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High-temperature phase transitions are considered in alloys of rare-earth metals, of the type Er-Tb and 
Er-Dy, whose magnetic structure is a tilted spiral wave traveling along a preferred axis z of the crystal. 
For these compounds a phase diagram is constructed in the variables T and la (a II is the anisotropy 
constant along the z axis); it describes phase transitions from the paramagnetic region to all possible 
states of the tilted spiral. The discontinuities of the order parameter and the critical exponents are 
calculated. There is a "tetracritical" point on the phase diagram. The behavior of the system in the 
vicinity of the "tetracritical" point is considered; and it is shown that in this system, along with first- 
order phase transitions to a planar spiral or to a state with a longitudinal sinusoidal wave, there can occur 
a second-order phase transition of the second kind directly to a tilted spiral. 

PACS numbers: 75.30.Kz, 75.40.Bw, 64.60.K~ 

1. INTRODUCTION phase diagram there is a "tetracritical" point. The 
renormalization-group (RG) equations describing the 

The investigation of phase transitions in magnetic behavior of the system near a tetracritical point a r e  
structures such a s  the helicoidal o r  sinusoidal (Dy, derived; and on the basis of these equations, transit- 
Er ,  Ho Tb, Cr,  Eu, DyC,, MnO,, and REAu,, where 
RE represents ions of rare-earth metals) has been the 
object of a large'amount of r e ~ e a r c h . ~ ' ' ~ ]  It has been 
shown that, depending on the symmetry of the system, 
phase transitions in materials with a complex magnetic 
structure may be either of f irst  o r  of second order; 
the instabilities that lead to phase transitions of the 
first  order a r e  due to fluctuations of the short-range 
order. 

I I 

In the present work, we have considered phase 
transitions in alloys of the type Er-Dy o r  Er-Tb, in 
which the magnetic structure is a spiral wave whose 
plane of polarization is oriented a t  an arbitrary angle 

# , y  

Q to the direction of i t s  wave vector q (see Fig. I), a 
so-called tilted spiral. A phase diagram for these x 

compounds has been constructed; i t  describes phase 
transitions from the paramagnetic region (P) to a l l  I I 
possible states of the tilted-spiral structure. On the 

' 1 ;  IVl l l=l  hi 

FTG. 1. 
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ions are  considered from the paramagnetic phase to a 
plane spiral (NS) o r  to a longitudinal sinusoidal wave 
,(c-sin), and then to a tilted spiral (TS). It is shown 
that in the first  case a first-order phase transition 
occurs, and then, after a lowering of the dimension- 
ality of the projective phase space, a second-order 
phase transition occurs. The corresponding values of 
the discontinuity of the order parameter, and the crit- 
ical exponents a re  calculated. 

2. STATEMENT OF THE PROBLEM 

We consider a magnetic structure described by two 
complex spin vectors. To them correspond two spin- 
density waves, traveling along a distinguished (tetra- 
gonal, orthorhombic, or  hexagonal) axis z (c)  of the 
crystal (see Fig. 1): 

The following invariants of exchange and relativistic 
nature can be formed from them: 

We shall hereafter neglect the relativistic invariants 
of the fourth order. 

On the basis of these invariants, one can construct 
the Landau free energy in the paramagnetic range: 

F = 1 / 2 ~ l , ( ~ f l + Z + ~ I I - 2 )  + ' / ~ T ~ ( S ~ + ~ + S ~ - ' )  +1 /2a l l (~I~ .+2+~II . -z )  

f1/2a1 (s ,~+~+s, . -~)  +'/gI',ll ( s ~ ~ ~ ' + s ~ ~ - ~ )  +' /sr , i (~,+'+~,- i )  + ' / , ~ ~ 1 1 ~ 1 1 + 2 ~ 1 1 - 2  

+1/,rl,~,+z~,-2+1/2r311 ( ~ ~ ~ + s ~ ~ - )  z + 1 ~ 2 r l l ( ~ , + ~ , - )  

+~/~~,(S~~~~S,+~+S~~-~S,-~+S~~+~S,-~+S,~-=S,+~) 

+ ~ / ~ r , [  (s~~+s,+)~+(s~~-s ,-)  ?+(s~~+s,-)  Z + ( ~ l l - ~ , . + ) 3 ~ .  (3) 

In the expression (3), a,,<O and a,> 0 a r e  anisotropy 
c&stants, and the seed values of temperatures T,, and 
amplitudes r,, are  

In accordance with experimental data, C6's1 we shall 
consider the case of large anisotropy, either longitudi- 
nal o r  transverse (al l  ( 5 1, (a,  1 sl).' In this case the 
invariant associated with the amplitude r, disappears. 
Then the RG equations in this case take the following 
form: 

-I',ll'=(n11+8) ~,llz+n,lr21,2+4r211r,l,+4r,l12+2~~,r,2, 
-rilt=(n,+8) r,,Z+n,r2,2+4r,,r,,+4r,,2+2nllr,Z, 
-rs11'=2 (n1,+2) ~ ~ l l ~ 2 1 1 + 4 ~ i l l ~ ~ l l + 4 ~ z  ,'+4r3 12+2n,r12, 

-r2,'=2 (n,+2) r,,r2,+4ri,r,,+4r,.2+4r,,2+2nl1riZ, 
- ~ ~ ~ ~ = 4 ~ ~ 1 1 ~ ~ ~ ~ + 8 ~ ~ 1 1 ~ ~ 1 1 + 2  (nf1+2) r3,;, 

-r,,r=4r,,r,,+8r,,r3L+2(n,+~)r,,2, 
-r''=[ (nll+2) ~ t l l + ~ ~ , + ~ ~ r i , l r ~ + ~ ~ l l ~ 2 1 1 + n , r 2 , ~  r , t  2(r3,1+r3,) r4+4rb2; 

(4) 

the variable of the €-expansion method is 

and X 2 ( ~ , , ,  r l )  is a scale parameter expressed a s  a 
function of TI, and ~,;s , t  = sLe2 + s ~ - ~ , s ~ ~ ~  = s ~ ~ * ~  + s ~ , - ~ .  
After the RG equations have been obtained, one can 
turn to the consideration of a specific magnetic struct- 
ure. 

3. TILTED SPIRAL 

This magnetic structure is characteristic of the 
alloy Er-Tb and can be formed by longitudinal sinu- 
soidal and helicoidal spin-density waves, traveling 
along a distinguished axis z ( c )  of the crystal. Here, 
in the case of large anisotropy, the free energy of the 
system has the form 

Here 

We shall consider the behavior of the system for 
various relations between the values of la,, I and of 

1 %  I -  
1. la, 1 < la,, 1. The RG equations for r,,(x) and 

r j @ )  can be easily obtained from equations (4): 

The RG variable x in this case is found to be 

Equations ( 6 )  can be easily integrated, and their solu- 
tions have the form 

It follows from these expressions that the system can 
undergo a first-order transition to the helicoidal state. 
For this, i t  is necessary that r,,< r,0.C31 The stabil- 
ity limit x,* of the paramagnetic phase i s  determined 
by the condition r, - r3,=0 and is found to be 

Then the value of the discontinuity of the order para- 
meter sLoZ and the temperature TL, of transition to the 
helicoidal state (plane spiral) are ,  respectively, 

s,,'=~,~/2b (xhe), (9) 
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here 

b(xh.)  = I / ~ ~ , ~ ( X ~ * ) .  
After a transition to the normal spiral has occurred, 
the free energy of the longitudinal subsystem will have 
the form 

Thus it follows from this expression that the system 
will transform smoothly to a state corresponding to a 
tilted spiral. 

The stability limit in this case is determined by the 
condition 

The problem of the second-order phase transition 
to a tilted spiral must be solved with the initial con- 
dition x =x,,, where x,, is determined by the equation 
rL(xo,) = rLh and is 

whence 

Thus by solving the equations for  r,, and r,,,, one can 
determine the critical index for the second-order phase 
transition, which i s  equal to Y = 3 +r/10.c91 

2. (a,, I < la, I .  The RG equations have the following 
form: 

On the basis of the expressions (16)-(18) one can eas- 
ily obtain the value of the discontinuity of the order 
parameter and the critical temperature for the trans- 
ition to the state with a longitudinal sinusoidal wave. 
In fact, 

and correspondingly 

After the transition to the &sin state, the free energy 
of the helicoidal subsystem has the form 

By introducing the new variables 

Y,, =r18/r,,, !~~,=r~~/r , , ,  ~ '= r . / r ,~ ,  z=-ln raL, The equations for the amplitudes r, and r,, remain 
unchanged; and since 0 <y,,,< 3, the system will, a s  
before, tend toward the stable point y E= 1. All that 
changes is the initial condition, which is determined 
by the equation 

one can put the system of equations (13) into the follow- 
ing form: 

We shall consider in detail the equation and accordingly 

This equation has three fixed points: y :I) = 0, y ::' = 1, 
y ',3:=3. The point g= 1 i s  stable, the points ',:'3' 

= 0,3 unstable (see Fig. 2). If the seed values of 
I;, and r,, are  such that 0 <y,, < 3, that is 

-rlo <r3,  < then y,, tends toward the stable point 
y '2:' =1, o r  r,,- g,-1/10x; and this means that the 
system can undergo a first-order phase transition to a 
state with a longitudinal sinusoidal wave. In fact, on 
integrating equations (14) by quadratures, we get 

Thus, the system undergoes a second-order phase 
transition to a tilted spiral, TS. The critical expon- 
ent y remains the same a s  in the case considered 
above, la, I < la,, I: namely, Y = j + ~ / l O .  

We shall consider the case -1 < y,, < 0. This means 
that the function y,,(x) falls into the region of unstable 
solutions of equation (14a) (Fig. 2). The helicoidal sub- 
system becomes unstable and will undergo a first- 
order transition. The limit of i t s  stability is deter- 
mined by the condition y,, = - 1. The value of y, at the 
transition point, y&,, is accordingly 

FIG. 2. 

0 1 Yz1 
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where c, is the temperature of transition of the heli- 
coidal subsystem to the ordered state. 

From the expression (25) i t  follows that the values 
of ye,  and c,,/r,, vary over the following ranges: 

The discontinuity of the order parameter is determined 
by the expression 

x z  is a renormalized value of x y,, given by 

and accordingly x f: >x :,. The value of x Ti is deter- 
mined by the equation 

We shall now consider the behavior of the longitud- 
inal sinusoidal subsystem. In order that the inequalit- 
ies  y *, < 0 and y:, < 0 may be satisfied, the following 
conditions must be satisfied: 

From these conditions it follows that the value of 
1 - r,, , /~,,~ must vary within the range 

When y,,- -c, the values of r,,, and sf, are  determined 
by the expressions 

where E - 0, 

The parameters x:, y ib, and y e  a re  determined by 
the expressions 

FIG. 3. 

After the analysis presented above, the following 
conclusions can be drawn for the case - 1 <y,,< 0 (see 
Fig. 3b, c, d, e): 

b) y&> - 1. In this case the system undergoes first  
a first-order phase transition to the c-sin state, and 
then a first-order phase transition to the tilted spiral. 

c) -3 <y:, < -1. Under these conditions there is a 
change of the phase diagram of the system, and a sit- 
uation may arise in which ygb -y;,,. This means that 
a first-order phase transition from the paramagnetic 
phase to the tilted spiral is possible and that a tricrit- 
ical point occurs on the phase diagram. 

d) ygb < -3. The system undergoes a first-order 
phase transition from the paramagnetic region to a 
plane spiral, and then a first-order transition to the 
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tilted spiral i s  possible. 

e )  - 1 <y,, < 9 - (4 + 4~24~)3. The system undergoes a 
first-order phase transition to a plane spiral, and then 
a second-order phase transition to the tilted spiral. 

3. la,, I - la, 1 .  From the phase diagrams presented 
in Fig. 3, i t  follows that they have a tetracritical point. 
The case to be considered corresponds to the behavior 
of the system in the vicinity of this point. The fields 
S,, and S, a re  subject to large fluctuations, and the RG 
equations take the following form: 

The variable x is defined by formula (4). In the varia- 
bles y ,,,, y,,, y,, and z ,  the equations for the amplitudes 
take the form 

dill' - Y ,  (9+Y*LZ- 10y,,,)-2y,'(1- y,,,) -- 
dz 9 + y?," +y,' 

These equations have seven fixed points: 

The phase trajectories of the system a r e  shown in Fig. 
4. The points B, - B, and C, - C, a r e  unstable, the 
point A weakly stable. This means that if the seed 
values of y ,,, y,,,, and y, a r e  such that y > 0, 
0 <y,% < 3, and y,, > 0 (diagram a of Fig. 3), then the 
system can approach this point infinitely slowly in 
time x .  Figure 4 shows the phase trajectories of the 
system in the planes y , = 0 and y , = 1. We shall con- 
sider the behavior of the system in the plane y, = 1. 
When yl1,,> 0, 0 <yz,< 3, and y, >0, the system will 
tend to fall into this plane. Being in the plane y,= 1, 
the system will arrive a t  the point A if i t  has fallen in- 
to an r-neighborhood of it. In this case there occurs a 
second-order phase transition to the tilted spiral, with 
critical exponent y = + c/8. If the system is outside an 
r-neighborhood of the point A in the plane y, = 1, i t  will 
wander for a long time and may reach the stability lim- 
i t  of the paramagnetic phase (a f i rs t  straight line 
y,,=O, -l<y,+<3 and a second, y,,,>O, y,+=-1). There 
then occurs a first-order phase transition to  the c-sin 
state or  to the plane spiral, respectively. If y ,llo > 0, 
-1 <y,,, and y, > 0, the system cannot fall into an r- 

neighborhood of the point A but will move to the stabil- 
ity boundary of the paramagnetic region (the planes: 1) 
ylll=O, y4>0, - l < y , ~ < O  and 2) ylIl>O, y,>O, Y , A = ~ ) .  
In this case there will occur a first-order phase trans- 
ition to states plotted in diagrams b, c, and d of Fig. 
3, and then the system will behave the same a s  in 02. 

4. CONCLUSION 

The analysis presented above shows that the presence 
of a large anisotropy makes i t  possible to isolate all 
the states of a complex magnetic structure and provid- 
e s  a possibility of constructing a phase diagram of a 
new type in the variables (T, la,, I). This diagram per- 
mits prediction of phase transitions at high temperat- 
ures for a whole class of materials (for example, be- 
sides the phase transitions in the alloys of rare-earth 
elements mentioned above, this diagram describes 
phase transitions in Ho and ~ r . ~ ' O l  A correct calcul- 
ation of fluctuations of the short-range order, within 
the framework of the <-expansion method, provides a 
possibility of correctly describing all possible trans- 
itions in the magnetic structure considered. It is 
interesting to note that all transitions from the para- 
magnetic region, with the exception of transitions in 
the vicinity of the "tetracritical" point, a re  fluctuat- 
ional first-order transitions. This is explained by the 
fact that despite the strong anisotropy, the number of 
fluctuating fields is large enough so that instabilities, 
leading to a first-order phase transition, ar ise  in the 
system. After a first-order transition has occurred 
and one of the subs ystems-helicoidalor sinusoidal-has 
transformed to a condensate, the number of fluctuating 
fields decreases. Therefore transitions to the tilted 
spiral are,  a s  a rule, second order. The critical 
exponents of these transitions a re  nearly equal. 

On the phase diagrams presented, there is a tetrac- 
ritical point. In order to describe correctly the behav- 
ior of the system in i t s  vicinity, one must write the RG 
equations to order c2. AS a result we find that lines of 
first-order transitions change, near the tetracritical 
point, to lines of second-order transitions (Fig. 5). 
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