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1. INTRODUCTION 

Studies of optical phenomena comprise the simplest 
and most effective method of investigation of liquid crys- 
tals. Therefore a broad literature is devoted to these 
questions. A special place is occupied by cholesteric 
liquid crystals (CLC). Their surprising optical proper- 
ties (selective reflection of light of a certain polariza- 
tion and wavelength, large value of the rotation of the 
plane of polarization, and s o  on) are  connected with the 
structure of the ordering of the molecules. Everything 
is determined essentially by the magnitude and sign of 
the pitch of the CLC helix. The pitch of the helix chan- 
ges under the action of small electric, magnetic and 
other influences, thus changing the optical properties 
of the CLC. The pitch reacts even more sensitively to 
impurities. However, much less  progress in under- 
standing the phenomena in mixtures has been made than 
in pure CLC. This relates particularly to the case in 
which the components of the mixture have different signs 
of the intrinsic optical activity (see below) o r  in which 
one of the components is a nematic liquid crystal (NLC). 
At the same time, it is precisely these mixtures that 
a re  promising for applications, since a wide variation 
in their structure characteristics (for example, the 
pitch of the CLC) is possible. It must also be noted that 
a great deal of experimental data has been accumulated 
in this region (see, for example, the anthology, Ref. 1). 

Of course, a detailed quantitative interpretation of 
these data is possible only on the basis of a correspond- 
ing microscopic (quantum-chemical) calculation. This 
does not enter into the problem of the present paper 
(and at any rate can be carried out only numerically). 
However, some general qualitative laws can be estab- 
lished even on the "macroscopic" level. The present 
paper is devoted to a consideration of such regularities. 

In Sec. 2 a simple model is proposed, which describes 
the dependence of the helix pitch of a mixture of CLC 
and NLC on the concentration of the CLC. Van der  
Waals forces acting between anistropic and gyrotropic 
systems are taken into account. It is shown that, when 
account is taken of non-additive triplet forces, an in- 
duced optical activity of the NLC appears (for a partic- 
ular position of the mass centers of the molecules), 
with a sign opposite that of the optical activity of the 
CLC molecules. 

In Sec. 3, the properties of mixtures of CLC and NLC 
are  studied phenomenologically in the case of small 
concentrations of the CLC. When such mixtures (and 

also of pure CLC) a re  considered on the basis of the 
~rank , [ l '  expansion of the free energy the pitch of the 
CLC helix turns out to be independent of the tempera- 
ture. This conclusion s o  strongly contradicts all the 
experimental facts that the validity of the Landau theory 
in CLC is called into question,[11 However, the critical 
scattering and other phenomena in the CLC are  excel- 
lently described by the Landau theory. The contradic- 
tion can be avoided if terms in the elastic energy 
proportional to higher powers of the order parameter 
(up to s4) a re  taken into account. Such an expansion 
is not an exaggeration of the accuracy, since trans- 
itions in liquid crystals a re  phase transitions of 
f i rs t  order and the order parameter at the transition 
point is not very small (s,-0.4). Therefore, terms of 
the same order in s ought to be taken into account in the 
gradient part of the free energy a s  well a s  in the homo- 
geneous part. In the same section, similar phenomena 
a re  considered in the vicinity of the racemic point in the 
mixture of CLC with opposing signs of rotation (of the 
optical activity). I t  is shown from symmetry considera- 
tions that when electric and magnetic fields (of suffici- 
ent magnitude) perpendicular to the director of the NLC 
(in the racemic mixture) a re  applied, an NLC-CLC 
transition is possible. 

In Sec. 4, the possibility is discussed, in the case of 
the NLC-CLC transition, of the phase transition pre- 
dicted in an isotropic liquid by ~ e l ' d o v i c h ~ ~ ~  and con- 
nected with the disappearance of the center of inversion 
in NLC. It is shown in self-consistent fashion how the 
requirements for  such a transition a re  satisfied in the 
given case. It is noted that the pitch of the helix in the 
CLC obtained in such fashion, would be decreased upon 
decrease in temperature (while the pitch of the helix in 
pure CLC usually increaes with decrease in tempera- 
ture). In conclusion (Sec. 5), possible new experimen- 
tal effects connected with the presence of additional de- 
grees of freedom in the CLC mixtures (in ultrasound 
absorption and light scattering) a re  investigated briefly. 

2. CONCENTRATION DEPENDENCE OF THE HELIX 
IN MIXTURES OF CLC AND NLC 

In order to describe the dependence of the helix pitch 
(or, what is more convenient, the reciprocal of the 
quantity q,) on the composition in a self -consistent man- 
ner it is necessary to have an expression for the inter- 
action energy between the anisotropic and gyrotropic 
molecules. The corresponding formulas can be obtained 
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by simple generalization of the results which are known 
for the interaction between neutral atoms .c31 

A s  is well known, the potential energy of the interac- 
tion is expressed in terms of the corresponding average 
of the S matrix: 

The field components of importance in the interaction of 
molecules are those with frequencies that do not exceed 
the atomic; therefore the operator of electromagnetic 
interaction can be written in the form: 

where d, and Q, are the components of the operators of 
the dipole and quadrupole moments of the molecules, 
and E(r) is the electric-field operator. 

In formula (2), in contrast with the well-known re- 
sults of Ref. 3, the next (quadrupole) components of the 
multipole expansion are taken into account, which is 
specially important for the interaction of gyrotropic 
molecules. We shall further assume (as in Ref. 3) that 
the mean values of the multipole moments (in stationary 
states of the molecule) are equal to zero. Therefore, 
a non-zero scattering amplitude appears only in the 
f ourth-order approximation of perturbation theory: 

(-i)' S = -  
4! Jdt ,  dt,  dt, d t ,T(V(t , )17( t2)  V ( t s ) V ( t , ) l .  (3) 

Diagrams corresponding to the averaging of Eq. (3) over 
the photon vacuum are shown in Fig. 1. The dashed 
lines represent the Green's function of the electric 
field: 

The solid lines correspond to the functions 

which can be expressed in terms of the derivations of ek and the magnetic field Green's function D:,. 

At the accuracy of interest to us, there are 12 dia- 
grams containing only dashed lines and 36 diagrams 
with single continuous lines. The corresponding con- 
tributions to the S matrix are: 

1 <s,,)= - j dt,  at2 dt,  d t A ( ~ = ( z , - z 2 )  D ~ ~ ( z , - x , )  
2 

X(T[d, , ( t t )d im(t l )  ] ) (T [da( t z )dz , ( t s )  ] )+ l l sD i rE (~ i -~s )D~m~(z~ -z~ )  

x(T[dt t ( t i )d ,m(t , )  I)(T[dz,(tz)Qt,,(ts) I ) ) .  (6) 

A s  usual, we transform in (6) to the Fourier compon- 
ents in time. Moreover, in further transformations we 
shall retain in (6) only components that depend on the 
orientation of the molecules. We assume axial symme- 
try and denote the unit vector directed along the long 
axis of the i-the molecule by c,. We then have from (6) 

0--\ 
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FIG. 1. 
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and (1): 

Here e, is a unit vector connecting the centers of the 
masses of the interacting molecules 1 and 2, and Jl,(r) 
and Il,(r) are obtained by the corresponding integration 
in (6). The general expressions for Jl,(r) and Il,(r) are  
rather cumbersome and we shall not write them out. 

We shall consider in more detail only the important 
special case in which we can neglect the retardation of 
the interaction. Then the Green's functions 07, and 
D,,, depend only on the "three-dimensional" coordin- 
ates r, and the corresponding expressions can easily 
be obtainedE3]: 

3r,rk-r26ik 
0; = 

a 
, Dir, = - D d ,  

r5 ar, 

where r = r, - r,. In this approximation, 

Here 6,,,(io) is the anisotropic molecular polarizability 
and ul,,(iw) is the molecular gyrotropy, i.e., the tensor 
of the polarizability of the molecule is expressed for- 
mally in the form of the following sum: 

By starting out from Eq. (6), the parameters 6, u(cu,, 
of course) can be expressed in terms of the microscopic 
characteristics 

Or, by choosing a cartesian system of coordinates with 
the z axis along the long axis of the molecule c, 

w,, is the excitation energy of the n-th state of the mol- 
ecule. 

We note that an interaction of the type (7) represents 
the most general form consistent with the symmetry 
conditions of the problem. Actually, we can make up 
from the three vectors c,, cj, and e,, (or r , ,=~ , , e ,~ )  
five independent scalar variables: c,-cj, C, rfj ,  cj* rfj, 
r,j, and [c, x cj1-rij. 

Moreover, since ([c, X ~ ~ 1 . r ~ ~ ) ~  (and also higher de- 
grees) is expressed in terms of cfocj ,  c,*r,,, and cj*rij, 
then in the most general case we can write 

which agrees with (7). 
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As is well known,['] Eq. (7) (see also Sec. 4) leads to 
the formation of CLC with pitch -I,,'. Upon formation 
of CLC in the mixture of NLC and CLC, the quantity 
I, is proportional to the CLC concentration N. The 
sign of the helix of the mixture is determined here by 
the sign of the spiral of the CLC. Thus, upon the addi- 
tion to CLC of the dextrorotatory CLC, we obtain a 
right-hand mixture and similarly for the levorotatory 
CLC. 

In the work of Kozawaguchi and ~ a d a , [ ~ I  some mix- 
tures of NLC and CLC were studied experimentally. It 
was established that on mixing of the components of 
CLC, the rotation (pitch) changes monotonically with 
concentration, which agrees with (7)-(9). However, in 
the mixtures of CLC and NLC (at low concentrations of 
CLC), the sign of the rotation is always left, indepen- 
dent of the sign of the CLC component (in the experi- 
ment, two types of NLC were studied; four left and 
eight right CLC). Therefore, in the mixture NLC+ right 
CLC, the pitch of the helix does not change monotoni- 
cally with the concentration, but has a maximum at 
some concentration N, of right CLC component. At still 
greater concentrations (No = 2Nm), an NLC-CLC phase 
transition is observed. For  explanation of the results 
of this work, we need in the mixture of CLC and NLC 
an interaction mechanism that guarantees a rotation op- 
posite in sign to that of the CLC component. 

It follows from (7)-(9) that I,,>O in the interaction of 
left molecules (a> 0) and I,, < 0 in the interaction of right 
ones (a< 0). If the signs of the characteristics optical 
activity of both molecules a re  opposing (a,/o, < 0), then 
I,, is determined by the more active component, but the 
quantity I,, decreases upon addition of the less active 
component, going to zero a t  some concentration. In 
mixtures of CLC and NLC (a, =0), the sign of I,, is de- 
termined by the sign of the optical activity of the CLC 
molecules. Therefore, for an explanation of the experi- 
mental results of Ref. 4, account of the paired van der  
Waals interaction is not sufficient. It is possible that 
three-particle non-additive forces a re  important in this 
case. 

For simplicity, we consider a complex of three mol- 
ecules: A,  B, (NLC), and C(CLC). The energy U of 
this complex is 

L ~ = U ~ , + U , ~ T U ~ ~ + L ~ , ~ ,  (14) 

where UABC is the nonadditive three-particle contribu- 
tion to the energy from the van der  Waals forces, and 
U,,, U,,, and UcA a re  determined from (7)-(9). The 
quantity U,,, is determined by the diagram shown in 
Fig. 2 (and analogous diagrams obtained by permutation 
of the solid line). The calculations are  analogous to 
those given above for  two-particle forces (for atoms, 
the three-particle forces were also calculated by 
~ c ~ a c h l a n [ ~ ' ) .  In the approximation of small distances 
between the mass centers of the molecules (when the 
retardation is insignificant), we obtain with account 
taken of (8) and (10): 

where h, ), 9 a r e  the polarizabilities of the molecules 
A, B, C according to Eq. (10). 

I t  is important that both the sign and the magnitude of 
U,,, depend on the location of the mass  centers of the 
molecules. For  the antisymmetric part of interest to us 
at the arrangement such a s  in Fig, 3a (the centers of the 
masses a re  on one straight line), 

where 

In the arrangement of Fig. 3b (centers of mass a t  the 
vertices of an equilateral triangle), 

Thus in a linear arrangement the three-particle forces 
decrease the effect of the pair  forces and in a triangular 
arrangement they increase them. 

If we assume that in the mixtures investigated experi- 
mentallyc4] the right CLC are  arranged linearly relative 
to the NLC molecules, and the left have a triangular ar-  
rangement, then Eqs. (17) and (18) [together with (7)- 
(9)] mean that the NLC investigated become levorotatory 
in the presence of CLC. This effect can be taken into 
account directly in self-consistent fashion in the macro- 
scopic Frank expansion for the free-energy density of 
the mixture: 

here N is the concentration of CLC (left, if qo>O, and 
right if go < 0), K, and K, a re  the elastic moduli of the 
nematic and the cholesteric. The equilibrium pitch (or, 
the value of q,) is found by minimizing (19): 

Equation (20) corresponds to the results of experi- 
ment.c41 For  right CLC (go< 0) we have a certain con- 
centration at which q,= 0 (transition to NLC), and a 

FIG. 3. 
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maximum at half the concentration N,, while 

Nm=(KtI,+qoKz)/2KiI,. 

Naturally, the reasons for which the mixtures of left 
molecules studied in the experiment of Ref. 4 group into 
triangular groups with molecules of NLC, and the right 
molecules group into linear groups, cannot be under- 
stood on the basis of such a macroscopic approach. A s  
has already been mentioned in the Introduction, a com- 
plete quantitative account of the induced optical activity 
is possible only on the basis of a microscopic theory. 
In simple oscillator models, this calculation is easily 
carried out to the end. For example, in the helicoidal 
model of the optical a~tivity,~" which considers the 
electron to be moving in a potential (we immediately as- 
sume axial symmetry) 

everything is determined by the sign of the interaction 
y (y > 0 for left molecules, and y <O for right). If we 
have a molecule of NLC (y =0) interacting with a mole- 
cule of CLC, then the energy of such an interaction is 

where e is the electron charge, R is the coordinate of 
the electron in the CLC molecule, r that in the NLC. 

If we expand V in r / R  in the usual fashion taking into 
account the first nontrivial terms, then 

The component Bin leads to induced optical activity, 
but only the term B,,,. However, the sign of B,,, is de- 
termined not only by the sign of y. The fact is that the 
quadratic component "A,, leads to a rotation of the prin- 
cipal axes in the xy plane (rotation in the planes xz and 
yz can be disregarded if the values of Az,Ay, are small 
in comparison with the characteristic anisotropy 
1 a, - b,  I of the NLC molecule). 

With account of what has been said above, we obtain 
the followiilg for the potential energy in the quadratic 
approximation: 

i.e., the principal axes in the xy plane are turned 
through an angle cp: 

tan ~ = 2 A I 2 l ( A , , - - A , ) ,  

and the sign of the induced optical activity is now deter- 
mined by the value of the angle cp and the sign of y. At 
sin2cp >0, the signs of B,, (xt,y' are the new axes in 
the xy plane) and y are identical (which corresponds to 
the triangular arrangement) and at sin2cp <0, the sign of 
B,, is opposite that of y (linear arrangement). 

3. LANDAU THEORY OF CLC AND NLC MIXTURES 

We now consider phenomenologically the phenemena 
that take place in NLC upon addition of CLC. The ex- 
perimental data of Ref. 1 indicate that the conditions for 
the Landau expansion of the free energy are well satis- 

fied in liquid crystals. The order parameter (both in 
NLC and CLC) is a second rank tensor of the following 
form: 

where n is the director, s is the modulus of the order 
parameter. Since Sp Q,,=O, then the most general form 
of the expansion of the free energy with accuracy to s4 
will be 

where A = a(T - To), and a, B, C > 0. 

If, a s  is the case, for example, in CLC, the equili- 
brium distribution is inhomogeneous, then it is neces- 
sary to take into account terms with gradients of the or- 
der parameter also. It is customary to restrict oneself 
to the expansion 

where in the NLC phase P= 0. However, for agreement 
in accuracy of the expansions (22) and (23), it is  neces- 
sary to take into account terms in F ,  that are propor- 
tional to s2 and s4. The general form of such terms can 
be determined from the considerations of symmetry. 
For example, for s2 accuracy, we must calculate all 
possible convolutions of the form 

A similar consideration is easily carried out for the 
term that is linear in the gradient. Terms of the order 
s4 of such a structure are not possible at all. Further 
simplification is obtained when account is taken of the 
symmetry of the CLC: 

Denoting the additional coefficients by K,s and P,s, re- 
spectively, we get, with account of what has been said 
above, 

Minimization of the expression (24) relative to q gives 
the equilibrium twist of the CLC helix: 

We note that Eq. (25) gives in natural fashion a pitch 
value that is temperature dependent. Depending on the 
relations between the quantities and the signs of the con- 
stants P, and K,, we can distinguish different situations. 
The pitch can increase with decrease in temperature 
and remain finite at all temperatures in the region of 
existence of the mesophase (as is usually the case in 
pure CLC). However, more exotic relations are reali- 
zable in principle, for example, a decrease in the pitch 
with decrease in the temperature, and also the going of 
the pitch to infinity at some temperature T* (at which 
P=P,s(T*) = 0) with subsequent change in the sign of the 
helicity. Experimental data on mixturescll indicate that 
under some conditions such a situation can exist. 

A s  has already been noted, the coefficients P and P, 
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vanish in NLC. Upon addition of CLC, optical activity 
appears and neither P nor P,  vanish. Therefore, (in the 
linear approximation), we can assume that in the mix- 
tures of CLC+ NLC (or in mixtures of CLC near the 
racemic point) 

p+P,s--aN (2 6) 

(N is the concentration of CLC: for the racemic mixture 
in (26) we must replace N by N - No, where No is the 
concentration of one of the components d CLC at the 
racemic point). Thus, we can deduce from (26) that 

q = p ~ .  (27) 

We note that, because of this dependence, there is a 
shift in the temperature of transition to the isotropic 
phase: 

where s, is the modulus of the order parameter at the 
transition point. 

We point out also that external electric and magnetic 
fields, applied perpendicular to the director, can play 
a role similar to addition of CLC. Upon imposition of 
the electric field E, a change in the symmetry of the 
NLC takes place from D,, to C, ,. If a magnetic field 
H i s  introduced in the same direction, then the symme- 
try is  lowered t~ C,. The components with the coeff ici- 
ent P in the free energy no longer vanish. Similar to 
the above, we can set 

and thence 

. q=$EII.  

Actually, the coefficient p can be very small and then 
the formation of CLC will no longer be observed. In 
this sense, the racemic mixtures seem to have the 
greater possibilities. However, there a re  no reliable 
experimental data pertaining to this problem at the pre- 
sent time. 

4. POSSIBILITY OF THE TRANSITION NLCCLC AT 
THE RACEMIC POINT 

~ e l ' d o v i c h ~ ~ '  called attention to the fact that, in mix- 
tures of right and left stereoisomers, an unusual trans- 
ition is possible, connected with the fact when concen- 
trations of both components a re  equal, a center of sym- 
metry appears. For  molecules of elongated (or plate- 
like) shape, this corresponds to an NLC-CLC transition. 
In this Section we shall show that in the simplest CLC 
model, which is considered in the second section, such 
a transition can take place. 

We write dawn the interaction (7) in terms of the com- 
ponents of the director: 

U,,=-Ji,(n,n,)2-I, ,  ( ~ w , )  ( l ~ ~ 8 x n ~ 1 e , ~ ) ,  
(7a) 

where J i j  and I f f  are  the induced dipole-dipole and di- 
pole-quadrupole interactions [see Eq. (9)]. In corre- 
spondence with what was established in the second sec- 

tion of this paper, if a molecule has a center of inver- 
sion, then I i j  = 0. Upon reversal of the sign of the op- 
tical activity of the molecules, the parameters of I , ,  
change sign I i j  = 0 in interactions of right and left mole- 
cules. 

In what follows, we make use of the CLC model: the 
parallel molecules lie in planes and in the transition 
from one plane to another the long axes turn through the 
angle 8. Thus we have the following expressions for the 
interaction between two right molecules U,,, two left, 
U,, and a right and a left, U,,: 

Here we have assumed that 9<< 1, J  and I  are  identical 
for any neighboring pair of molecules with the corre- 
sponding sign of rotation, and s (the modulus of the or- 
de r  parameter) is the same in all the phases. 

If I left and right molecules a re  located in the mix- 
ture (but transitions I t d  a r e  possible), then the free 
energy can be written in the following from (similar to 
Ref. 2): 

~='/,U~~d~+'/,U,,1~+U~~ld+T[l In l+d In d l .  (32) 

It is convenient to introduce new variables in (32): 

We then have 

F=F,-~/~PI~srn+TMma++'/,N2J0's; 

We have included in Fo the terms that do not depend on 
8, s, and m.  

Minimization in 9 determines the resulting structure: 

O='/zlmll,  o=qz. (3 5) 

Substituting (35) in (34), we obtain 

I t  then follows that the temperature of the phase transi- 
tion is determined by the relation 

T,=31,aI'Ns(T,)IJ.  (37) 

At T >  T,, we have m = 0 (the number of left and right 
molecules is the same) and NLC is formed; however, at 
T =  T,, a phase transition to CLC takes place. The pe- 
riod of the structure is determined by Eq. (35). We 
note that the period of the CLC, formed in such fashion, 
should always be decreased -(T, - T ) I / ~  with decrease in 
the temperature. In  order to determine the coefficient 
of proportionality, we must take into account the next 
term in the expansion (36) in the order parameter. 

5. CONCLUSION 

The effects considered above a re  determined by the 
dependence of the pitch of the CLC on the temperature 
o r  concentration. They can all be determined experi- 
mentally from the corresponding optical phenomena (for 
example, from the location of the region of selective 
reflection of one of the circularly polarized beams). 
We now give a few qualitative features of the CLC mix- 
ture, connected with the dependence of the pitch of the 
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helix on the concentration. 

For  example, in the propagation of ultrasound in the 
CLC mixture, additional relaxation damping should be 
observed. This is connected with the fact that the peri- 
od of the mixture (or the inverse quantity q,) is deter- 
mined by the concentration. Thus, in the propagation 
of the ultrasound, in addition to the density fluctuations, 
there is a comparatively slow relaxation (connected with 
the diffusion) of the pitch of the helix. In the usual fa- 
~hion,['~ we find the following for  the complex wave vec- 
tor X :  

here w is the frequency o f  the ultrasound, r is the cha- 
racteristic diffusion time of establishing theequilibrium, 
c, and c, are  the velocities of ultrasound at wr<< 1 and 
w7>> 1, respectively. 

We note that the diffusion times 7 differ significantly 
for directions along and transverse to the axis of the 
helix, while the natural anisotropy of the elastic pro- 
perties of pure CLC is very small ("lo-'). In corre- 
spondence with this, the dispersion curves for propa- 
gation of ultrasound along and transverse to  the axis of 
the CLC helix should also differ. 

The presence of an additional (in relation to pure 
CLC) hydrodynamic variable (concentration) leads to a 
change in the spectrum of the collective modes. A more 
detailed consideration of this question goes beyond the 
framework of this paper. Here we shall only shown the 
qualitative consequences. Along with ordinary sound 

and second sound, which is connected with the compres- 
sibility along the axis of the CLC (the modulus K2,q2) a 
damped diffusion mode appears. Depending on the rela- 
tion of the constant of interaction between the compo- 
nents of the mixture, the character of this latter mode 
can change from purthermodiffusion of the slipping of 
one component relative to the other. The structure of 
the modes also depends on the orientation of the wave 
vector of the mode relative to the axis of the CLC. All 
these effects can be observed in principle experimen- 
tally, for example, by Brillouin scattering. The real 
estimate depends on the values of the many parameter 
of elasticity and viscosity, which a re  unknown at pre- 
sent for most of the CLC mixtures. 
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It is shown that in amorphous magnets with "rotating" anisotropy of the easy-axis type of a spin-glass 
phase can exist. The conditions for the existence of such a phase are discussed. The phase diagram for the 
ferromagnetic, paramagnetic, and spin-glass phases is derived. 

PACS numbers: 75.50.Kj, 75.30.G~ 

1. INTRODUCTION attain the maximum possible value. To explain these 
phenomena a model was proposedcl3 according to which 

In this paper we consider the properties of one class each magnetic atom i s  acted upon by a crystal field 
of amorphous magnets-alloys of rare-earth (Tb, Dy, that is random in direction but constant in magnitude, 
Ho) and transition (Fe, Co) metals. These alloys leading to anisotropy of the easy-axis type. We shall 
possess a number of unusual magnetic properties; call this anisotropy rotating anisotropy. Subsequently, 
e .  g., the magnetization at zero temperature does not M6ssbauer-effect experimentscz3 on these substances 
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