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The probabilities of multiphonon light absorption, emission, and Raman scattering of different orders at 
an impurity center in an isotropic medium with frequency dispersion but no spatial dispersion are 
calculated in the reglon of transparency. In the first part of the paper, thanks to a consistent quantization 
of the field in the dispersive medium [S. I. Pekar, Sov. Phys. JETP 41, 430 (1975)], for the probabilities 
of most of the processes general formulas are obtained that differ from those applied previously. In the 
second part of the paper all the formulas are specialized for specific states of the phonon subsystem and its 
spectrum. The explicit dependence of the probabilities on the temperature and on the evolved heat 
accompanying a multiphoton process is obtained. 

Multiphoton processes at an impurity center in a crystal.c11 Also in Ref. 1, the electromagnetic field 
crystal have been considered long ago and by many was quantized and the photons in a dispersive medium 
authors; the polarizability of the medium has been were obtained consistently, with macroscopic allowance 
taken into account macroscopically by the introduction for the polarization. 
of the dielectric permittivity E. However, the disper - 
sion (the dependence of & on the frequency w) has not 
been taken into account in most cases, and in those 
papers in which it has been taken into account this has 
been done inconsistently. Most commonly, the authors 
have assumed that the whole calculation can be per- 
formed with neglect of the dependence of & on w ,  and 
only in the final formulas i s  & assumed to be  a function 
of w.  But it i s  clear that in this way we lose all the 
derivatives of & with respect to w and i t  i s  impossible 
to obtain even the classical expression for the energy 
of the field of a monochromatic wave: 

Here V i s  the volume of the basic repeat unit of the 
crystal, E and H a r e  the intensities of the electric and 

Below we consider multiphoton processes at an im- 
purity center in a transparent isotropic medium with 
frequency dispersion but no spatial dispersion of E and 
with p = l .  

According to Ref. 1, the operator of the energy of 
the electromagnetic field in the absence of sources has 
the form 

where k a re  the wave vectors, the quasi-discrete 
spectrum of which i s  determined by the cyclic 
boundary conditions, and 1 labels the roots of the dis- 
persion equation 

E ( a )  aZIc2=liZ (3 1 
magnetic fields, and ~ ( w )  i s  the magnetic permeability 

for a fixed value of k. We shall denote these roots by 
of the medium. wik , where 1 = 1,2, . . . , s,. The polarizations of a 

All authors have postulated the form ~ b ~ w , a i a ,  mode are  labeled by the index v =  l , 2 ;  a;,, and a  ,,, 
for the field-energy operator, without being able to a re  Bose creation and annihilation operators for a 
prove the commutation law for the operators a; and photon in the mode Zkv. 
a, and referring only to the analogy with the case of a 

The operator of the vector potential of the field is 
nondispersive medium. These difficulties were con- 

equal to 
nected with the fact that, up to 1975, a sound method of 
quantizing the field in a dispersive medium did not 
exist. The point 1s that, by itself, the expression (1) 

(4) 

for the field energy is  still not adequate for the quan- where e,, is the unit polarization vector of the mode 
tization of the field, just a s  the classical expression 
for the energy of a harmonic oscillator o r  rotator in 

lkv,  and 

terms of i t s  amplitude is not adequate for its quanti- 1 a 
zation. In the expression for the energy i t  i s  still m ( ~ , ~ ) =  rnrk=-- , [ ~ r l ~ ( " ~ ~ )  I .  

25c2 doll (5) 

necessary to distinguish the canonically conjugate 
quantities, with a known commutation law. It is neces- The operator of the energy of interaction of the impu- 
sary to have a general expression for the energy of the rity center with the electromagnetic field has the form 
system in terms of the canonically conjugate quantities, - 1 -  l e a  
assuming the latter to be independent, not coupled by v=--DA(o)+,N.-i2(0) ,  

c- 2p (6) 
the equations of motion, and not expressed classically 
in terms of the time. All this was done in 1975 for the where D i s  the operator of the dipole moment produced 
case of no dissipation, i.e., when the electromagnetic by the electrons of the center, which i s  positioned at 
field l ies in the spectral region of transparency of the the coordinate origin, e and p a re  the charge and mass 
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of the electron, and N, is the number of electrons on 
the center. 

In a number of papers (see, e.g., Refs. 2 and 3), 
the energy of interaction of a molecule with light is 
written in the form V =  -DE, where E i s  the intensity 
of the electric field of the light wave. This inexact 
expression does not lead to e r r o r s  in the calculation 
of the probabilities of single-photon processes, but it 
is not valid for the treatment of multiphoton processes. 
Almost all authors have considered multiphoton pro- 
cesses not at impurity centers but at molecules of the 
host substance, assuming V to be a perturbation. But 
they have written the unperturbed operator of the en- 
ergy of the photons taking the permittivity ~ ( w )  into 
account, i.e., with the assumption that the dispersion 
law of the photons has the form (3) and not k = w ' / c  '. 
It is necessary to emphasize that such an operator for 
the photon energy Walready partly contains the inter- 
action V of the molecules with the light (this is why the 
dispersion law of these photons differs from that in the 
case of the vacuum). Therefore, the perturbation of 
the operator W will be not V but some part of V that i s  
difficult to separate. In this paper, which considers 
the interaction of light with impurity centers, these 
difficulties do not arise, since the contribution of the 
centers to the polarizability is not included in &(w). 

We shall denote the Schrijdinger electronic-vibra- 
tional states of the impurity center by q,, tj,, . . . , and 
the corresponding energy levels by EiE,, . . . . We 
shall denote the state of the whole system by the se t  
of indices i, . . . , n,,,, . . . , where n,,, is the number of 
photons in a mode (in the volume of the repeat unit). 
In this state the average value of the Poynting vector 
is equal to 

The number of values of the vector k in the frequency 
interval dw and inside the solid angle d o  i s  equal to 

The formulas (7) and (8) a re  written for the frequency 
region in which &(w)> 0. In the region in which &(w)< 0, 
in an infinite medium plane light waves do not exist 
(S=O,p=O). 

The Einstein relations for single-photon transitions 
have the form 

where B,,, and B,, ,  are  the coefficients determining 
the probabilities of induced emission and absorption, 
A,,, is the coefficient determining the probability of 
spontaneous emission, and w j, = (E, - E , ) /A. 

Below we give a brief catalog of the expressions for 
the probabilities of single-photon and multiphoton pro- 
cesses in unit time. These expressions a re  easily ob- 
tained by the usual methods of quantum electrodynam- 
ics. The following system of notation will be used. 
The symbols w;, w,, . . . , signify that, in the process 

under consideration, one photon of frequency w, and 
polarization el i s  produced, one photon of frequency 
w, and polarization e, is absorbed, and so on. If 
factors dw1,dS2, a re  present, this means that the 
photon w, is produced in the frequency interval dw, 
and inside the solid angle do,. The original incident 
light i s  always assumed to be exactly specified in 
direction. For example, the probability of spontane- 
ous two-photon emission i s  denoted a s  
P ( j - i ,  w,', w,')dw1db2,d%, and the probability of Raman 
scattering as  P ( i -  j, w,', u,')dn,. 

Single-photon processes. The probability of absorp- 
tion of a photon from the mode w, in unit time is 

where Dij = (i I D I  j )  and n, i s  the number of photons in the 
mode w,. If in the absorption the mechanical system 
undergoes a transition between discrete levels 
E,  and E,, the incident light should be nonmonochro- 
matic. In this case, 

P(i + j ,  0 , - ) =  
4n21Dij12J(w~) , = wll, 

3cR'e'" (w,)  

where the spectral density of the intensity 

and S(o,) i s  the intensity of the light in the one mode 
w, [cf. (7)l. 

If the mechanical system undergoes a transition 
from a discrete level to one of the levels of the con- 
tinuum, the incident light may be monochromatic and 
the corresponding probability i s  obtained from (10) by 
integrating over E,: 

where Y ( E ~ ) ~ E ,  i s  the number of energy levels of the 
mechanical system in the energy interval dE,. In for- 
mulas (lo), ( l l) ,  and (13), averaging over all possible, 
equally probable orientations of the vector Di, has 
been performed. The probability of emission of a 
photon of definite polarization into the solid angle dSZ, 
in unit time is 

o,'e"(wl) lDu12 - 
P ( j  + i, wl+)dQl = -- (n, + I )dQl ,  w,  = w,i. (14) 

tinc'h 

Here Zl is the average number of photons in the mode 
within the angle dn,. 

Two-photon processes. The probability of Raman 
scattering of light is 

where 

where o is the angle between the unit vectors el and e,. 
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When i=j, only the last term in (16) is nonzero and the 
formula (15) determines the probability of Rayleigh 
scattering; E, i s  the average value of n, for the modes 
within the angle do,, 

From (15) and (7), putting ii, = 0, we can obtain the 
effective Raman-scattering cross  section of the center: 

The probability of two-photon absorption of light from 
two fixed modes i s  ' 

2nn,n, 
P ( i  -t j, a , - ,  02-) = IM(o,-, a*-) lZ6(oji - o1 - 0 2 ) ,  

c VZo,o,m ( o , )  rn (o,) 

If in the two-photon absorption the mechanical system 
undergoes a transition from a discrete to a discrete 
energy level, then one of the waves, e.g., that pos- 
sessing frequency w,, should be nonmonochromatic. In 
this case, from (18), taking (8) and (12) into account, 
we obtain 

If the mechanical system undergoes a transition from a 
discrete level to the continuum, both waves may be 
monochromatic and the corresponding probability i s  
obtained from formula (18) by integrating over El:  

In a transition of the mechanical system from a dis- 
crete to a discrete level the probability of two-photon 
emission in unit time is equal to 

P ( j  + i, a , + ,  o,+)dQ, dQ2 dol  

- - o , o , ( e ( o , )  e ( a z ) )  'IM(o,+, 02+) I '  
dQ, dQr doz,  a,, - o ,  + or .  (22) 

8n3cs 

Here M(w;, w;) i s  obtained from (19) by changing the 
signs in front of w, and w,. 

Multzphotm processes. The probability of absorption 
of two photons from a mode w, and emission of a photon 
w, into angle dS2, for n, = 0 i s  equal to 

where (w,, = 2w,- w,) 

The probability of absorption of three photons from a 
mode w, and emission of a photon w, into angle do,  for 
n, = 0 i s  equal to 

where (w ,, = 3w, - w,) 

+ (D,j*el) (D;,.e,) ( D , Y ~ ~ )  (Dh*,e,) 
(0 , , '  + 2 0 ,  - (I)?) f o i l .  + 0 ,  - 0 2 )  (lo,*. + 101) 

We now compare the formulas obtained above with 
those applied previously, which were written in analogy 
with the nondispersive case and took the dependence of 
& on w into account only in the final results; this was 
done, e.g., in the monographs of BloembergenC2] and 
~ o v a r s k i r ,  in the textbook by ~ o u d o n , ~ ~ ~  and in 
numerous other books and articles. It i s  easy to see 
that the formulas obtained above go over into those ap- 
plied previously if, in the right-hand side of (5), we 
omit the derivative of F. with respect to w,  i.e., replace 
m (w) by E ( W ) / ~ ~ C ~ .  ~ h u s ,  the formulas (111, (141, (171, 
and (22), in which the factor m(w) has cancelled, coin- 
cide with those previously. But the formulas (lo), (13), 
(15), (18), (20), (21), (23), and (251, which contain 
factors m(w), differ from those used previously. 

We turn now from the general exact formulas for the 
probabilities of multiphoton processes to consider 
special models and approximations that make i t  possi- 
ble to push the calculations further and obtain explicit 
frequency and temperature dependences of the proba- 
bilities of multiphoton processes. We shall assume 
that the state of the electrons of the local center fol- 
lows adiabatically the comparatively slow vibrations of 
the ions of the crystal. In this case the multidimen- 
sional quantum numer j defining the state of the 
mechanical system decomposes into a se t  of quantum 
numbers s ,  of the electronic subsystem and a se t  of 
oscillator quantum numbers. . . N i ,  . .defining the state 
of the lattice vibrations ( x  i s  the phonon wave-vector). 
Denoting the se t  of coordinates of the electrons by r 
and the normal coordinates of the vibrations by q,, 
we can write according to Refs. 5 and 6 the wavefunc- 
tion of the mechanical system in the form 

where 9, is the wavefunction of a one-dimensional 
harmonic oscillator in the state N,' and q4 is i t s  equi- 
librium position, which depends on the state s ,  of the 
electrons. In this approximation the Bohr frequency 
of the transition is equal to 

where w;, i s  the frequency of the no-phonon transition 
and w!, i s  the normal frequency of the lattice vibrations 
when the e l ec t rc~  ' - subsystem is in the state s, .  

We assume P ~ r t h e r  that in the sums (16), (19), (24), 
and (26) the p r ' ~ - ~ p a l  contribution i s  given by terms in 
which in w j l  we can neglect the second term in the 
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right-hand side of (28) in comparison with w:,, i.e., the 
heat evolved in the transition i s  small compared with 
tiw;,. A small Stokes shift compared with Bw;, can be 
approximate criterion for these cases.ce1 In this case 
the matrix elements (161, (191, (241, and (26) decom- 
pose into two factors: 

Here M, is obtained from M by the-replacements 
W,-W,~,D,,-D,~ ,m=(s , l~Is , )  a n d ~ , - ~ S m .  For 
example, in the case (19), 

Introducing for  the overlap integral of the oscillator 
functions the notation 

where N s N i  and N' =N;, for processes with r interme- 
diate states we can write MN in the form 

Using the relations 

we can reduce the expression (32) to the form 

We note that M, and , in particular, the expression 
(30) depend only on the properties of the electronic sub- 
system; M, does not depend on the oscillator quantum 
numbers N, or, consequently, on the temperature. It is 
possible to calculate M, only after the form of the elec- 
tron center and its energy spectrum and wavefunctions 
have been specified, which lies beyond the scope of this 
article. According to (34) and (31), MNdoes not depend 
on r, i.e., i t  is the same for processes of any order 
and coincides with the M,of simple single-photon 
processes. 

In most cases, immediately before a multiphonon 
process the vibrational subsystem i s  in thermal equi- 
librium, i.e., the Ni  of the initial state a r e  determined 
by Planck' s formula. In this case 1 M, l 2  depends on the 
temperature, and this determines the entire tempera- 
ture dependence of the probability in the process. In 
the context of the theory of single-photon processes 
MN has been calculated in many papers, beginning with 
Refs. 5, 7, and 8 with neglect of the dispersion of wx 
and with Refs. 9 and 10 with this dispersion taken into 
account. As in these papers, we shall assume that the 
initial state s, and final states s, of the electronic sub- 
system a re  fixed. However, i t  i s  not possible to fix the 
corresponding vibrational states. . . Nk. . . and. . .A$. . . 
because of the infinite number and uncontrollability of 
the quantum numbers N,. Therefore, it is not possible 
to use the detailed formulas given above for the proba- 

bilities P(i-  j, . . . ) of processes for comparison with 
experiment. But we can determine and compare with 
experiment the probabilities P(s,-  s ,, . . . ) of multi- 
photon processes occurring with fixed s, and s, and fix- 
ed energies and numbers of all the photons produced 
and absorbed. This also fixes w,,. Such a process can 
proceed from any state of the vibrational subsystem and 
is accompanied by an infinite number of variants of the 
numbers Nx, restricted only by the condition that the 
sum over xin the right-hand side of (28) be fixed. 

According to the theorem of addition of probabilities, 
the probability of such a process can be represented in 
following way: 

Here the summation is performed over. . . N;. . . for a 
fixed initial vibrational state.. .N$. . .and for a given 
fixed value of the frequency (28) [i.e., a fixed value of 
,&in (28)]. The bar denotes averaging over all possi- 
ble initial states.. .N;. . .of the vibrational subsystem, 
under the assumption that this subsystem is in thermal 
equilibrium. 

The formulas given above for P ( i  - j, . . . ) and the 
properties of M, mentioned above show that everything 
except the factor IM,, l 2  can be taken outside the sum- 
mation sign in the sum (35). In fact, the sum 

was calculated in Refs. 5, 7, and 9. In particular, i f  
one neglects the dispersion of w, and puts w, = wo, i t  
was found there that 

where I ,(z)  = ~, ( i z ) / i ' ,  where J ,  is the Bessel function 
of order I .  

The dependence of R(w,,,T) on w,, and T is exactly 
the same as the well ~ m o w n ~ ~ * l ' * ' ~ ~  f r  equency and tem- 
perature dependence of the probability of single-photon 
absorption by an impurity center in a nondispersive 
medium. 

It is now not difficult to calculate the probabilities 
(35) for all the types of multiphoton processes con- 
sidered above, For this it is necessary to use the for- 
mula (29) and the prescription for obtaining M, that 
follows it, and also formulas (36)-(39). In all cases the 
results of the calculation can be written compactly in 
the form 

where the expressions for P(i-  j, . . .) have already 
been given above. In place of. .  . one must write the 
frequencies and number of the emitted and absorbed 
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photons. For example, for two-photon absorption, 
from (20) we obtain 

where M, has the form (30). 

Thus, in the approximation used above, when the 
heat evolved in the transitions i s  small compared with 
Ifw,D,, in the probabilities (40) of all multiphoton pro- 
cesses the same factor R(w,,, T) i s  separated out and 
includes the entire dependence of the probability on the 
temperature and on the evolved heat IEw, accompanying 
the process. The second factor in (40) has the form i t  
would have i f  we were considering the electronic sub- 
system alone, not interacting with the vibrations. It 
can be calculated only after the form of the electronic 
center and i ts  energy spectrum and wavefunctions, and 
also the dispersion law &(w) of the light in the medium, 
have been specified. 
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The high-frequency magnetic susceptibility tensor is found for iron garnets. For yttrium-iron garnet, 
expressions are obtained for the temperature renormalization and for the damping of both the acoustical 
and the optical branches of the spectrum. The temperature renormalization of the acoustic branch of the 
spectrum differs considerably from the case of a ferromagnet. Thus in a ferromagnet, the energy of a spin 
wave with a given wave vector decreases with rise of temperature; in the ferrite, it increases. Corrections 
to the thermodynamic potential and magnetization of the ferrite, resulting from spin-wave interaction, are 
also found; and it is shown that these corrections have the opposite sign to those for a ferromagnet. 

PACS numbers: 75.50.Bg, 75.30.D~ 

1. INTRODUCTlON lattice model. Among these must be included, in par- 

The study of the high-frequency and thermodynamic 
properties of ferri tes has been the object of a large 
amount of experimental and theoretical research. In a 
theoretical description of the observed results, a ferr-  
ite is, as  a rule, treated within the framework of the 
single-sublattice model. Although this approach does 
allow one to obtain a number of results in a simple 
manner, nevertheless the question of the limits of i ts  
applicability remains open. This is due to the fact that 
a ferrite is a many-sublattice system. As is shown in 
the present paper, a more consistent description of an 
iron garnet, within the framework of a two-sublattice 
model, leads to some conclusions that a re  in direct 
contradiction to those that follow from the single-sub- 

ticular, the conclusion that the energy of the acoustic 
branch of the spectrum of spin waves with a given wave 
vector increases, not decreases, with r ise  of tempera- 
ture. This result is in agreement with experiment. ['] 

Precision experiments have recently been conducted 
in the study of the dependence of the damping of spin 
waves on the wave vector and on the temperature in 
yttrium-iron garnet (YIG) . These experiments show- 
ed that the conclusions obtained within the framework 
of the single-sublattice model, C3*41 do not describe the 
observed results; specifically, at temperatures 200- 
300 K the experimental data a re  systematically higher 
than the theoretical values. As is shown in the . 
present paper, increase of the damping coefficient oc- 
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