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An investigation is reported of the influence of nonequiiibrium electrons on the critical current of a 
superconducting contact subjected to an external hf field. It is shown that the effective cooling of 
electrons trapped in the region of the contact which has a lower value of the gap may result in a 
considerable increase of the critical current. The maximum critical current is found and a study is made 
of the dependence of this current on the power at various temperatures. On approach of the critical 
temperature there should be a transition from stimulation to suppression of superconductivity in the 
contact, which agrees with the experimental results. The frequency limits of the existence of the effect are 
estimated. 

PACS numbers: 85.25. +k, 85.20.Sn, 74.40. + k 

1. INTRODUCTION 

Experiments carried out on superconducting contacts 
(bridges, point contacts, etc .) demonstrate the possi- 
bility of increasing the critical current by irradiation 
with a microwave field (Dayem-Watt effect).['"' The 
influence of a microwave field on the critical current of 
a spatially homogeneous superconductor was considered 
by ~ l i a s h b e r ~ ; ~ '  who showed that stimulation of super- 
conductivity occurs because of a change in the electron 
energy distribution function under the influence of the 
electric field. We shall find the critical current of a 
contact between superconductors in a microwave field. 

When a superconducting current flows through a con- 
tact, the order parameter in the region of the contact A 
becomes smaller than its value A, outside the contact. 
Electrons of energy r <A, cannot escape outside the 
contact and execute finite motion in a potential well, 
being reflected by the contact edges. In an hf field the 
superconducting contact and the order parameter be- 
come alternating quantities. This "jitter" of the poten- 
tial well results in energy diffusion of'electrons, and 
their distribution function becomes of nonequilibrium 
type. This mechanism at the contacts is stronger than 
the direct influence of the electric field. 

accumulation of electrons at higher energies. The re- 
sultant effect on the critical current depends on the 
power and frequency of the incident radiation. 

When this power is sufficiently high, the energy dif- 
fusion is a strong effect and all the electrons of energy 
E <A, are  cooled, whereas electrons of energy E >A, 
do not accumulate in the contact region because of 
spatial diffusion and their distribution function remains 
of the equilibrium type. This stimulates superconduc- 
tivity and the critical current of the contact rises. 

At low radiation powers only the electrons of energies 
in a narrow region near the bottom of the well are  
cooled. These electrons are  localized near the middle 
of the contact and the order parameter increases there. 
Elsewhere in the contact the electrons are  heated and 
the order parameter decreases. It follows that the 
critical current of the contact decreases for a suffi- 
ciently low power. 

When the frequency of the radiation field is increased, 
the range of energies where there a re  significant 
changes in the electron distribution begins to depend on 
the frequency and becomes wider. Electron cooling 
occurs in a wider region and, beginning from a certain 
frequency, the rise of the critical current occurs even 
at low radiation powers. 

A considerable change in the electron distribution 
function occurs near the bottom of the ~otential well 2. ENERGY DIFFUSION OF ELECTRONS IN A --.----- ~ ~ 

where the energy diffusion process results in an elec- CONTACT 
tron deficiency compared with the equilibrium distribu- 
tion. This corresponds to effective cooling of the con- The distribution function of electrons in a contact sub- 
tact. On the other hand, diffusion may result in the jected to an external alternating electromagnetic field 
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is of the nonequilibrium type. If the energy relaxation 
time 7, is long compared with the field alternation 
period and with the electron spatial diffusion time along 
the contact, the electron distribution function 
n(r )= [I -f (r)1/2 depends weakly on time and coordinates 
and its dependence on the energy is described by the 
kinetic equationc10' 

The angular brackets (. . . ) denote averaging over the 
contact region, where A < < ,  and the bar  represents 
time averaging. In the case of smooth variations of the 
modulus of the order parameter A in the contact and 
sufficiently low frequencies w, the energy diffusion co- 
efficient D, is given by 

The validity of this formula i s  limited by the condition 
w << D/aZ << A, which determines the permissible size a 
of the contact (here, D = v,1,,/3 i s  the spatial diffusion 
coefficient). In this case the energy diffusion occurs 
mainly because of the reflection of electrons from the 
edges of the oscillating potential well and i s  described 
by the formula (2), whereas the direct influence of the 
electric field is weak. 

Under the same assumptions the Ginzburg-Landau 
equation for the modulus of the order parameter A with 
the nonequilibrium term +(A) has the formcll' 

The relationship of the gradient of the phase cp of the 
order parameter to the superconducting current I, 
across a contact is used above:c121 

18=:~q)D.T2,](A) vip, (4) 

where p is the density of states and S is the cross-sec- 
tional area of the contact. In the case of small devia- 
tions of the distribution function f (c) from the equilib- 
rium function tanh(r/2T), Eqs. (3) and (4) reduce to the 
well-known expressions in the theory of superconductiv- 
ity. 

In the calculation of the energy diffusion we shall as- 
sume a fixed alternating voltage V across the investi- 
gated contact; this voltage determines the phase shift x 
between the order parameter at the contact edges: 

The quantity ji2 is proportional to the power absorbed by 
the contact. We can find D, from Eq. (2) if we deduce 
from Eq. (3) the relationship between the modulus of 
the order parameter A and the phase shift X. This r e -  
lationship depends on that between the length of the con- 
tact a and the size of a pair [, and also on the incident 

radiation power. 

For a short contact 6 >> a and low radiation power, only 
the gradient terms a r e  important in the Ginzburg-Lan- 
dau equation (3). For a narrow contact, the solution of 
this equation satisfying the boundary condition A(a) 
=Ao, where A, is the value of the modulus of the order 
parameter of a bulk semiconductor, is 

Using this expression, we find from Eq. (2) that 

where 

2(&/~,)z-l-c0s X 
a =  

1 '  
, c,= I (Y (I-y') "-arcsin y)ily=O. 1, 

l-cos x 

We shall now consider a long contact a >> 6 and low 
radiation power. For a narrow contact, the order pa- 
rameter A =  A(x) is almost everywhere inside the con- 
tact close to the value A, for an infinitely long contact 
(large deviations appear only in the region a - x s  5 
near the edges). If the superconducting current I, is 
then close to the critical value for an infinite contact 
I : ,  = 9. I ~ ~ S D " ~ ( T ,  - T)"~, the order parameter is 
close to A, = (2/3)lI24. Introducing 6 = A% - A2(0) and 
the dimensionless variable y(x) in accordance with the 
formula 

~~(z)=A,~+6[y~(x)- l ] ,  (8) 

we obtain from the Ginzburg-Landau equation (3) 

The parameters a, and 6 a r e  governed by the current I, 
through the contact. Tben, 

and the value of 6 is found from the condition A(a)=A,. 
Since the integral in Eq. (9) is dominated by the region 
y " 1, it follows that rewriting the boundary condition 
with the aid of Eq. (a), we can assume that the upper 
limit of this integral is equal to infinity. As a result, 
we obtain the following relationship between the param- 
e ters  a and 6 :  

A numerical solution of these equations shows that the 
maximum (critical) current corresponds to a,, =9.25 and 
6, = 1. 25(a2A)" " ~ g [ ~ / a ~ .  
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The energy diffusion coefficient can be found from Eq. 
(2) if we know the time dependence of the order param- 
eter. We then find that 

The derivative dA2/d6 is found from Eqs. (8) and (9): 

The relationship between the phase shift x of the order 
parameter and the quantity 6 is found from Eq. (4) for 
the superconduding current: 

In the calculation of the derivative dx/dA the current 
I, can be regarded a s  constant (I, is close to  its maxi- 
mum value) and dA2/d6 can be described by Eq. (13). 
Then, replacing the variable x in the integral of y(x) in 
Eq. (9), we obtain 

The coefficient D, will be first calculated in the most 
important range of energies, which is not too close to 
the order parameter at the center of the contact (bottom 
of the potential well): c2 - A, >> 6. Using Eq. (2)) we 
find that 

Substituting the expression for aA2/at from Eqs. (12)) 
(1 3)) and (15) we obtain 

1 (a,, + 3)% D --- i dx -a 

' - 160 aid. ( X )  '' 
where 

s - 
C= I [GI Z-' ( Y ) ~ Y - ~ Z - ' ( Y )  dy] dz. 

0 0 0 

Substituting here the values of a, and 6,, a s  well a s  
Eq. (15) for d,y/d6, and calculating the integral C by 
substituting the variable x =x( y )  in accordance with Eq. 
(9), we obtain 

In the other limiting case of c2 - A t  << 6, the important 
region is near the center of the contact, where the 
change in the order parameter obeys the quadratic law 

A2(z) =A,Z-G+3A6Zxz. (19) 

In the calculation of D, by means of Eq. (2) and Eq. (19) 
for a2(x) a s  well a s  Eq. (15) for dx/d6, we obtain 

which, apart from a numerical coefficient, is identical 

with Eq. (18) in the c2 - A t  - 6 case. 

3. STIMULATION OF THE SUPERCONDUCTIVITY 
IN A CONTACT 

If the radiation power is high, the left-hand side of 
the kinetic equation (1) can be regarded a s  equal tg 
zero. Therefore, the flux of particles is Deaf /BE 
=const. On the other hand, the boundary condition ap- 
plicable to this kinetic equation requires that the par- 
ticle flux vanishes at the bottom of the potential well. 
Consequently, Bf / 8 ~  = O  o r  f (E) = const. Therefore, at 
a high radiation power a strong energy diffusion equal- 
izes the level populations and the electron distribution 
function ceases to depend on the energy. Bearing in 
mind the second boundary condition f (A,) =tanh(A0/2T) 
= AO/2T, we find that the distribution function at high 
radiation powers is 

The nonequilibrium term of this distribution function is 
calculated from Eq. (3): 

AA ~ + ( I - A ~ / A ~ ~ ) " ~  
0 (A)  =- [ln 

2T AIAo 

This term is large compared with the f i rs t  term in the 
Ginzburg-Landau equation describing spatial variation 
of the modulus of the order parameter if a >> q, where 
q =(D/A,)'/~. Therefore, in the case of sufficiently 
high radiation power we find that for long (a> 5) and 
short (5 > a > q )  contacts the order parameter depends 
weakly on the coordinate almost throughout the contact. 
The value of this parameter A is governed by the super- 
ducting current I, found from the Ginzburg-Landau 
equation: 

where T = (T, - T)/T,; when the radiation power is high, 
only the nonequilibrium term is important in Eq. (23). 
The critical current is found from the maximum of this 
expression which is always reached at some value of 
A i f  @(a)>O. 

Using this expression and Eq. (22) for @(A), we find 
that =0.7A0 and the critical current is 

This current is independent of the length of the contact 
and exceeds the critical value in the absence of irradi- 
ation by a factor of r-lJ4 for a long contact (a> 5 )  and by 
a factor a (A0/~) l J2  for a short contact (5 > a  > q). It thus 
follows that at high radiation powers the critical current 
increases considerably and ceases to depend on this 
power. 

When the radiation power is reduced, the nonequi- 
librium term in the Ginzburg-Landau equation (3) is 
still quite large in a certain range of powers but we can 
no longer use the limiting expression (21) for the distri- 
bution function. We can find this function only if we 
know the energy diffusion coefficient D, and solve the 
kinetic equation (1). 
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We can obtain D, using Eq. (18) but subject to some 
modification since it is derived on the assumption that 
the nonequilibrium term is small. As pointed out 
earl ier ,  the modulus of the order parameter depends 
weakly on the coordinates throughout the contact when 
the radiation power is high. Then, near the maximum 
of the superconducting current (23) the dependence 
A2(x) is described by the same formulas (8) and (9) as  
for a long contact and low radiation power except that 
now A_ should be replaced with A and the parameter A 
now depends on the nonequilibrium term @(A). How- 
ever, Eq. (17) for D, includes only the product Ab, 
which-as indicated by Eq. (11)-is a universal param- 
eter. Therefore, at high radiation powers we can de- 
scribe D, again by Eq. (18)-using the first  part-but 
now we have A* =L and I, has to be found from the con- 
dition for the maximum of Eq. (23). 

Before solving the kinetic equation (1) with this co- 
efficient D,, we must identify the important range of 
energies. We can find the correction to the critical cur- 
rent due to hf radiation by employing Eq. (23) but we 
must calculate the nonequilibrium term +(A). We can 
then write 

It follows from the kinetic equation (1) that the f i rs t  in- 
tegral in Eq. (25) is the total derivative of D,8f /&. 
This integral is small s o  that for c =L the derivative is 
8 f /a€ = 0 (corresponding to the vanishing of the particle 
flux at the bottom of the well) and for E =Ao the value of 
D, is now small [it is clear from Eq. (18) that D, falls 
rapidly with rising c]. 

In the calculation of the second integral the important 
values of E a r e  those far from the bottom of the poten- 
tial well Z\. In this range of energies we may assume 
that ((r2 - A ~ ) - I / ~ )  = (c2 - I\2)-1/2 and solve the kinetic 
equation (1) using the perturbation theory: 

- 
where the dimensionless parameter P =r,i2/T is pro- 
portional to the radiation power, c, = Z \ 3 ( p 2 e 2 ~ 2 ~ ~ /  
X T ~ I ; ) ~ / ~ ,  and the restrictions on the energy a r e  found 
from the conditions of validity of the perturbation 
theory [the derivative of the distribution function f '(r) 
should differ little from tanh'(c /2T) - 1 /TI. 

Substituting Eq. (26) into Eq. (25), we find that with 
logarithmic precision 

The contribution to the nonequilibrium term +,(A) in the 

energy range E - I\ < r p  originates because of the differ- 
ence between ((e2 - A ~ ) - ~ / ~  and (c2 - A2)-1/2, and it is 
small for sufficiently long contacts. 

Substituting Eq. (27) into the formula for the current 
(23), we obtained a self-consistent equation for the cal- 
culation of the critical current. In the case of high 
pumping rates,  only the nonequilibrium term is impor- 
tant in Eq. (23) and the maximum of the current is 
reached at close to A,. Solution of this equation gives 

In the case of sufficiently long contacts the above 
formula is valid for radiation powers r3l2<<p<< 
when the nonequilibrium term in the Ginzburg-Landau 
equation is large and the distribution function can still 
be found from the perturbation theory. 

In the range P << r3l2 the nonequilibrium term in the 
Ginzburg-Landau equation is small and the critical cur- 
rent found from the condition for the maximum of Eq. 
(23) is identical with I: and we have A =A_.  Substitut- 
ing the values of I$ and A* in Eq. (27), we find that 
+,(A_) is given by 

At low powers the contribution @,(A_) may also be im- 
portant. We can find it by determining the distribution 
function f (E) near the bottom of the well where E - A _  
<< eO, and the kinetic equation can no longer be solved 
using the perturbation theory. If c:>> B/A,, the bottom 
of the potential well can be regarded a s  flat and the co- 
efficient D, can be described by Eq. (18). The solution 
of the kinetic equation with this type of dependence of 
D, on the energy can be found in the paper by Ivlev and 
~ l i a s h b e r ~ : ~ ~ '  Using their results, we obtain 

Calculating ((c2 - A ~ ) - ~ / ~ )  from the known dependence 
A(x) for a long contact [ ~ q s .  (8) and (9)], we find that 
@,(A_) is described by 

where the lower integration limit can be regarded with 
logarithmic precision to be equal to A, + b / ~ , .  Thus, 
a t  moderately high radiation powers we have two con- 
tributions to the nonequilibrium term @(A) and they dif- 
fer  in sign. 

The correction to  the critical current, deduced from 
Eq. (23), is 

The above expression has a minimum when the power is 
P - ( 5 / ~ ) ~ / ~ r .  Then, Eq. (32) is valid if [(I, - l , _ ) / Z ,  I,, 
<< 1, which limits the length of the contact: a> 5 ~ " ' ~ ~ .  
Thus, for a sufficiently long contact obeying a > 5 ~ " " ~  
we find that the critical current increases linearly on 
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increase of the radiation power beginning from powers 
of the order of P, = ( [ / u )~ /~T .  

This linear stimulation continues up to powers of the 
order of P, =r3I2, when the nonequilibrium term in the 
Ginzburg-Landau equation becomes large. For P >>P,, 
the critical current can be calculated allowing only for 
this term and the current rises in accordance with the 
law p1I4 [in determining the dependence I,(P) in the 
intermediate range we have to allow for all the terms 
in Eq. (23)]. Finally, if P >P3 =r1I2, the critical cur- 
rent reaches saturation. The dependence of the critical 
current on the radiation power is shown in Fig. 1. 

In the case of a contact obeying a <  5~~~~~ there is no 
region with the linear dependence of I, on P since the 
term a, may be important at high radiation powers when 
the nonequilibrium component is still large. In estimat- 
ing &, we shall use Eq. (18) for D, and substitute there 
I, from Eq. (28) and use the value A_ =&. Calculating 
then @(a) from Eq. (25), we find that, as in the deriva- 
tion of Eq. (31), the value of *,(a) is described by 

Thus, Eq. (28) for a short contact applies in the power 
range P > ( ~ / ~ ~ d ) ~ ~ ~ ~ ~ r ~ ~ ~ .  At lower powers the value 
of @,(a) becomes large and this suppresses the super- 
conductivity of the contact. 

4. CRITICAL CURRENT AT LOW RADIATION 
POWERS 

For a low radiation power we can solve the kinetic 
equation (1) for all important energies using the per- 
turbation theory and substituting f =tanh(e/2T) on the 
right-hand side. Consequently, we find that *(A) is 
given by 

For a short contact characterized by a<< 5 we can use 
Eq. (7) for D,. We then obtain 

FIG. 1. Dependence of 
the critical current through 
a long contact on the 

I radiation power. 
I I 

I I I 

The negative sign in the above expression appears be- 
cause of the accumulation of excitations [f (€) - tanh 
(</2T) < 0] throughout the range of significant energies. 
The sign off (r) - tanh(c/ZT) becomes positive only in a 
narrow range of energies near the bottom of the poten- 
tial well, where there a re  significant deviations of the 
distribution function from equilibrium and we can no 
longer use the perturbation theory. This range makes 
no significant contribution to the nonequilibrium term 
*(A) when the radiation power is low. 

In calculating the change in the critical current we 
shall use Eqs. (3) and (4). Then, in the case of a short 
contact only the first two terms and the nonequilibrium 
contribution a re  important in the Ginzburg-Landau 
equation (3). Integration of this equation gives the de- 
pendence A(x) for a given current. The boundary condi- 
tion A(a) =Ao allows us to relate the current to the order 
parameter A(0) at the center of the contact: 

Since the nonequilibrium term *(A) is small at low ra- 
diation powers, we can simplify Eq. (36) to the linear 
term of the expansion of the integrand in respect of 
@(A); assuming also that A(0) = A , / a ,  which is the 
value of the order parameter in the absence of radia- 
tion, we find that 

where I: =repDSA:/4aT is the critical current for a 
short contact in the absence of radiation. Substituting 
in this formula Eq. (35), we obtain the following expres- 
sion for I,: 

To find the nonequilibrium term in a long contact at 
a low radiation power we shall again use Eq. (22), 
where the coefficient D ,  is given by Eq. (18). We can 
see that the value of D, falls rapidly on increase of the 
electron energy t. Therefore, in the integral of Eq. 
(34) at values of A close to A, the important range of 
energies is e2 - A t  - 6 .  However, in this range the co- 
efficient D, is known only to an order of magnitude and, 
consequently, we can find the nonequilibrium term 
with the same precision: 

az 
0 (A) M - ~ D ~ I . * - ~ ~ ~ ~ ~ - P A ~ ~  T dh. 

t (39) 

The correction to the critical current is found from 
Eq. (23). Substituting in this equation the expression 
for @(A), we obtain 
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Equation (40) is valid if the correction to the critical 
current due to the incident radiation is small, (I, - I t )  
/I:-<< 1, and if the distribution function in the important 
energy range differs little from the equilibrium form 
(t;< 6/A0). For  a contact of length a >  [7-'16 the second 
condition is violated earlier and Eq. (40) is valid up to 
powers -Po =(S/U)~T, In the opposite case of a <  (T-"~, 
Eq. (40) ceases to be valid a t  powers P - (52/a2)~3/2 
lower than Po, when the nonequilibrium term becomes 
large and considerable suppression of the superconduc- 
tivity in the contact takes place. 

5. CONDITIONS FOR STIMULATION OF THE 
SUPERCONDUCTIVITY IN A CONTACT 

The results obtained above show that the energy dif- 
fusion of electrons in a contact subjected to a micro- 
wave field is due to oscillations of the potential well 
and this may increase considerably the critical current 
of the contact. When the radiation power is sufficiently 
high, the critical current reaches saturation and be- 
comes equal to I $  given by Eq. (24). This saturation 
value is independent of the size of the contact and it 
decreases in accordance with the law T~~~ a s  the tem- 
perature approaches T,. 

The critical current of a contact in the absence of 
radiation also decreases on approach to T, but the law 
now depends on the contact size. For  a short contact 
(a < 5) the critical current obeys the law I: a T and a 
long contact (a > 5) obeys I$ T ~ ~ ~ .  Therefore, for 
a >  5 the relative correction to the critical current f a r  
from T, increases on increase of temperature in ac- 
cordance with the law T-'I4 and then reaches a maximum 

at a temperature such that a -  5 but in the 
range 5 > a  > 77 the correction decreases in accordance 
with the law ?'I4; for a < q ,  the relative correction to 
the critical current is small. Thus, the effect of stim- 
ulation of the superconductivity of a contact appears 
more strongly in a certain temperature range when 
a -  (Fig. 2). 

The behavior of the dependences I,(P ) in the initial 
part also depends on the proximity of the temperature to 
the critical value. Close to T,, when the contact size 
is a <  5 ~ ~ ~ ~ ~ ,  a considerable suppression of the super- 
conductivity in the contact takes place. At lower tem- 

FIG. 2. Temperature 
dependence of the stimula- 
tion effect of the critical 
current. 

peratures and fo r  a >  5 ~ ~ " ~  the formulas for a long con- 
tact a r e  applicable; the suppression occurs only at low 
powers and the relative minimum of the critical current 
is now small  and continues to decrease a s  a result of 
cooling. Stimulation of the superconductivity in this 
temperature range is f i rs t  linear and the slope of the 
linear part  depends weakly on temperature. The at- 
tainment of the saturation value by the critical current 
occurs in accordance with the law and is reached 
a t  radiation powers - T ' / ~ T / ~ ~ R T ,  (Fig* 1). 

This behavior of the critical current in a radiation 
field agrees with the experimental observations. The 
maximum critical current, measured in relative units, 
has a peak near Tc.C2-41 A transition from stimulation 
to suppression of the superconductivity in a contact oc- 
curs  on approach of the temperature to Tc>3*41 The 
initial stimulation obeys a linear law and then the criti- 
cal current reaches saturation. However, a detailed 
comparison of the theory and experiment is made diffi- 
cult by the direct heating of a contact in a microwave 
field:lg1 This heating is clearly responsible for the fact 
that the critical current does not always reach satura- 
tion and begins to fall steeply when a certain power is 
reached. The critical current may also decrease be- 
cause of the effective heating of electrons of energies 
E >Ao, which is particularly important in films in which 
the spatial diffusion is difficult. 

The results obtained a r e  valid subject to certain re- 
strictions on the field frequency. A reduction in the 
frequency w increases the alternating part A,(t) of the 
modulus of the order parameter and the condition A, 
< b/A, is valid only a t  frequencies w2?, > ~ , 2 / 5 ~ .  If this 
condition is not obeyed, the value of the order param- 
e ter  throughout the contact varies in the same way with 
time (the bottom of the potential well oscillates a s  one 
unit). Consequently, Eq. (16) simplifies by the cancella- 
tion of the terms (aA2/8t) and 8A2/8t, s o  that the energy 
diffusion coefficient decreases. There is a correspond- 
ing reduction in the nonequilibrium term in the 
Ginzburg-Landau equation and the critical current 
reaches saturation at higher radiation powers. Then, 
the ~ l i a s h b e r ~  termcg1 may be important and this re- 
sults in linear stimulation a t  lower powers even when 
the temperature is very close to T,. This is confirmed 
by the experimental results since a t  low frequencies 
there is no suppression of the superconductivity near 
Tc.C2*31 The same situation occurs also for very long 
contacts and at high f r e q u e n c i e ~ J ~ - ~ ]  

The maximum critical current also depends on the 
frequency because an increase in the amplitude of the 
alternating current I, I:(D/A~~)'~?/W makes the aver- 
age current through the contact smaller than the maxi- 
mum value. This restricts the frequency a t  which 
stimulation can be observed: 

This effect may also account for the reduction in the 
critical current of a contact on increase of the radia- 
tion power even when there is no field heating of the 
contact. 
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The validity of the results is limited also on the high- 
frequency side. When the frequency becomes compar- 
able with the reciprocal of the electron diffusion time in 
a contact, D/a2, we have to allow for the frequency de- 
pendence of the energy diffusion coefficient D,. How- 
ever, this does not affect the results qualitatively. An- 
other effect appears when the radiation frequency be- 
comes comparable with the width of the range of ener- 
gies near the bottom of the potential well where con- 
siderable changes take place in the electron distribu- 
tion function. Then, the energy diffusion is no longer 
described by a differential equation. In a short contact, 
in which the energies t - A, are  important, this effect 
becomes significant at frequencies w-A,. In the case 
of long contacts at lower temperatures there is a con- 
siderable change in the contribution of electrons of en- 
ergies t - A < w but the contribution of electrons with 
high energies is not greatly affected. Consequently, 
at  a frequency w > 6/A0- ~ , 5 ~ / a ~  even at low radiation 
powers there is an increase in the range of energies 
near the bottom of the potential well where the distribu- 
tion function differs greatly from the equilibrium value 
and stimulation of the superconductivity in the contact 
takes place. 

It should also be noted that a change in the critical 
current in a microwave field and the appearance of 
static current regions in the current-voltage charac- 
teristics of the contacts a re  correlated: the two effects 
become significant only when the contact size is 
a >  @)/~,)l/2>4.11#151 
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