
sorption in the drops o r  by the cold screen. The posi- 
tion of this spectral region was linked directly to the 
magnetic induction B . ' ~ ' ~ '  Thus, the absorption spec- 
trum could be obtained by simple division of the photo- 
response obtained as  a result of the excitation of ger- 
manium by the photoresponse in the case of complete 
modulation of the background radiation and conversion 
of the magnetic induction to the photon energy o r  wave- 
length, corresponding to the selective sensitivity re- 
gion at each value of B in accordance with Ref. 6. The 
spectral dependence of the absorption in the electron- 
hole drops calculated in this way i s  plotted in Fig. 4. 
This figure includes also the absorption spectrum of 
drops in germanium taken from the papers of Vavilov 
et al.c1*21 It i s  clear from the figure that the curves 
a re  similar although curve 1 was obtained using a cool- 
ed detector tuned by a magnetic field and curve 2 using 
a grating monochromator. In the former case the ab- 
sorption could be interpreted a s  the radiation emitted 
from the electron-hole drops because of the absence of 
any source of absorbed radiation, apart from the 
room-temperature background. 

We thus failed to observe submillimeter radiation of 
the electron-hole drops in germanium although we 
used highly sensitive photodetectors of two different 
types. Hence, we concluded that the intensity of the 
long-wavelength drop radiation emitted from germa- 
nium (if it existed at all) was several orders  of magni- 
tude weaker than that described by Vavilov et a ~ . ~ ' . ~ '  

However, the room-temperature background radiation 
passed through an excited germanium crystal and pro- 
duced a large detector signal with a maximum in the 
plasma frequency region of the drops. This signal 
could be erroneously a s  the radiation 
emitted from the drops. 

The authors are  grateful to E.M. Gershenzon and 
A. P. Mel'nikov for the use of a boron-doped silicon de- 
tector, and to T.M. Lifshitz and V. Yu. Ivanov for a 
sample of pure indium antimonide and determination of 
i ts  spectral characteristics. 
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The method of linear response in the paramagnetic phase is used to analyze the resistance of metals with 
an ef level of localized f electrons that are located near the Fermi surface. The strong intra-atomic 
Coulomb repulsion of the f electrons and their hybridization with the s electrons leads, at low 
temperatures, to the relation R(T)  = Ro+ AT 2, where the residual resistance Ro of the ideal metal and 
the sign of A depend on the filling of the f level. It is shown that hybridization scattering accounts for the 
experimentally observed large logarithmic deviation of R(T)  from the linearity called for by the phonon 
scattering mechanism. In the region of strong hybridization (kfvg< 1) at large values of Ro the 
resistance can have a minimum. A qualitative comparison of the results of the theory with the 
experimental R(T)  dependence is camed out for a large class of f metals @rimarily for metals with 
variable valence). 

PACS numbers: 72.15.Eb, 72.15.Qm 

1. It is well known that rare-earth metals,cM1 actin- minimum. This behavior of R(T) is connected with the 
idesyc4] a number of their intermetallic corn pound^,^^'*^ scattering of the conduction s electrons by the f elec- 
a s  well a s  some d-metalscg1 have in the paramagnetic trons,c4m10'121 which form either a narrow band near the 
phase, both at low and high temperatures, an anoma- Fermi  surface o r  a deep level. 
lously varying resistance R(T) . At high temperatures, 
R(T) deviates strongly from linearity, and sometimes If the single-electrons zf levels of the unfilled local- 
even decreases with increasing T, while a t  low tem- ized-electron shells are  much farther from the chem- 
peratures R(T) can vary either quadratically o r  have a ical potential p than the characteristic energies of the 

1155 Sov. Phys. JETP 47(6), June 1978 0038-5646178/061155-08$02.40 O 1979 American Institute of Physics 1155 



interaction of the localized electrons with the conduc- 
tion electrons, scattering does not change the number of 
localized electrons on a site. Then the mechanism that 
leads to nonlinearity of R(T) can be effective s-f ex- 
change interaction. The situation is then analogous to 
the case of the Kondo effect in scattering by magnetic 
impurities, except that in a regular metal the concen- 
tration of such "impurities" is equal to unity 

We consider in detail in this paper the electric resis- 
tance in another case, when one of the sf levels is near 
p so that it becomes easier for the shell configuration 
to change via a direct transition of the localized elec- 
trons to the conduction band. These transitions are 
brought about by the hybridization interaction. 

In the description of the localized electrons it is of 
fundamental importance to take into account the Cou- 
lomb repulsion U between the electrons on one site. It 
is well known that this interaction cannot be accounted 
for within the framework of the Hartree-Fock approxi- 
mation. We assume that the parameter U of the intra- 
atomic Coulomb interaction of the localized electrons is 
the largest energy in the system and take it account ex- 
actly; the hybridization interaction with parameter g 
will be regarded a s  a perturbation and localized shells 
from different sites will be assumed non-overlapping, 
so  that their direct interaction can be neglected. 

Such a model describes primarily the rare earths, 
the actinides, and their compounds, whose f shells can 
be regarded as well localized and for which an inter- 
mediate valence is observed, e.g., a-Ce, y-Ce, YbAl,, 
and Y ~ A ~ , . ~ ' ~ I  These compounds undergo, generally 
speaking, a phase transition with change of valence .[I4' 

The presence of such a phase transition indicates that 
the localized level is close to the chemical potential. It 
appears that this model also describes qualitatively 
transition metals having a narrow d band that cross the 
Fermi surface. 

We note that the spin-fluctuation has been resorted to 
recentl#ll' to describe the resistivity of systems with a 
narrow band of localized electrons near the Fermi sur- 
face. Our analysis differs in principle from this ap- 
proach, where the correlation interaction U is assumed 
small. 

Another description of R(T) of the systems in question 
is based on replacing the hybridization interaction g by 
the effective s-f  exchange interaction and taking the 
crystal field into account.c101 This replacement involves 
the use of the canonical Schrieffer-Wolff transforma- 
tion,[l5] which takes correct account of only terms of 
second order in the parameter g/ / cf - p I and assumes 
this parameter to be small. For a satisfactory descrip- 
tion of the resistance R(T) of, say, CeA1, or CeA1, it is 
necessary to assume this parameter to be larger than 
or of the order of unity.llol 

It will be shown below that the small parameter in our 
analysis is p$/ I cf - p I, where p is the state density of 
the s electrons. At the typical values p-10'5K'1 it is 
possible to describe correctly not only the case of weak 
hybridization g/ (cf - p I< 1, but also the case of strong 

hybridization. For example, at g- 5- l ~ g ~ , ~ / l  cf - = 3 
we have p g 2 / l ~ f  - 1.1 1-0.15. The expression for the 
electric resistance will be derived below with account 
taken of all terms of first order in pg. It can be seen at 
the same time that in the higher orders in g each hy- 
bridization transition of the electron from the s band to 
the f level and back leads to a higher order in pg. 

This paper deals with the resistance R(T) of only the 
paramagnetic phase of the metal. The lower limit of the 
considered temperatures is imposed by the condition 
that the system remain paramagnetic. More accurately, 
we assume not only the absence of spontaneous magnetic 
ordering, but also the absence of any other coherent 
state of the system of s and f electrons, a state that 
arises inevitably at sufficiently low temperatures. The 
determination of the character of such a coherent state 
and an estimate of the transition temperature constitute 
a complex separate problem (see, e.g., [I6]), and in sub- 
sequent references to the residual resistance we shall 
ignore the possibility of the transition of the electron 
system to such a coherent state. 

It is k n o ~ n [ ~ ~ * ' ~ ]  that in the case of the equilibrium 
situation the presence of the correlation interaction U 
does not make it possible to take exact account of the 
s- f  hybridization interaction g, and leads, in the hy- 
bridization transition of the electron from the s band to 
the f level and back, to a damping r of both the s and f 
electrons, as  well as to a renormalization of the level 
sf. In the problem of the electric conductivity, the s- 
electron scattering takes place in second order in g 
from fluctuations of the charge population of the f level 
of the lattice sites. Since the f electrons have an intrin- 
sic damping that hinders their dragging, a nonzero f i -  
nite relaxation time of the s electrons appears in the 
fourth order in g. 

In the low-temperature limit this should lead to a re- 
sidual resistance which will be shown to depend sub- 
stantially on the average filling of the f level, and 
should therefore change in transitions in which the val- 
ence is changed. 

In contrast to the equilibrium situation, the kinetic 
renormalizations for the electrons situated on the Fer- 
mi level turn out in the low-temperature limit to be log- 
arithmically dependent on I' and T, and not on I cf - p I .  
Expansion of the function R(T) at low temperatures (T 
<< I?) leads to a quadratic dependence of R on T(R = R, 
+AT '). The coefficient A of T depends on the residual 
resistance, withA >O if the shell is completely filled or 
empty, and A < 0 in the intermediate case. At high tem- 
peratures, when the phonon mechanism of scattering is 
taken into account, a logarithmic deviation of R(T) 
linearity is obtained. The sign of the curvature of R(T) 
in the case of strong hybridization is then determined by 
the sign of the coefficient A, depending on the filling of 
the f shell. The phonon scattering mechanism is ac- 
counted for within the framework of the relaxation time 
under the assumption that the characteristic reciprocal 
relaxation time 7-I of the s electrons on the phonons is 
much less than / cf - p I . Substantial deviations from the 
Matthiessen rule are obtained in this case. 
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2. The system considered by us is described by the 
Hamiltonian 

where 

Here a, and dm, a re  the second-quantization operators 
of the s and f electrons; m is  the coordinate of the lat- 
tice site; g is the s-f hybridization constant; U is the 
parameter of the intra-atomic Coulomb interaction of 
the f electrons; H, is the Hamiltonian of the s electrons, 
which we describe by a single conduction band of width 
2D and with a constant state density p; Hf is the zero- 
order Hamiltonian of the localized f electrons with al- 
lowance for  their strong correlation on one site. We as- 
sume that the f electrons pertaining to different sites do 
not interact with one another, and neglect, for simpli- 
city, their degeneracy in the projections of the orbital 
angular momentum. 

To  make the allowance for the strong interaction U, 
we go over in the zeroth approximation in Hf and HSf to 
the second-quantization operators of the eigenstates of 
the f shellscig1: 

Interest attaches to two cases of the location of the 
Fermi surface relative to the single-electron levels cf 
= c, + U and E,  (all the levels will be reckoned hereafter 
from the chemical potential p), naheIy, p i s  situated 
either near cf o r  near E,. Then, awing to the large val- 
ue of U, we can consider in H, f ,  respectively, either 
only the transitions 1 a) -- 1 2), retaining the terms with 
Zmu2 and Zm2", or  the transitions 10) - 1 a), retaining the 
terms with ZmW and ZPO. We shalI consider the first  
case. The results for the second can be obtained in sim- 
ilar fashion. The Hamiltonian of the system takes the 
form 

The index 1 denotes here the state (k,, a,). 

We seek the electric conductivity 6,6 of our system 
by the Kubo method of linear response .[201 Since the f 
electrons a re  assumed localized, the conductivity aor6 
is governed only by the s electrons and is given by [211 

where v; is the s-electron velocity; eBO is the dipole 
moment of the system; Fp' is the two-dimensional tem- 

perature Green's function corresponding to the deviation 
of the distribution function from the equilibrium value 
under the influence of an external electric field; a! and 
j3 are  Cartesian indices which we shall omit hereafter, 
assuming the crystal to have cubic symmetry. 

T o  find FA1', we obtain a system of coupled equations 
for the higher-order Green's functions. P r io r  to the de- 
coupling, the obtained Green's functions a re  connected 
with the following operators: 

~ : ~ ) = a ~ + a ~ ,  A:" =aO+XO, A:" = X o f a 0 ,  A:=' =XoASU, 
-- 

A ~ : ~ ) = o ~ + R ~ , ~ ~ , ~  A:," =aO+=, A::' = X , + R , ~ ' ~ ~ ,  
(5) 

where 

In the paramagnetic case K is the average number off 
electrons with fixed spin per site and does not depend on 
the site m or  on the spin o (a feature common to all the 
Green's functions and to the mean values of operators 
with a single spin). The bar over several f operators in 
the k representation means that in the transition to the 
site representation the summation is over non-coincid- 
ing sites, e.g., 

I t  is easy to obtain for the Green's function of the op- 
erators (5) the following exact system of equations: 

For  the Green's functions and for the corresponding 
mean values of the operator A(" we introduce the sym- 
bols 

In the derivation of (7)-(9) and hereafter we make use of 
the fact that the Green's functions and A:" are  odd ink,. 
We also use the fact that for Hermitian-conjugated op- 
era tors  the Green's functions are connected by the rela- 
tion F"'(o + i 5) =[F("(-o + it)], i.e., in the case o = 0 of 
interest to us they a re  complex-conjugate. To  t2ke into 
account of the correlation of the f electrons on one site 
it is necessary, when commuting the operators with Hd, 
to change over to the site representation of the f-elec- 
tron operators and to separate the corresponding mean 
values on one site. 

Since we wish to find an expression for the system 
with account taken of all the terms linear in the small 
parameter pg of our problem, the decoupling cannot be 
carried out in the framework of Eqs. (7)-(9). It is eas- 
ily seen that the next two chains of equations, e.g., for 
Fg' from (8), lead to summation over new indices k, 
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and 4, and in the case of decoupling in the "g4 approxi- 
mation" there appears C,, - p. Starting with Eq. (8), 
ever two commutations with Hd must, without fail, be 
carried out after the decaupling to the higher power of 
pg in the final expression for FA1'. It is then necessary, 
in each stage, to separate from the operators A"' all 
the possible mean values in the resultant new Green's 
functions of order higher than the preceding ones. For  
the new F"' that describe the correlation between the 
fluctuations it is then easy to determine the order (in 
pg) of the terms to which they can lead in the final ex- 
pression for F:'. For  the Green's functionC,,~$', for 
example, we have the f ollowing equation: 

We have left out of (10) the Green's functions that des- 
cribe the correlation between fluctuations with different 
spins and lead, as can be seen, to terms of order ( ~ g ) ~ .  
Typical functions of this kind a re  

The equation for  the Green's function F'5', the de- 
couplings that lead to a closed system of equations for 
the functions F"'", a s  well as the main stages of the 
solution of this system a re  given in the Appendix. We 
note only that when Green's functions of the type (11) 
are  separated we use for the mean values a more ac- 
curate relation that can be readily obtained from the 
equations for the equilibrium Green's functions: 

I t  is also shown in the Appendix how the field terms e' and A::' a re  expressed in terms of and x ( ~ '  with 
the aid of the corresponding equilibrium Green's func- 
tions, with allowance for the fact that 

a a a ( 1 ,  a = - + -) f a?' = - f. . 
ok, ak, aka 

The system of equations (7)-(10) and (A .l) leads to 
the following expression for FF': 

-2gAo" (e, ,-A (e,) + 6 )  -$' g 2 [ l + 2 K . - ' $ ( ~ ~ )  I}. (14) 

Here 

Expression (14) for F;' describes effectively the re- 
normalizations, connected with the hybridization inter- 
action, of the field terms and the relaxation time, 
which is proportional to (1 - F?)-l and which can be seen 
to vanish in the case of complete occupation of the level 
cf: cf - -*, K- 1. 

3. T o  determine the temperature dependence of the 
electric resistance we obtain in explicit form the field 
terms *'=' in FF' and the renormalizations A and $, 
and take account also of the additional (phonon and im- 
purity) scattering mechanisms. 

We present the equilibrium Green's functions, which 
we need to find the corresponding mean values fJ1-3' and 
which are  obtained within the framework of the same de- 
couplings that have led to closure of the system (7)-(lo), 
(A.l) and take into account all the first-order terms in 
the small parameter (pg) of the problem: 

( ( X , I X o + > = K ( r o - ~ , ) A l - ' ,  < a o l X o + ) = g ( w - ~ o ) - ' ( ( X o ~ + ) ) ,  

The functions (16) describe the hybridization of the s 
band with the f level, the renormalization 6 of this lev- 
e l  [see (15)], and the damping I'(w). Changing to hy- 
bridized bands, i t  is convenient to reduce the equilibri- 
um Green's functions to the form 

where 

( E " ' - @ . ) 2  npg' ( I - K ' )  t ,  = r = 
( E l ~ l - ~ , ) : + & f '  ' (El'l-p,)'+Kgl ' 

We confine ourselves to the case when the chemical 
potential is farther than the temperature and the damp- 
ing from the hybridized gap of width -p$, i.e., I E, ]> T, 
1 Ef I >>pg2. In the calculation of the mean values f,'lm3' 

we then neglect the damping in (17) and verify that in the 
approximation linear in pg all that is left of x"'~' in the 
numerator of (14) are  the terms proportional to af(E"')/ 
aE(", where f is the Fermi function. This means that 
the electrons contributing to the conductivity are  those 
on the Fermi  surf ace, a s  should be the case. 

Using the mean values f,'" and fJ2'  defined by the 
Green's function (17) it is easy to obtain in the same ap- 
proximation that the renormalizations A@), $(x), and 6 
a re  of the form 

Since of the poles of E"'(ck) is close to zero for the 
electrons that determine the conductivity, the corre- 
sponding logarithm in the kinetic normalizations A and 
$ in (18) has a strong temperature dependence and al- 
lowance for the damping of the Green's functions (17) 
becomes essential. A self -consistent account of the 
damping adds an additional damping r, in the curly brac- 
kets in (18) for the vanishing E("(ck). We call attention 
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to the fact that in our approximation (IEfI>T, ) ~ ~ I > > p g 2 )  
no temperature-dependent normalizations arise for the 
equilibrium Green's functions of the electrons on the 
Fermi surface. 

After changing to hybridized bands and substituting the 
expressions determined from the Green's functions (17) 
for x"-", A, $, and 6, we obtain from (4) and (14) for 
the hybridized resistance R,(T) the following expression: 

where 

We assume now that the s electrons have other scat- 
tering mechanisms, phonon and impurity, which can be 
described in the approximation of the relaxation time 
7". This relaxation can be formally accounted for by 
introducing into the equations for the nonequilibrium 
Green's functions the width in the initial s states, i.e., 
by replacing E ,  by &,+ i/2r. In (7), for example, this 
will lead to addition of a term (- i r - l~d")  in the right- 
hand side, while in (8) it will lead to replacement of 
(z  + c O f ) ~ d 2 '  by [ z+  cof + i ( 2 ~ ) - ~ p d ~ ) .  We assume that the 
distance from the localized level Ef to the Fermi surface 
is larger than 7-I, whose maximum is reached at high 
temperatures, and is smaller than or  of the order of 
the Debye temperature. For the electrons on the Fer-  
mi surface we shall therefore omit 7'' together with c ~ .  
This means that Eqs. (7) and (A.l) remain the same a s  
before. 

The allowance for 7-I in Eq. (10) for Fdf) is made by 
replacing the denominators go, by &,,+ ir-' in the re- 
normalizations (15) for A and $. For  the real part of A 
or  $, which leads to a logarithmic temperature depen- 
dence, this reduces effectively to replacing the argu- 
ment of the logarithm in (18) by the expression {T, I', 
7 - l ) ~  (p+ r2 + T - ~ ) ' ' ~ .  Since the phonon part of 7'' in- 
creases with increasing T while the part of 7'' due to 
impurity scattering can be regarded a s  smaller than the 
hybridization damping r (I' - 100 K), the logarithmic 
temperature dependence becomes only stronger. For  
simplicity, however, we shall disregard this enhance- 
ment. 

Thus, allowance for the additional scattering mechan- 
ism actually reduces in our approximation to a change 
of only Eq. (7). We thus arrive at the following final 
expression for R [see (19)]: 

where 

We now analyze expression (20). We note first  that 

at T =  0, provided that the system remains in the para- 
magnetic phase, an appreciable residual resistance 
~ ~ ( 0 )  is observed in an ideal (impurity-free) crystal. 
R,(O) is proportional to x = ~ $ / E f 2 ,  and (1 - P) can 
reach values on the order of lo2 pa-cm in the strong- 
hybridization region (x>> 1). In transitions with change 
of valence, the value of K changes strongly and this can 
lead to a change of the residual resistance (R,(O)- 0 a s  
K- 1). In the general case the residual resistance con- 
s is ts  of two parts, impurity and hybridization. 

Next, a s  seen from (20), the hybridization tempera- 
ture dependence manifests itself effectively in the im- 
purity and phonon parts of the resistance. This means 
that a deviation from the Matthiessen rule is observed, 
such that the temperature part of the resistance [R(t) 
- R(O)] does not depend on the impurity concentration. 
This result is due to the fact that the problem is solved 
in a region beyond the Born approximation (84). 

At sufficiently large x the logarithmic temperature 
dependence manifests itself primarily in the denomina- 
tor (1 + c ) .  We note that at small values of the parame- 
ter  pg-0.05 the choice x-10 does not contradict our 
approximation IEf 1 >> p?. As to the damping I', we note 
also that in the presence of orbital degeneracy of the 
level and its hybridization with several overlapping con- 
duction bands the state density p that enters in expres- 
sion (20) for I' can be several times smaller than the 
true We shall bear this in mind in the numer- 
ical estimates that follow. Finally, for a situation 
wherein the chemical potential l ies near the level E, and 
transitions 10) -- 1 o) are  realized, expression (20) re- 
mains fully valid except that Ef is replaced by -E, and 
K from (6) is replaced by K=(ZF)+ (ZO,O). We shall 
hereafter take cf and &, to mean the already renorma- 
lized values. 

4. Let us see what temperature dependences of R(T) 
result from (20). We consider first  the case of low 
temperatures T<< I' and assume that 7-' describes the 
T-independent impurity scattering. At large values x 
- 10 the single-electron level is near the chemical po- 
tential, K lies between l and 0.5, and this situation cor- 
responds either to a rare-earth compound with non-in- 
teger valence o r  to a d-metal. In this case we have a 
residual resistance Ro =R(O) = Roc+ R, which is due both 
to hybridization scattering by fluctuations of the occupa- 
tion numbers of the localized electrons (Rot) and to scat- 
tering of the s electrons by impurities (R,-T-'). With 
decreasing x, say under pressure, R, should decrease, 
a s  follows from (20), and particularly steeply if K - 1 as 
the level moves, and the f shell becomes either com- 
pletely empty o r  filled. This situation is observed in 
a-Ce under increasesed p r e s s ~ r e . ~ ~ * ~ ~  From the para- 
meters pg= 0.04, g=4*103 K, &,= 1.3.103 K, I?= 50 K, 
K =  0.95 we get for a-Ce a residual hybridization resis-  
tance R,, = 5 X l o m 8  51-cm, which is close to the total ex- 
perimentally observed value.c31 

At low temperatures, the expansion of (20) in powers 
of T / r  leads to the quadratic law R=Ro+AT2, with 
A > 0 i f  the f shell is nonmagnetic, i.e., cf <O (or &, 
>0), andA<O if zf>O (or c,<O). WhenA<O and the 
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phonon scattering is included in 7 - I  the resistance 
should have a minimum when T is increased (see the 
cases CeAI, and Eu below). It is important that the co- 
efficient A of Tz depends on R, and is proportional to 
R, at x>> 1, as ean be readily seen. A strong depen- 
dence of A on R, is observed experimentally for a-Ce. 
In the experimentcz1 the residual resistance at pres- 
sures p = 4 - 8 kbar decreased with increasing pressure 
at arate  higher by one order of magnitude than incs1, and 
the coefficient A of Tz also decreased at a comparable 
rate. We note that (20) yields at the parameters cited 
above for a-Ce, together with the experimental value 
R, = 9 x lom6 O-cm, a coefficient A = 2.7 x 10-O a-cm- 
deg", which agrees with the data of at p = 2  kbar. 

At high temperatures, 7" in (20) contains a factor 
linear in T which describes the scattering of s electrons 
by phonons. In those cases when the hybridizationis as- 
sumed strong (x> 1) it is easily seen that the dependence 
of b on T in the numerator of (20) can be neglected and 
it is convenient to express R(T) in a form suitable for 
further analysis: 

where a, corresponds to the impurity and hybridization 
scattering, and b,Tr" to the phonon scattering. De- 
pending on the position of the level cf (or c,), on the ra- 
tio bl/a, and on the value of r, the function R(T) can 
have a qualitatively different behavior. 

At b,>> a, the plot of R(T) deviates from linearity in a 
wide temperature range and has negative curvature when 
E,> 0 (or E, < 0) and positive curvature when < 0 (or E, 

>O). A typical form of R(T) at >O is that of curve 1 
of Fig. 1, which describes qualitatively R(T) of ~ b ~ ~ n ~ ~ ~  
and corresponds to the values b,/a, = 15, pg= 0.055, g 
= 6.50103 K, zf = 1.4*103 K, r = 250 K, K= 0.7. A similar 
behavior of R(T) is observed in a large number of trans- 
ition metals: y - ~ e ,  Pr ,  ~ d , [ ' l  Y ~ A ~ , , [ ~ I  L41 

We note that, in accord with the behavior of R(T) (curve 
I), transitions 10) -- 1 a) and &,< 0 are realized in a-Ce, 
while in YbAS we get transitions Yb'S--Yb14 with -0.9 
f holes,c51 i.e., transitions of the type 1 a) -- 12) with cf 
>O. For all the rare-earth metals (except Ce) it is as- 
sumed that the filled single-electron level &, is far 
enough from the chemical potential, I &,I 21 eV, and the 

FIG. 1. Temperature dependence of the resistance R(T): Ro- 
residual resistance, r-damping. Curves 1 and 2 describe 
qualitatively R (T) of NbsSl(r= 250 K) and YbA12(r= 300 K). 

width of the conduction band is 2D= 8 e ~ . ~ ~ ~ ~  If we as- 
sume that the transitions I &,) -- I &,,,)(E,,, < &,), take 
place in hybridization scattering, then we must choose 
g;2 1 E, 1 to describe satisfactory the behavior of R(T) of 
these metals, but then the condition p?<< 1 & , 1  may be 
violated. It is known, however, that at temperatures 
T = 600 - 800 K of the electric resistance, heat capacity, 
and magnetic susceptibility, the metals Pr,  Nd, and Eu 
have an anomalous behavior attributed to a continuous 
phase transition in the electron s ~ b s y s t e m ! ' * ~ ~ ' ~ ~ ~  This 
suggests that these metals have above the Fermi sur- 
face an unfilled localized level &,,-0.1 eV. The pres- 
ence of the transtions I E,) -- 1 E,+,) allows us to describe 
the R(T) relation in Eu (see below), Pr ,  and Nd within 
the framework of our model. When the pressure is in- 
creased the level &,, can move away from the chemical 
potential. No phase transition with change of valence 
will  be observed in this case. Another assumption that 
makes it possible to decribe these metals in our model 
is that the level I E, 1 5 1 eV. 

A deviation of the resistance from linearity is ob- 
served, for example, in YbAI,, lS1 which has -0.5 f- 
holes; this corresponds effectively to the transitions 
la)--12) withcf<O. Such abehavior of R(T) is repre- 
sented by curve 2 of Fig. 1, which corresponds to the 
following parameters in expression (21): bl/al = 5, pg 
=0.055,g=5.5. 1 0 3 ~ ,  & f = - i . 2 . i o 3 ~ ,  ~ = ~ o o K ,  K = o . ~ .  

Consider now the case when the resistance due to the 
hybridization interaction and to impurity scattering is 
of the order of the high-temperature phonon resistance, 
i.e., a, - b,. In this case, if K is close to 0.5 (cf > 0 or  
E, < 0) the value of (1 - P) differs substantially from 
zero and R(T) can have a minimum at a large hybridiza- 
tion resistance, a s  noted above. A typical form of such 
a behavior of R(T) is shown in Fig. 2. Curve 1 of Fig. 
2 corresponds to the following parameters in (21): b,/a, 
~ 2 . 5 ,  pg=0.05,g=5.103 K, &,= -lo3 K,r=100 K,K=0.55. 
Curve 2 of Fig. 2 corresponds to the case x =  1.5 and is 
obtained from (21) when account is taken of the depen- 
dence d b, on T [see (20)] and corresponds to the para- 
meters bl(T=O)/al=0.5, pg=O.l,g=8.1@ K,cf= 5.101 K, 
r = 115 K, K =  0.58. Curve 1 on Fig. 2 corresponds to 
the behavior of R(T) in CeAbcE1 with a minimum at T 
= 13 K and to an almost linear (with a slight bend) R(T) 
plot at high temperatures. On the other hand, curve 2 
of Fig. 2 corresponds qualitatively to the experimental 

FIG. 2. Temperature dependence of the resistance R(T): Ro- 
residual resistance, r-damping. Curves 1, 2 ,  and 3 describe 
qualitatively R(T) of CeA12(r= 100 K), Eu(r= 115 K), and 
PuA12(r= 20 K), respectively. 
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R(T) dependence of E U [ ~ ]  above the magnetic-ordering 
point (T>85 K). We note that CeA1, exhibits at T c 4 K 
a resistance decrease that is not described by our ap- 
proach and may be due to magnetic ordering. 

R(T) behaves differently when the phonon scattering 
remains relatively weak (b,<< a,) even at high tempera- 
tures, and the configuration of the localized electrons is 
not closed. Curve 3 of Fig. 2 shows such an R(T) plot, 
pertains to PUA&[~]  and corresponds to the following pa- 
rameters in (21): b,/a, = 0.014, pg= 0.025, g= 2400 K, cf 
= 600 K, I' = 20 K, K = 0.57. At high temperature this R(T) 
tends to decrease, in analogy with the experimental re- 
sults for PuA1,. At T<10 K there is a steep decrease 
of the resistGce and it can be assumed that magnetic 
ordering sets in at these temperatures. A variation of 
R(T) similar to the one shown, with a smooth decrease 
of R with rising temperature, is observed for a number 
of transition metals and their compounds, for example 
P U , [ ~ ]  PuZn2, c71 CeA1,.C61 

In those cases, however, when a sharp decrease of 
the resistance is observed as T - 0 but no magnetic or- 
der sets in (as, probably, in Pu), our approach can not 
explain the temperature dependence of the resistance. 
It can be assumed that this situation corresponds to 
proximity of the single-electron level of the localized 
electrons to the chemical potential, and then considera- 
tion of the higher orders in pg at low temperatures can 
lead to a situation similar to the onset of paramag- 
n o n ~ . C ~ ~ ]  

We call attention to the interesting high-temperature 
behavior of UP,,,S,,[*~ where an increase of the concen- 
tration x is accompanied by a simultaneous change of 
the character of the magnetic order (at T<200 K) and 
of the curvature of R(T) in the paramagnetic region. 
This behavior can be attributed to passage of the local- 
ized level through the Fermi surface with increasing x. 
When the sign of the effective exchange interaction is 
reversed, our model calls for a change of curvature of 
R(T) in the paramagnetic region, 

The presented R(T)  curves are  only qualitative. For  
a correct description of the R(T) dependence of a num- 
ber of concrete metals it would be necessary to take in- 
to account, primarily, the degeneracy of the &, level. 
It is seen nevertheless that the considered hybridiza- 
tion scattering of the s electrons by the internal degrees 
of freedom of a strongly-correlating f-electron level 
close to the Fermi surface can explain a large class of 
temperature dependences of the resistance. The differ- 
ence in the behavior of R(T) is determined by the loga- 
rithmic temperature dependence of the renormaliza- 
tions, by the population of the localized level (which 
determines the sign of the logarithmic singularity), by 
the degree of hybridization (i.e., by the value of g2/&;), 
and finally by the ratio of the residual and phonon re- 
sistances. 

We note in conclusion that the obtained logarithmic 
temperature dependence has nothing in common with the 
Kondo logarithm, which appears only in third order .in 
the sf exchange interaction, equivalent to order gs o r  
to second order in the small parameter pg of our prob- 

lem. 

The authors thank K. A. Kikoin for useful discussions 
of the fundamentals of this work. 

APPENDIX 

The equation f o r  the Green's function FA:' is of the 
form 

 KC ~ d : )  - g ~ ~ - l  F:;) . (A.1) 
2 

We have left out of (A.l) Green's functions of the type 
(11) and the functions ((X;R[,X, IB)), x2 ( ( a , + ? %  I B)), 
which lead to the order ( pg)' in the equation for F:". 

The system of equations (7-10) and (A.l) is closed. 
Substituting (A.l) in 10 and summing over k,, we get 
El F$' and consequently xu, F,,(:' and C,, F$' in terms 
of Fd1'Fd2', Fd3). Substitution of C,,P~~', F$) in Eqs. 
(8) and (9) yields a rather cumbersome system for 
Fd1'3'. When grouping the terms in (8) and (9) we make 
use essentially of the following relations that follow 
from (8) and (12): 

We take the imaginary part of (8), substitute the real 
and imaginary parts of fd2' from (7) and (A.2) in (8) and 
(9), and omit terms of order (pg)'. We see then that 
the coefficients off,'=' in (8) and (9) agree to within a 
factor, and we arrive at expression ( 14) for F,','. 

Note that afinite relaxation time in the nonequilibrium 
distribution function Fd3' of the f electrons, and hence 
also in F,"', stems from (A.l) and is proportional to 
( ~ 2 ) " .  Allowance for  the last term in (A.l) allows us 
to describe correctly the region of strong hybridization 
&of = O .  

Let us show how the field terms Xi;' and Xi:'= -Xt5' 01 

reduce to A',' and At3'. To  find the equilibrium mean 
values f:' andT$' corresponding to A$' and Xd,5) we ob- 
tain the Green's functions &,((a,  la,'^:,)), ~ , , ~ a ,  
IX;R:,)), and (( a, 1x3. Taking into account the further 
summation over k,, we can seek these functions in our 
approximation in the zeroth order in pg. Carrying out 
the decouplings in the same order, we obtain the fol- 
lowing equations for  the Green's functions: 
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Determining f r o m  th i s  the Green's functions, and with 
t h e i r  a id the mean values of in te res t  t o  us, we get the 
f o l l m i n g  expressions which enable us, when account is 
taken of (13), to e x p r e s s  Xg',x) in terms of A(,), x ( ~ ) :  
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Recombination radiation emitted at helium temperatures from silicon doped with boron, phosphorus, and 
antimony was investigated experimentally as a function of the photoexcitation conditions and uniaxial 
compression. The results obtained confirmed the formation of many-particle impurity complexes and were 
interpreted using the shell model of these complexes. 

PACS numbers: 78.60. -b, 78.20.H~ 

1. INTRODUCTION 

The recombination radiat ion s p e c t r a  of silicon doped 
with group III and V e lements  exhibit, at helium tem- 
peratures, a series of narrow located on the 
low-energy s ide  direct ly  beyond the bound-exciton 

The  spec t ra l  positions of these  l ines  in  the 
series are charac te r i s t i c  f o r  each of the dopants and 
the l ines  themselves appear  in decreasing o r d e r  of 
t h e i r  energy as the excitation rate is increased.  On 
th i s  bas i s ,  it h a s  been c ~ n c l u d e d ~ ' - ~ '  that the new l ines  
are due to the  radiative decay of many-particle com- 
plexes fo rmed as a resu l t  of the consecutive capture 
of one, two, or m o r e  excitons by a n  impurity atom. 
We sha l l  denote these  complexes by B,, B,, . . . and the 
corresponding recombination radiation l ines  by A 

a,, aZ, . . . , and so on.L6J Thus,  a complex B, consis ts  
of a singly charged impuri ty  atom, tn carriers of the 
s a m e  sign, and m + 1 carriers of the  opposite sign. A 
sys tem of this  kind is basical ly  different f r o m  a n  or- 
dinary atomic or  molecular  s y s t e m  because the latter 
contains light par t i c les  of just one sign. 

The  proposed e x p l a n a t i ~ n ~ l - ~ ~  of the or igin of these  a! 
lines has been confirmed in a number of investiga- 
t i o n ~ ~ ~ - ~ '  of the kinetics of formation and decay of many- 
part ic le  complexes. Later  investigation^^'^*^^^ have 
been concerned with the splitting of the a! lines i n  a 
magnetic field and as a resu l t  of uniaxial deformation of 
silicon. According to these  authors ,  the  r e s u l t s  ob- 
tained cannot be  explained by any model of many-par- 
ticle impuri ty  complexes. I t  is s ~ g g e s t e d ~ ' ~ * ' ~ '  that the 
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