
photons. For example, for two-photon absorption, 
from (20) we obtain 

where M, has the form (30). 

Thus, in the approximation used above, when the 
heat evolved in the transitions i s  small compared with 
Ifw,D,, in the probabilities (40) of all multiphoton pro- 
cesses the same factor R(w,,, T) i s  separated out and 
includes the entire dependence of the probability on the 
temperature and on the evolved heat IEw, accompanying 
the process. The second factor in (40) has the form i t  
would have i f  we were considering the electronic sub- 
system alone, not interacting with the vibrations. It 
can be calculated only after the form of the electronic 
center and i ts  energy spectrum and wavefunctions, and 
also the dispersion law &(w) of the light in the medium, 
have been specified. 
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The high-frequency magnetic susceptibility tensor is found for iron garnets. For yttrium-iron garnet, 
expressions are obtained for the temperature renormalization and for the damping of both the acoustical 
and the optical branches of the spectrum. The temperature renormalization of the acoustic branch of the 
spectrum differs considerably from the case of a ferromagnet. Thus in a ferromagnet, the energy of a spin 
wave with a given wave vector decreases with rise of temperature; in the ferrite, it increases. Corrections 
to the thermodynamic potential and magnetization of the ferrite, resulting from spin-wave interaction, are 
also found; and it is shown that these corrections have the opposite sign to those for a ferromagnet. 

PACS numbers: 75.50.Bg, 75.30.D~ 

1. INTRODUCTlON lattice model. Among these must be included, in par- 

The study of the high-frequency and thermodynamic 
properties of ferri tes has been the object of a large 
amount of experimental and theoretical research. In a 
theoretical description of the observed results, a ferr-  
ite is, as  a rule, treated within the framework of the 
single-sublattice model. Although this approach does 
allow one to obtain a number of results in a simple 
manner, nevertheless the question of the limits of i ts  
applicability remains open. This is due to the fact that 
a ferrite is a many-sublattice system. As is shown in 
the present paper, a more consistent description of an 
iron garnet, within the framework of a two-sublattice 
model, leads to some conclusions that a re  in direct 
contradiction to those that follow from the single-sub- 

ticular, the conclusion that the energy of the acoustic 
branch of the spectrum of spin waves with a given wave 
vector increases, not decreases, with r ise  of tempera- 
ture. This result is in agreement with experiment. ['] 

Precision experiments have recently been conducted 
in the study of the dependence of the damping of spin 
waves on the wave vector and on the temperature in 
yttrium-iron garnet (YIG) . These experiments show- 
ed that the conclusions obtained within the framework 
of the single-sublattice model, C3*41 do not describe the 
observed results; specifically, at temperatures 200- 
300 K the experimental data a re  systematically higher 
than the theoretical values. As is shown in the . 
present paper, increase of the damping coefficient oc- 
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curs  as a result of inclusion of the process of scatter- 
ing of acoustic magnons on the optical branches of the 
spin-wave spectrum. 

In fields a t  which a collinear structure of the magnet 
persists, exchange interaction permits processes in 
which an even number of magnons participate. Four- 
magnon processes in a two-sublattice model of a ferr-  
ite were apparently f i rs t  considered in a paper of 
Bar'yahtar and Urushadze, C51.where their role.in the 
establishment of thermodynamic equilibrium was in- 
vestigated. In a paper of Pikin, the contribution of 
four-magnon processes to the damping coefficient of 
spin waves was investigated, and expressions were 
obtained for the damping of the acoustic branch of the 
spectrum produced by scattering of acoustic magnons 
on each other. The question of interaction of acoustic 
spin waves with optical was treated qualitatively by 
pikin. 16] 

In the present paper, the high-frequency (hf) mag- 
netic-susceptibility tensor of iron garnets is found. 
It is shown that, in contrast to the Holstein-Primakoff 
(HP) and Dyson-Maleev (DM) representations, in the 
representation of Bar'yakhtar and ~ a b l o n s k i ? ~ ~ ]  the 
calculation of the transverse components of the hf sus- 
ceptibility tensor of a many-sublattice magnet reduces 
to the calculation of single-particle Green's functions. 
The amplitudes of four-magnon processes in which ac- 
oustic and optical magnons participate a re  calculated 
in the first  approximation with respect to S". For YIG, 
expressions are  obtained for the temperature renormal- 
ization and for the damping of both the acoustical and 
the optical branches of the spectrum. As has already 
been mentioned, the temperature renormalization of 
the acoustic branch of the spectrum differs substantially 
from the case of a ferromagnet. Corrections to the 
thermodynamic potential and magnetization of a ferrite, 
resulting from spin-wave interaction, a re  also found, 
and it is shown that these corrections have the opposite 
sign to those for a ferromagnet. 

2. THE SPIN-WAVE HAMI LTONlAN 

The elementary magnetic cell of YIG contains 24 ~ e ~ '  
ions at si tes 24(d) and 16 Fe3+ ions a t  si tes 16(a). Thus 
for exact description of such a system, i t  is necessary 
to introduce into consideration 40 sublattices. The 
spectrum of this system contains one acoustic and 39 
optical branchesLs1 and in general can be found only by 
numerical calculation. c91 But as was shown earlier, ['01 

for k= 0 and H #O one can isolate, from the system of 
40 equations that describe the YIG spectrum, two 
frequencies that correspond to oscillations of the total 
spin of the 24 ions in si tes 24(d) and of fhe total spin of 
the 16 ions in si tes 16(a). These frequencies a re  at 
the s h e  time also the lowest-lying, C9*101 and there- 
fore i t  may be assumed that in the small-wave-vector 
range in a real crystal, i t  is primarily these branches 
of the spectrum that are  excited. For description of 
the thermodynamic and high- f requency properties of 
YIG, we shall therefore adopt a two-sublattice model, 
in which one sublattice combines the 24 ~ e ~ '  ions a t  
si tes 24(d), the other the 16 Fe3' ions at si tes 16(a). 
The question of the role of the other optical branches 
cannot be treated within the framework of such a model. 

When the system is located in an external magnetic 
field H, i t s  Hamiltonian has the form 

here Slm and S,, are  the spin operators a t  si tes n and 
m; J ,,., J,,,,,,,., and J3, are,  respectively, the exchange 
integrals within the first ,  within the second, and be- 
tween the sublattices; p0 is the Bohr magneton; and 
gl and g2 are  the g factors of the f i r s t  and second sub- 
lattices. In (1) we have neglected the magnetic ani- 
isotropy energy, which in YIG i s  a very small quantity, 
and the energy of magnetic dipole interaction. 

We shall investigate the system described by the 
Hamiltonian (1) by the method developed by Bar'yaktar 
et al. For this purpose, we transform from spin 
to Bose operators by means of the representation of 
Ref. 7. At fields H<H,, where H, is the field for 
phase transition to a noncollinear phase, the Hamilto- 
nian contains processes in which only an even number 
of magnons participate : 

l=Ea+%2+%r+. . . 
Here 

Air=Si{J1(O)-J, ( k ) } f S , J > ( U )  + ~ o g t I f ,  

A2t=Sz(J2(0)  -J:(li))+S,J3!O) - pog,H, Br=- (S,S2)"'J3(k) ,  
(3) 

J(k) is the Fourier transform of the exchange integral, 
S1 and S2 are  the values of the spins at s i tes  of the f i rs t  
and second sublattices, and N is the number of elemen- 
tary cells in the crystal. 

We transform from the operators 4, a, and b;, b, 
to the magnon creation and annihilation operators 
a;, 0, and pi ,  ,8, according to 'the formulas 

For the operator & we obtain the e ~ ~ r e s s i o n ~ ' ~ * ' ~ ~  

1 
AE. (et+Et-A,.-Azt).  

k 

In the range of small wave vectors, uk << 1 (a is the 
lattice constant), and when H<<H,, we obtain the well- 
known results 

g1s1-g2Sz poH+D, (ak)" E L = -  
S1-Sz 

for the spectrum of the acoustic magnons and 

for the spectrum of the optical magnons, where 
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In the nearest-neighbor approximation, J(0) = zI, 
where z is the number of nearest neighbors. 

The Hamiltonian X4 contains all possible processes 
in which four spin waves participate (35 processes in 
all). We shall not write the interaction amplitudes 
here because of their complexity. 

Treatment of (1) within the framework of the HP 
representation leads to the following magnon-interac- 
tion Hamiltonian: 

where the amplitudes coincide with the corresponding 
amplitudes of the Hamiltonian X4 in the representation 
of Ref. 7. By use of the explicit form of the Hamilto- 
nian X4, i t  is easily shown that the amplitudes of the 
additional processes that occur in the representation 
of Ref. 7 as compared with the HP representation 
vanish on the mass shell. Both these results-coin- 
cidence of the common amplitudes of the Hamiltonians, 
and vanishing of the additional amplitudes on the mass 
shell-are valid only in the f i rs t  approximation with 
respect to S" (for an analogous situation for ferro- 
magnets, see Ref. 11). 

At H = 0, the interaction amplitudes satisfy symme- 
try conditions. [I4] It has been shownc151 that fulfill- 
ment of these conditions automatically insures correct 
asymptotic behavior of the hf magnetic susceptibility 
tensor in the small-wave-vector range. The ampli- 
tudes found also satisfy the requirements of Adler's 
theoremci6I: that is ,  the interaction amplitudes that 
describe processes in which Goldstone particles par- 
ticipate vanish on the mass surface when the momen- 
tum of the latter vanishes. 

3. HIGH-FREQUENCY MAGNETIC SUSCEPTIBILITY 
TENSOR 

The components xi,(k, w) of the hf magnetic suscept- 
ibility tensor are  connected with the equal-time re- 
tarded Green's functions by the relation 

where ~ $ ' ( k ,  w) is the Fourier transform of the Green's 
function: 

~f,( t )  ( ~ i , ( t ) )  is the spin operator of the m-th atom in 
the Heisenberg representation; i, j =  ( x ,  y, z);  v, is the 
volume of the elementary cell. 

In the representation of Ref. 7, we get for the com- 
ponent xYy(k, w) of the susceptibility tensor the ex- 
pression (12) with 

G::' (k ,  o )  .P-'/~< ( ~ k g , S , ' ! ' - ~ k g ~ S ~ ' ~ )  (ak+-a-&)  
+(ukg,S,"-ukg,S,'") (pk+-P-k) I (nkg,S,'1x-vkg,Sz"2) 

x (a-t+-ar) + ( ~ r g ~ S , ' " - ~ r g , S ~ " )  (p-k+-pr) ))Y; (14) 

thus the problem reduces to calculation of the single- 
particle retarded Green's function. 

We remark that both in the H P  representation and in 
the DM representation, the components of the hf mag- 
netic susceptibility tensor in the case of a many- 
sublattice magnet will always contain, besides the 
single-particle, also the many-particle Green's func- 
tions. Then there ar ises  the additional problem of 
calculating these functions. In the representation of 
Ref. 7, no difficulties of this so r t  arise (see Ref. 11). 

In order to find x,,(k, w), we consider the matrix 
Green's functionc151 

ecr' (k ,  U)=G:," ( k ,  a )  E ( ( U , ~ + ~ U , ~ ~ ) ) - ,  

where a:, is the four dimensional vector a t =  a;, air 
= @;, a:, = Pmk, a$ = As usual, we shall calculate 
the retarded Green's functions by analytic continuation 
of the temperature  ree en's functions a k ,  iw,). The 
Green's function a k ,  iw,) satisfies the equation 

the solution of which has the form 

~ ( p )  =[CtO'-' ( P ) - ~ ( P )  I-*, 

where ;'@'(p) i s  a diagonal matrix whose elements are  

C(p) is the matrix of irreducible self-energy parts. 
Here p = (k, iw,) . 

The mass operators Z,,(p) can be represented in the 
form of an expansion in powers of s'; to each term of 
the expansion corresponds a definite Feynman diagram. 
Substitution of the expression (15) in (14) gives the 
explicit form of the component x,,(k, w) of the hf sus- 
ceptibility tensor of the ferri te.  From symmetry con- 
siderations it is clear that x,,(k, w) = xyY(k, w). 

4. TEMPERATURE CORRECTIONS TO THE SPIN- 
WAVE SPECTRUM 

The expression (15) determines the poles of x,(k, w )  ; 
knowing these, one can determine the spectrum of mag- 
netic excitations in the system. It is easily verified 
that according to (5) and (6), we shall have in the spec- 
trum two branches, corresponding to acoustic and to 
optical oscillations of the spin system. We shall con- 
sider the temperature renormalization of the acoustic 
branch of the spectrum. In the f i rs t  approximation, 
the temperature shift of the frequency is described 
by the diagram in Fig. 1, from the mass  operator 
C,,(k, w).  Diagram a in Fig. 1 gives the correction 

FIG. 1. In Figs. 1-5 the Green's functions of the acoustical 
magnons correspond to the solid lines, of the optical to the 
dotted. 
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Aw1,(T), equal to 

A ~ , . ( T ) = = ~ Z  @ ( k , q ; k , q ) n ( e , ) ,  
a 

where n(x) = [ex'T - I]-'. 
At low temperatures T, the principal contribution to 

(16) comes from the small-wave-vector range. We 
shall quote the expansion of @(k, q; k, q) in this limit, 
averaged over the angle between the vectors k and q. 
Having in mind YIG, for which Z3>>Z1, I,, we get for 
g1 =gz =g 

c, SIS2 m ( k ,  q; k ,  q )  = --I,kZqZ. 
N 2(S,-St)' 

The coefficient C1 depends on the type of lattice: for 
a lattice of the NaCl type, we have Cl = QSIS2, and for 
a body-centered cubic lattice C =i(3S1 - S,) (3S2 - Sl). 
Using (l7), we get 

Diagram b in Fig. 1 gives the correction Awlb(T), 
equal to 

Aolb(T) =Z  8 * ( k ;  klq; q )n(B, ) .  (19) 
* 

For  02(k; klq; q) we have 

and consequently 

In these formulas r ( x )  is the gamma function; 

A = (S1 - S2)J3(0) - gp&; the value of D is determined 
by formulas (9) and (lo), in which we have neglected 
Z1 and 1,. 

On taking, in the case of YIG, Sl =24.2 and S, = 16.2, 
we see that, in contrast to the case of a ferromagnet, 
in the two-sublattice model of a magnet the contribution 
of diagram a of Fig. 1 to the temperature shift of the 
frequency enters with a plus sign. This result is due 
entirely to the "many-sublattice" form of the amplitude 
@(12;34). 

Diagrams a and b in Fig. 1 give contributions of 
opposite signs. The total temperature shift of frequen- 
cy Awi(T) will be positive. At low temperatures, a s  is 
evident from (18) and (21), Awl(T) increases approx- 
imately as At T - A, the contribution AW ,,(T) be- 
comes important; this leads to a slowing down of the 
increase of Awl(T) with temperature. According to 
Harris's estimates, for YIG A - 250 to 300 K, s o  that 
the contribution of optical magnons will become im- 
portant at room temperature. From (18) and (21), the 
temperature dependence of the exchange constant of the 
acoustical branch of the spectrum i s  

D ( T )  --= 
D 

0 
A 

'\ 
I I 
\ I 
\ / FIG. 2. 
\ I 

-t c- -+Y,- 

where D= D(0). Such a behavior of D(T) agrees with 
the experimentally observed dependence. 

We shall consider the temperature renormalization 
of the optical branch of the spectrum. In the f i rs t  
approximation, the temperature shift of the frequency 
is described by the diagrams in Fig. 2, from the mass 
operator I;,,(k, w). The analytical expressions corres- 
ponding to the diagrams are: 

The expression (23) is generated by the amplitude 
e2(q; 1 k; k) given by (20), and the expression (24) by 
the amplitude 

As is seen from (23) and (24), diagrams a and b in 
Fig. 2 give contributions of opposite signs. The total 
shift of frequency will be negative. At low tempera- 
tures, a s  follows from (23), the gap in the spectrum 
of the optical excitations decreases a s  T'". At T-A, 
the contribution AwZb(T) becomes important; this 
leads to a slower decrease of AW,(T) with temperature. 

5. DAMPING OF ACOUST lC MAGNONS 

In the f i rs t  approximation with respect to S1, the 
damping of acoustic magnons is determined by the 
imaginary parts of the diagrams in Fig. 3, from the 
mass operator C ll(k, w). The heavy lines in the fig- 
ure denote the fact that we have carried out tempera- 
ture renormalization of the Green's functions in the 
random-phase approximation, which actually reduces 
to temperature renormalization of the spin-wave spec- 
trum in accordance with (22) - (24). As is seen from 
Fig. 3, the damping y O(k) is determined by four differ- 
ent processes of magnon interaction, and i t  may ac- 
cordingly be represented in the form 

We consider yea (k): 

yaa ( k )  = 8n I O (k2;  34) 12 I n  Ie2' + 'I (") 13 (e;+ 5 - Q - E ~ ) .  

'WI Tz @k) 

In the small-wave-vector range, the following expan- 

,--. 
/ . \ \  

'.-*' 

b FIG. 3. 
,-- - 

+----+ 
'L-.' 

d 
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sion is valid for the amplitude (12;34) :  comes 5w0. On the other hand, a t  low temperatures, 
T << A, the contribution of this process is  exponentially 
small. Analysis of the processes of magnon interaction 
described by the amplitudes X(12;  3  14) and A ( l ( 2 3 ;  4 )  
shows that in the case &,<< T and T 5 A, their contribu- 
tion is orders of magnitude smaller than y&(k). 

By using the same method of calculating integrals 
that was used by Wang, C41 we get for 6, << T and g, = g,: 

We shall give the expressions for the damping of the 
acoustic branch of the spectrum in the case E,>> T. 

If T << w,<<T,, 

I D(ak) '  T ' ' 8  pH - 
y.,," (k) = -- 

( 2 ~ ) '  I ( S , - S , ) '  (5) '" (T) I. (t) ('I) 
Here w ,  = D(T)(C&)~, and R is the ratio of the magnetic- 
field energy to the exchange energy, R = p H / w , ;  D ( T )  i s  
determined by the expression ( 2 2 ) ,  and the function 
G ( R )  was found by ~ a n g . [ ~ ]  

The expressions (26)  and ( 2 7 )  go over, in the case of 
the single-sublattice model of a magnet and with re- 
placement of D ( T )  by D(O), to formulas ( 1 0 )  and ( 1 1 )  of 
Ref. 4." 

The contribution of optical magnons in this tempera- 
ture range is exponentially small. 

As is seen from formulas (26)  and ( 2 8 ) ,  the damping 
coefficient ya(k)  vanishes when k =  0 .  In Pikin's pap- 
erL" i t  was shown that allowance for inequality of the 
g factors leads to a finite value of y a ( 0 ) .  

By calculating the amplitude G(12;  34)  for g, # g z ,  we 
find the damping coefficient of uniform precession re- 
sulting from this process when &, << T: 

The damping produced by the process 9 was con- 
sidered also in Ref. 6 .  But the expression ( 2 6 )  has a 
more general character than does that found in Ref. 6 .  
This is so because (26)  is correct for arbitrary values 
of the parameter R ,  whereas Pikin's resultc6' was found 
only in the two limiting cases R >> 1  and R << 1.  Further- 
more, pikinc6' did not consider temperature renormal- 
ization of the spin-wave spectrum. 

this expression is similar to that given by Pikin.E61 We now consider y&(k) : 

The presence of an optical branch in the spectrum 
leads to additional damping of spin waves with k = O .  
The process described by the amplitude 8,(1; 2  13; 4 )  
gives a damping coefficient Using the expression for 0,(k; 2  13; 4 )  in the small-mo- 

mentum range, 

we get for E,  << T and g ,  =g,: 

I (u!i)'ztT2 D 2 ( 0 )  
7.:" ( k )  = - T b ( T )  

2 l ? i s . - s , ) ;  ~ { F ' ( K *  -1 T 

6. DAMPING OF OPTICAL MAGNONS 

The damping coefficient ye (k )  of optical magnons i s  
determined by the imaginary part  of the diagrams 
shown in Fig. 4, from the mass operator EZ2(k! w). 
Just a s  in the preceding case, we represent i t  in the 
form 

yVk)=yezR(k )  +yrP(k)+y\@(k)+y, ' (k) ;  

~ k ( k )  = fi g i @ 2 ( i ; 2 1 k ; 4 ) l 2  I n  (el) + i l  (E l r )  (EL + - el -E,); 
124 

n (Ek) 

(3 61 

, \ 

a b FIG. 4. 

,--\ 

'.--' 
c d 

(3 0) 

At room temperature and for E , - 1  K we find that in 
YIG the contribution y& (k )  amounts to 20% of the con- 
tribution yg(k) .  But if &, - 10 K ,  this contribution be- 
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the magnetization resul t ing f r o m  interact ion of mag- 
nons : 

~ I - B  (k) = 8 n x  1 r (k2; 34) 12 I n  + I' 
6 (Ek + E2 - E~ - E,). 

W( 12 (Ek) 

When ~ ( a k ) ~  << T, H <<H,, and g1 =gz, 

A 
- 

x'e* dx 
1 (F) - (i-e-A!r) J I-e-' 

(e'-i) (e'-A/T-i) In- ' 

As is evident, i n  contrast to the damping of acoustic 
magnons, the damping coefficient ye(0) of optical 
magnons does not vanish, even when g, =gz. 

We shal l  not give the expressions f o r  yxB(k) and 
d(k), since, as in the case of damping of acoust ic  
magnons, the i r  contribution is negligibly smal l .  

7. THERMODYNAMIC POTENTIAL AND 
MAGNETIZATION OF FERRITES 

The thermodynamic potential of the f e r r i t e  can be 
represented in the f o r m  

where the thermodynamic potential of noninteracting 
part ic les  is 

C&=T ~ { ~ n [ l + n ( ~ t ) ] + l n [  l+n(Er)]), (41) 
L 

and where A&2,,, is a correct ion resulting f r o m  inter- 
action of magnons. In the leading approximation with 
respect  to S", An,,, is determined by the d iagrams  
shown in Fig. 5. The corresponding analytic ex- 
pression has  the f o r m  

A "  1 9 C, 1 T ' p H  
-=- 

.VT ( 2 ~ ) .  { 2 (S,-S,)~ to) ':I (7) 

-6 

S-S? A 
+ 2 ~ Z f ( ~ ) ) ( ~ ) ' ~ ~ ( f  StS, ) .  (42) 

Knowing n(T,  H), one can  find the magnetization of the 
fe r r i t e ,  M(T, H) = - ~ " 8 & 2 / 8 ~ .  

We shal l  give the express ion  f o r  the cor rec t ion  to 

A s  is s e e n  f r o m  (42) and (43), the principal contrib- 
ution to AL?,,, and AM,,, at T << A is produced by in- 

teraction of acoustic magnons with e a c h  other. We 
see that  the functional dependence of the cor rec t ions  
on T and H is the s a m e  as i n  a ferromagnet ,  but 
they e n t e r  with the opposite sign; th i s  is essent ial ly  
due to the fe r r imagne t ic  s t r u c t u r e  of the magnon- 
interact ion amplitudes. 

In conclusion, the au thors  express the i r  thanks to 
V. G. Bar'yakhtar f o r  h i s  interest in the r e s e a r c h  and 
f o r  valuable cgmments ,  to A. G. Gurevich and I. E. 
Dzyaloshinskii for discussion of the r e s u l t s  of the 
research ,  and to V. L. Sobolev f o r  valuable discuss-  
ions. 

"1n Wang's paperca1 the numerical coefficient In formula (10) 
is twice a s  large, since the author finds y(k) from the kine- 
tic equation. 
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