appeared on the interpretation of this 
effect and on discussion of locality in quantum mechan- 
ics (see for example Refs. 2-5l'). 

The analysis contained in the studies cited has a def- 
inite methodological deficiency due to the infinite 
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