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It is shown that if a super-radiative or a super-nonradiative phase transition occurs in a three-level particle 
system it is possible to excite in it with the aid of external coherent sources essentially new types of 
spontaneous responses that exist only at temperatures below the critical temperature. The intensity of the 
generated responses (induction and echo signals) is proportional to e2E 4d2 (QE is the energy gap 
between the lower levels, is the coupling constant, and yo is the order parameter). The frequency, 
wave vector, and nature of these signals may differ from those of the exciting fields, and this significantly 
simplifies the useful-signal extraction and also makes the obsewation of phase-stimulated analogs of forced 
inductions possible. 

PACS numbers: 64.60.Ht, 78.45. + h, 42.65.B~ 

The extensive development of work on the theory of 
coherent (collective) states of quantum systems that has 
followed the discovery of light and sound e ~ h o e s ~ 4 ~ '  and 
optical and acoustic self-induced transparenciesc 3'51 has 
revealed a profound analogy between such seemingly 
different phenomena as superradiance and supercon- 
ductivity, the Josephson effect, etc. And, finally, not 
quite long ago, in 1973, an analogy was established be- 
tween the transition of a substance into an equilibrium 
collective (superradiant) state and second-order phase 
transitions. The possibility of such a phenomenon for 
systems of two-level particles interacting via a general 
photon field is validated in Ref. 6, where the now gen- 
erally used term "superradiant" phase transition 
(SRPT) is introduced. The SRPT phenomenon consists 
in the appearance in a system of N centers a t  tempera- 
tures below the critical temperature, T,,, of phased 
precessions of the transverse (in the representation in 
which the unperturbed Hamiltonian is diagonal) com- 
ponents of the dipole moments of these centers and of 
the macroscopic population of the resonance mode with 
the wave vector $. The latter implies that, for T <T,, 

yo = lim (ak.+ok,>/hTf 0. 
s - w  

was given the name of "super-nonradiative" phase tran- 
sition (sNPT). It can be shown that such a capacity of 
the given quantum system ( y )  for undergoing phase tran- 
sitions into a spontaneous coherent state (sCS) is typical 
with respect to any boson field ( 6 ) ,  by means of which it 
is  possible to excite the system into a state of super- 
radiance. (Below we shall, for brevity, call such phase 
transitions SCS transitions.) Nevertheless, a s  i s  shown 
below, many-level quantum systems allow the obser- 
vation of essentially new spontaneous coherent res- 
ponses, which we have called phase-stimulated bosonic 
superradiance (PSBSR). The physical essence of the 
PSBSR phenomenon consists in the following. 

Let there be stimulated in a system with a discrete 
spectrum a SCS transition with respect to a field that 
is resonant for the transition between the states l a )  and 
and I@ > of the system. This can be secured by, for 
example, placing the system in an electromagnetic res- 
onator of frequency w,, = (E, - E,) R-' for SRPT stimu- 
lation, o r  preparing the sample under an acoustic res- 
onator of the same frequency for SNPT stimulation 
(E,>E,;E, and E, a r e  the energies of the @-th and 
a-th levels). 

A SCS transition is accompanied by the appearance of 
where 4, (%d a r e  the operators of creation (annihila- a coherent superposition of the states la)--I@), i.e., 
tion) of the quanta of the resonance mode. its realization is analogous to the action on the system 

The SRPT is a result of the interaction of the par- 
ticles via their common electromagnetic field. Since 
impurity particles in solids interact not only via the 
photon field, but also via the fields of the elementary 
excitations of the medium itself (phon~ns, excitons, 
plasmons, etc.), there naturally arose the question 
whether a similar phase transition is possible in an 
equilibrium system of impurity centers and elementary- 
excitation fields that, to the centers, a r e  resonant fields. 
As is shown in Refs. 7-9, the interactionof paramag- 
netic and paraelectric centers with the phonon field 
leads a t  temperatures T<T, to a transition of these 
centers into a collective (coherent) state. As for the 
SRPT, there occurs a corresponding macroscopic pop- 
ulation of the resonance phonon mode. The phenomenon 

of some fictitious coherent stationary field of frequency 
w,,. But in this case, a s  shown in Ref. 10, anadditional 
impulsive o r  steady coherent excitation by generators 
whose frequency is resonant for the transition 

I a) -- la) o r  (p) - -  IU)(E, >E,) leads to the generation of 
induction- o r  echo-type signals with frequencies dif- 
ferent from we, and w,, or,  correspondingly, from w,, 
and w,,. This phase-stimulated bosonic radiation dis- 
appears a t  T > T,,. The nature and intensity of the then 
generated boson field depends on the type of SCS transi- 
tions and the type of exciting field, a s  well a s  on the 
character of the relaxation processes in the system. 
Therefore, PSBSR is not only the most direct and con- 
venient method for observing SRPT and SNPT, but is, 
in fact, an  essentially new direction in the spectroscopy 
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of interference states. As is  well known, for noninteracting centers, the in- 

The theory of PSBSR can be constructed on the basis tensity of the spontaneous radiation emitted per  unit 

of the formalism developed in Refs. 9 and 10. Let us  solid angle in the direction of k in the I a) - I/3) transi- 

assume that there is no direct interaction between the tion is  equal to 

particles. Then the Hamiltonian of the system can be 
Lp(k) = l , i ( k )  { N ( P . ~  Po.)+ ( P . . ) ( P w ) e s p [ i k ( ~ - r , )  1 . represented in the form f: 

f f l  

) (9) 

Y 

(0 )  ( 0 )  2 
H - H .  +H,, + H , .  H:"= H.', H >  = !IOk (ak+.) + 1), where ~z,(k)  i s  the intensity of the radiation emitted by 

+. , k 

(2) 
an isolated center. 

IF 
Ar..s A;.@= 

H .  = H,J, 11,' = x ( _  ok~mbeikr ,  i --=. o k + ~ o d - f k r  Let us, for example, consider the case of a system 
id 
,=I 

I '4' Y.hl I ) '  of three-level particles with state energies E ,  0, and 
*.no 

EE (E is the nonequidistance parameter). Let the SCS 

where Hi  i s  the unperturbed Hamiltonian of the j- th cen- 
ter; k is the wave vector of the boson field; a! and P a r e  
the indices of the eigenstates of Hi, which, to the boson 
field k, a r e  resonance states; A,, a, i s  the constant of 
the interaction with this type of field; the a;(%) a r e  the 
creation (annihilation) operators for the quanta of the 
field; Pa, i s  the projection matrix, the a!P-th element 
of which is equal to unity, while the res t  a r e  each equal 
to zero; r, is the radius vector of the location of the 
j- th particle. 

The density matrix, p(t), in the rotating-field approx- 
imation has the form 

p l ( t )  =ex11 {-ih-'IltJt) ~ ' ( 0 )  enp (ih-'H,'t) ,  (3) 

where p'(0) i s  the density matrix a t  the initial moment 
of time. (Below, to simplify the notation, we shall drop 
the index j .) 

Since the Pa, a r e  linearly independent matrices, any 
operator, Q, can be expanded in terms of them: 

A similar expansion can be carried out for the density 
matrix 

where q,, and p,, a r e  c numbers. 

Substituting (5) into (31, we find 

~ ( t )  = Epan!0)exp( - ih - '~ f , t )~ , ,  e x p { i f ? - ' ~ , t )  = C ~ , , ( O ) P ~ ~ ( H , ,  t ) .  
06 a6 

Carrying out an expansion for P,,(H,, t )  similar to 
(4) and (5), and substituting the obtained result into (61, 
we find 

Then 

The quantities bfl ,  ,,(HI, t )  for  a number of cases have 
been computed and tabulated by ~ o l o v a r o v . ~ ~ '  

transition be stimulated with respect to 12)--13). Then 
in (2) a! = 2, fi = 3, and Ah alt =Gro. In order to compute 
the PSBSR, it i s  necessary to compute the density ma- 
tr ix under SCS-transition conditions ( ~ ( 0 ) ) .  We can 
show, in much the same way a s  i s  done in Ref. 12, that 
for the model Hamiltonian (2) p(O) can be represented in 
the form of a direct  product of the density matrix for 
the field ( ~ ~ ( 0 ) )  and the density matrix for the material 
( ~ ~ ( 0 ) ) .  Further, using the results of Ref. 12, we find 
that H ,  in (8) has the form 

The thermodynamic averages of the operators a;, and 
q, can be expressed in the following manner in terms 
of the density of the boson resonance mode k,: 

where 0 is an undetermined phase factor, while yo is the 
order parameter of the SCS transition, determinable 
from the equation 

Ck,-'~lo=2 SII ( ' / l ! 3 ~ E ~ ] o )  { e sp  (-'/ZB ( ~ f  2 ) E )  -E? ell ( l / z $ ~ E q o ) ) - ' ,  

Cr,= I Gx, 1 e-'E-', qlo= (1+4Ck.?yo)'A. B =  l l k ~ T ;  (12) 

k ,  i s  the Boltzmann constant and T, is determined 
from (12) with qo= 1. 

Using the apparatus of matrix f~nctions,c '~ '  let us  
represent exp{-p~,} in the form 

FIG. 1. Exciting-pulse train corresponding to the I 1) - 1 2) 
transition: ko i s  the wave vector of the resonant mode exciting 
the SCS transition; kt, kz, and k3 are the wave vectors of the 
exciting pulses. 
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FIG. 2. Exciting-pulse train corresponding to the I 1) --- 1 3) 
transition: ko is  the wave vector of the resonant mode that ex- 
cites the SCS transition; kl, k2, and kg are the wave vectors of 
the exciting pulses. 

TABLE 11. Types of spontaneous coherent responses excitable 
by the train of pulses shown in Fig. 2. 

~ S l i ) + + l 3 )  
1 s l l ) - l 3 )  

StES 11)++13) 
SeESl 11)- 13) 
SeES2 11) -13) 
SeESj 11) * 13) 

~ s l l > u 1 2 )  

Type o f  mponse*  
at the transition 

la-  16) 

where A = I ~ ~ l y ~ ' ~ e & i ( k , ,  -r,+fl)} is the s ame  for  all 
j ,  with the exception of the factor e d z l r ,  0 r,). 

Wave Vector o f  I lnponrrforrnation 

f . ( E p .  YO) the rnponse tirne.* lkp+ €k0; Mkvko)l ~ ( 7 ,  ,r2) 

With allowance for  (12) and (13) we find the nonzero 
matrix elements of p(0) :  

Z=e-8"+2 exp (' / ,eEp) ch ( 1 / 2 p ~ E q o ) ,  
o=2 ch ('/ ,$eEqo) [exp ( - ' IZ(e+2)  Ep)  +2 ch (' /zpeEqo) ]-I. 

In the absence of a SCS transition (T >TCr) the nonzero 
elements of the density matrix a r e  the following: 

p,, ( 0 )  =Zo-le-PE, pZZ ( 0 )  =ZO-', pt3 ( 0 )  =ZO-'eBCE, 
(15) 

The essential difference between (15) and (14) con- 
s i s t s  in the presence in (14) of off-diagonal matrix el- 
ements. Let u s  assume that a t  some moment of time 
t= t ,  the system, with temperature T<T,, is subjected 
to the action of the trains of coherent pulses schemati- 
cally shown in Figs. 1 and 2. Then, depending on the 
type of exciting-pulse trains, the system a t  the ap- 
propriate moments of time generates free-induction and 
echo signals (including stimulated and secondary echoes) 
whose parameters a r e  given in Tables I and 11. (Table I 
presents  the responses that can be excited by the co- 
herent-pulse train shown in Fig. 1; Table I1 corresponds 
to the responses excited by the pulse train shown in Fig. 
2.) 

TABLE I. Types of spontaneous coherent responses excitable 
by the train of pulses shown in Fig. 1. 

~ y p e  of resp0n.c. I Wt;::C',":% I~esponse-formation 
at the transition 

It(Ep. V.) 
la)-16) 

IS (1>-12> 
IS 11)-13) 
IS l l ) -12)  
ES' 1) ++ 12) 
ls11)-12) 

StES l l ) * I 2 )  
SeES, 11) -12) 
SeES21i)-12) 
SeESj 11) - 12) 

S," cost 0, sin2 0, 
si 112 0, (e?E / Gko I?)y. 

!? S12 COY? 0, sin2 20, 
11% S,? sin? 20, sina 13: 

11, S? cos? 20, cos? 20, i n ?  20, 
SP sin? 20, sin220r sin? 20, 

S t  sin' 0, sin' 0% sin? 0. cos' 0, 
S p  sin' 0, cos' 0, sin2 0, cog 20, 
S I  sin' 0, cos' 0, sin? cos2 0, 

IAP 

< 

4 

1, f 2r1 
IAP 

tl + 2T1 1 T? 

11 + 2T? 
t, + r, + 2r, 

t l  + 2 (TI L T?) 

*IS stands for induction signal; ES, StES, and SeES-normal, 
stimulated, and secondary echo signals, respectively. 

**Time t l+gL1~,;  IAP stands for: response is formed im- 
mediately after the pulse. 
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sin% 0, (E?F/I GCto If) yo 

% S I  ws? 20, sin2 20? 
% S; sin? 20, 

c0s20,sln28~ yo 
I Gk" I2 -- 

S22sin2 20,sin* 0' 
'k Sz2 cos2 20, cos? 2 0  sin? 20, 
'h S i 2  sin' 20, sin? 20? sin2 20, 
S22 sin' 0, sin* 0: sin"-, COP 0, 

S2z sin4 0, sin2 0, cos? 0, ws? 20, 
S,2 sin' 0, cosl0? sin", cos? 0, 

sin' 0,sin' 0% sin? 0, - yo 
I Gk. I- 

*IS stands for induction signal; ES, StES, and SeES-normal, 
stimulated, and secondary echo signals, respectively. 

**Time ti  +ca=i~,; IAP stands for: response is formed im- 
mediately after the pulse. 

The intensities of a l l  the responses that can be gen- 
erated were  computed from the following formulas: 

a )  for  the induction signals after  the P-th exciting 
pulse ( p  = 1,2,3): 

l .c(k) =z$' ( k ) ! ,  (B,, y , ) ~ : ?  erp 

?+I 

b) for  the echo signals (including the stimulated and 
secondary ones) after  the p-th exciting pulse: 

where f,(B,, yo) and f,(Bp, yo) a r e  given in the tables, 
B p = A t p ~ - '  ( G ~  I (ako)~"'2, A tp is  the width of the p-th 
pulse, S, and 9, a r e  factors applicable in the compu- 
tations of the intensities of the responses excitable by 
the pulse trains shown in Figs. 1 and 2, respectively: 

T, is  the interval of time between the q-th and (q +l ) - th  
pulses; 5 = 0 , l ;  (p(r,, T,) and $(k#, k,) a r e  linear functions 
of the arguments (their form depends on the exciting- 
pulse train and the type of signal); T Z a B  is the reversi-  
ble-phase-relaxation time with respect  to the transition 

I .> - lp>. 

As can be seen from (16) and (17), the peaks of the 
induction- and echo-signal intensities a r e  formed a t  the 
moments of time 
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and in the directions of the wave vectors k =kp + 5k, and 
k = $ k , k , )  respectively. In the case  of the train of ex- 
citing pulses that a r e  resonant for  the transition 
11)- 13), a "richer7' s e t  of coherent responses i s  gen- 
erated which includes signals generated in the 
11) -- 12) transition a t  the moments of time t = t ,  
+ (1 +€)7,, (1 +€)T,, and (1 +€)(rl +r2), and due entirely 
to the presence of the SCS transition (at T >T,, the pa- 
rameter  y,=O and the intensity of these signals is  equal 
to zero). Since this excitation scheme allows the time, 
spatial, and frequency separation of the exciting pulses 
and the phase-stimulated superradiant responses, it 
can primarily be recommended for  the experimental 
detection of the SCS transtion. In view of the sufficiently 
wide generality of the employed model Hamiltonian, it 
is  unimportant in which spectral  regions (the optical, 
microwave, o r  radio-frequency regions) the transition 
frequencies lie, nor a r e  the natures of the boson field 
k,, the exciting-generator fields, and the generated res-  
ponses important. 

Furthermore,  s imi lar  results  can be obtained also for  
semiconductors and semimetals  if they a r e  a t  temper- 
atures below the cri t ical  temperature of the SCS transi- 
tion with respect  to the valence and f i r s t  conduction 
bands. Using the results  of Ref. 14, we canshow that 
the intensity of the responses that can be  generated in 
this case i s  given by the expressions given in the tables 
when E ~ E ~ ~ ~ / I G ~ $ ~  i s  replaced by a quantity m/ 

f i 3 ~ E E , ( I ~  12~mp)-'y,,  which can be derived with the use 
of the results  of Ref. 14 for  the SRPT in these sys tems 
(hereA i s  the modulus of the matrix element of the in- 
teraction of the electrons with the electromagnetic field; 
E, is  the width of the f i r s t  forbidden band; m the elec- 
tron mass; V the crystal  volume; and p the momentum 
a t  the boundary of the f i r s t  Brillouin zone). With the 
same reservations, these results  a r e  also valid for  ex- 
citon crystals. The replacement of the pulse generators 
by steady excitation also produces a steady spontaneous 
response both a t  the frequency of the exciting field and 

a t  frequencies different from this frequency. The signals 
generated in this case  a r e  phase-stimulated analogs of 
forced inductions, e.g., light,[15' p h ~ n o n , ~ ' ~ '  etc., in- 
ductions. 

In conclusion, let  u s  note that PSBSR is not only more 
direct  and more  convenient than any of the methods thus 
f a r  proposed for  the detection of the SCS transition, but 
also provides the simplest means of studying many-level 
systems with a nonequidistant spectrum. 

The authors express their gratitude to N. K. Solovarov 
for  a useful discussion of the results  of the work. 
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