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A theory of cyclotron resonance for transitions between surface-electron levels is constructed which takes 
the interelectron interaction into account, as a result of which it becomes possible to eliminate the existing 
discrepancy between experiment and the theory of a gas of noninteracting conduction electrons, a theor)! 
which prohibits the corresponding resonances in metals and semimetals with convex Fermi surfaces. A 
method is suggested for the determination of the parameters characterizing the interelectron interaction. 

PACS numbers: 76.40. + b 

1. INTRODUCTION 

In an earl ier  paperci1 we established the possibility of 
the propagation of surface quantum spin waves in the 
electron liquid of metals. The eigenfrequencies of such 
spin waves a r e  close to the observed frequencies of 
resonance absorption of electrons glancing along the 
surface of a metal in a magnetic field.[2*33 At the same 
time because of the comparative weakness of the elec- 
tron paramagnetism, the impedance resonances ob- 
served in a weak magnetic field a r e  connected not with 
spin, but with cyclotron, waves. The theory of surface 
cyclotron waves and resonances in an electron gas is 
developed in Refs. 4-6, in which it is  shown, in particu- 
lar, that for the existence of such waves near the tran- 
sition frequencies of the glancing electrons to be pos- 
sible it is necessary that sections of the Fermi surface 
be cylindrical (see also Ref. 7). The latter assertion is, 
as shown in the present paper, connected with the use 
of the noninteracting particle model for the conduction 
electrons. Notice also that, according to Ref. 1, su r -  
face quantum spin waves can exist in metals whose Fer-  
mi  surface does not have cylindrical sections when al- 
lowance is made for the interelectron interaction. 

In the present paper we develop a theory of cyclotron 
resonance on the glancing orbits of the surface elec- 
trons in the electron liquid of metals with arbitrary 
Fermi surfaces. Notice that in the long-wave limit the 
frequency of the surface waves in an electron gas that 
a r e  studied in Refs. 4-6 turns out to be lower than the 
frequency of the transition between surface levels. In 
contrast, the cutoff frequency predicted by our theory 
of surface waves in metals with convex Fermi surfaces 
is higher than the surface-transition frequency. Such 
waves do not exist in the gas model. The new possibili- 
ty of the propagation of surface waves near the maxima 
of the transition frequency is due to the interaction be- 
tween the conduction electrons. A comparison of the 
formulas of the theory developed by us with the experi- 
mentaldata on the oscillations in the impedance of a 
metal will allow us to draw conclusions about the 
strength of the interelectron interaction. 

2. DERIVATION OF AN INTEGRAL EQUATION FOR 
THE GLANCING-ELECTRON DISTRIBUTION FUNCTION 

The effects discussed below a r e  essentially quantum 
effects. However, aiming a t  the most intelligible expo- 
sition, we do not in the present paper construct a theo- 
r y  directly on the basis of the quantum equation for the 
density matrix (cf. Ref. I) ,  but follow the quasi-classic- 
a1 approach used in the theory of cyclotron resonance on 
glancing electronsF4' In this case with the aid of the 
quasiclassical equation it is easy, firstly, to introduce 
the parameters characterizing the Fermi-liquid inter- 
action of the conduction electrons and, secondly, to con- 
sistently take the boundary conditions for the electrons 
on the metal surface into account. The subsequent 
quantization of the classical solution (which can be 
carried out, following, to a certain extent, the proce- 
dure used by Kaner and ~ a k a r o v ~ ~ ' )  allows us to follow 
directly the themes of the new effects that manifest 
themselves in cyclotron resonances on the glancing or- 
bits a s  a result of the allowance for the interelectron 
interaction. 

In the theory of the electron liquidCB1 the weakly-ex- 
cited states a re ,  upon the neglect of the paramagnetic 
effects, characterized by a deviation, 6f, of the dis- 
tribution function from the equilibrium value. Assuming 
the time dependence to be -e"'"', directing the constant 
magnetic field along the z axis, and assuming the metal 
occupies the half-space y >O, we can write for the case 
of a surface wave propagating along the direction of the 
constant magnetic field and the following kinetic equa- 
tion: 

Here e is the electron charge, S2(p,) is the cyclotron 
frequency of the gyroscopic rotation of the electron, 7 

is the momentum relaxation time, p is the angular var- 
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iable characterizing the position of the electron in i ts  
orbit in momentum space, E is the electron energy, p, 
is the component of the electron momentum along the 
direction of the magnetic field, while 

Here *(~,p, ,  rp; E', p:, p') is a function characterizing 
the interaction of the electrons. Setting 67=6f -kafo/ac, 
we shall seek the solution to Eq. (2.1) in the form 
6f =goafo/ae, a Y = g ( ~ ,  P,, rp)af~/a~, where afo/ae 
=-2(2nti)-'6(~ -E,), E, is the Fermi energy. The function 
@ determines the resolvent operator, R ,  of the equa- 
tion 

with the aid of which we have: 

In accordance with the formula (2.4) we obtain from 
(2 -2) the expression 

where we have introduced the notation 

Below we shall omit the argument E =E,. The function 
a characterized the effects of the interelectron inter- 
action. 

Let us set  a s  our problem tlie search for the solu- 
tions to Eq. (2.1) that describe the resonance electrons 
glancing along, and undergoing small-angle scattering 
by, the metal surface. This means that in the charac- 
teristic equation 

v, should be considered to be small. Then, reckoning 
the angle rp from the zero value, a t  which v,(p,, 0) = 0, 
we can write for the glancing electrons the relation 
v,(P,, p)  =v$$,)(P. Correspondingly, we obtain for the 
orbits of the glancing electrons in accordance with the 
characteristic equation (2.6) the relation y = $H(P,)[rp; 
-rp2], where rp, is the value of the angle a t  which the 
electron collides with the surface, while R(p,) =v:(P,)/ 
a&,) is the radius of the electron orbit. 

In seeking the solutions to Eq. (2.1) we shall use the 
condition for specular reflectioncg' of the glancing elec- 
trons: g(O,p,, rp)=g(O,p,, -4~). Then from Eq. (2.1) 
follows: 

I I ( IUI IPl .Wl L ( I Y I , R , V )  

x J d p f - i [  J - j 
-c(IYI.R.v) V -C(IYI.PZ.W) 

I 1 
x e x ~ [ - i i ( ~ . )  (cp-9') I { ~ V ( P , ,  O ) E ( l / , R ( p , )  [ ( p o 2 ( l y  I, PZ. ( ~ ) - c p ' ~ ] ) -  

- ~ W ~ E ( ~ / ~ R ( P = )  [ p , ' ( l y l , ~ ~ , c p ) - r p ' ~ l , p ~ , ~ ) ) .  (2.7) 

Here we have taken into account the smallness of rp in 
comparison with unity and have used the notation 

cpo(y, p., cp) =[cpZ+2yIR(p.)  I", $ ( p z )  = [ W - ~ . ~ ~ ( P : ,  0) + i / ~ l / ~ ( p ~ ) .  

The formula (2.7) has been written in a form that allows 
us to see the possibility of i ts  even continuation into the 
regi.9n of negative y values. 

In what follows we shall use the Fourier expansion: 

1 "  1"  
g(Y ,  PZ, cp)=--J dkG(k ,p , , cp )oos  k y ,  E ( y ) =  --j d k E ( k ) c o s  k y ,  

0 0 

1 "  
6.5 ( y ,  P I ,  0) = - J d k 6 ~  (k, p z )  cos ky. 

* 

With the aid of Eq. (2.7) we can write the following ex- 
pression for the Fourier transform: 

- 

x J d k ' c o s [ k ' R ( p , )  (cpo2-cp")/2] ( e v ( p , ,  O ) E ( k l )  - l o d e  ( k ' .  p , ) ) .  
0 

(2.8) 
In deriving this equation we neglected the contribution 
of the large values of y ,  which cannot correspond to 
glancing electrons, and therefore cannot lead to reso- 
nances a t  the frequencies of the surface transitions, 
Furthermore, we have made the change of variables y 
-'PO. Now following, to a certain extent, the procedure 
used in Ref. 4 ,  we go over from the classical expres- 
sion (2.8) to the corresponding quantum-mechanical ex- 
pression, which allows us to separate out the effects 
connected with the transitions between the quantum lev- 
els of the surface electrons. To begin with, let us take 
into account the fact that 

Further, in the quantum theory we should allow for the 
quantization of the angle a t  which the electron collides 
with the metal surface: 

Replacing in (2.8) rp, by such an expression, going over 
from integration over rpo to summation, and taking into 
account the fact that Ap, = Arp, = rp,~n/3(n - 4) , we ob- 
tain 
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where the frequency of the transition between the quasi- 
classical levels is given by the formula (cf. Ref. 10) 

For a further transformation of Eq. (2.9) we should use 
the fact that the resonances at the surface transitions 
occur only when one of the denominators of the sum on 
the right-hand side turns out to be small ,  so  that I w 
-so,@,, 0) - k,v,(P,) I << w .  In this case it is important 
that such a denominator does not vanish, for otherwise 
there ar ises  strong collisionless damping leading to 
considerable broadening, which virtually liquidates the 
resonance. A resonance is possible only when the vari- 
able frequency w is close to  the extremal value of the 
transition frequency sw, for k,=O. In other words, this 
is possible when Ip, -Po I <<Po, where for k, # 0 the 
"extremal" momentum po(k,) is determined by the equa- 
tion (d/dp,)[su,,(J,) +k,v,(J,, 0)]=0. We shall call the 
numbers n and s corresponding to the denominator that 
turns out to be small  when p,=po resonance numbers. 
If n and s a r e  not very large compared to unity, then 
the resonance term turns out to be unique. Let us em- 
phasize that the denominators of the other terms (m # n, 
Y # s )  may turn out to be smal l ,  but the singularities 
corresponding to them occur far from the extremal mo- 
mentum, and therefore their contribution turns out to 
be relatively small, although it can lead to such effects 
a s  collisionless damping. 

Having i t  in mind to take such an effect into account, 
we can se t  prp,=ns in all the terms of the formula (2.9). 
Then we obtain 

G ( I ,  p.. y )  =[t, i p v l ( p , )  13 ~ . . . ( k ,  p. y) [ u + i i r - s u . ( p . )  -k.v.(po.  0 )  

where 

A direct computation yields the following expression for  
the quasiclassical matrix element: 

*,,(PI) 

(n+rlcos k y l n ) =  j ~VY:, (k ,p , ,cp) ,  
-En(Pz) 

where 

Y!, ( k ,  p., q )  = Y . , ( k ,  p,, (c) [ 1+2rcpnz(pz)/3(n-'/4)v'I-". 

Bearing in mind the substantial contribution of the small  
angles rp,  below instead of *, we shall use i ts  quantum 
analog. Furthermore, let us note that \kP, = 0 when 
1 40 I> cp"(P,). 

For what follows it will be sufficient to find the func- 
tion 

for which, according to (2.10) and the properties of 
\k%, we can write the following integral equation: 

X[ev(p . ,  O ) E ( k l )  C i u  d p S f a ( p . ,  p : ) ~ ( k ' ,  p:) 1 6 ( o - r w . ( p . )  -kkvV(pP9 o)!]. I 
(2.11) 

Here we have used the notation a(p,, 0; p:, 0) =a@,, p:), 

I 

I , ,  ( k ,  p z )  = d x [  1+2s /3(n-I / , )  x2] -'" 
- 1  

~ c o s  nsx c o s [ ~ R ( p z ) r p . ' ( p s )  ( l - s t ) / Z I .  (2.12) 

The resonance properties of the solution of the quasi- 
classical equation (2.11) allow, a s  we shall see  below, 
us to understand the laws governing cyclotron resonance 
on glancing electrons. 

3. SOLUTION OF THE INTEGRAL EQUATION (2.11) 
FOR THE DISTRIBUTION FUNCTION OF THE 
GLANCING ELECTRONS 

In this section we obtain the solution to Eq. (2.11) for 
k, = O .  In the previous papers devoted to the study of 
the properties of glancing  electron^^^-^' the authors con- 
sidered the model in which the metal is assumed to 
possess a cylindrical Fermi surface, which is charac- 
terized by the fact that the transition frequency does 
not depend on p,. This means that the P, integration 
that ar ises  in the solution of the integral equation 
amounts to multiplication by the dimension of the cylin- 
drical Fermi surface in the p, direction. The nondepen- 
dence of the transition frequency on p, led to the result 
that no other frequency Y W ,  with Y 2 s  and m + n satis- 
fied the resonance condition I w - Y W  ,I << w.  Consequent- 
ly, in the model of a metal with a cylindrical Fermi 
surface the sum of the nonresonance terms did not con- 
tain terms whose denominators satisfied the condition 
for resonance. In accordance with (2.11), the impossi- 
bility of satisfying the resonance condition I w - Y W , ~  c<w 
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for 7 +S and m #n  implies the absence of collision- 
less damping in the model of a metal with a cylindrical 
Fermi surface. 

The situation is different in the case of a metal with 
a convex noncylindrical Fermi surface, for which it 
is typical for the transition frequency rw,,,(p,) to depend 
on p,. Such a dependence leads to the variation of the 
quantity rwJp,) from zero at the reference point to the 
maximum value, rw,, a t  the point corresponding to the 
maximum of the cross section of the Fermi surface. In 
those terms of the nonresonance sum for which the con- 
dition rm-'I3 >sn-'I3 is satisfied, the dependence of 
rwJp,) on p, leads to the result that the resonance con- 
dition 

which corresponds to the appearance of collisionless 
Landau damping, is fulfilled a t  the point p, . The formu- 
la (3.1) determines the quantity PI =PI(@, m , Y). The 
point po =po(0) corresponds to the extremum of the res-  
onance frequency swn(p,). The first term on the right- 
hand side of Eq. (2.11) gives the most important con- 
tribution to the integral over p, from the region in the 
vicinity of the extremum of the denominator, which 
allows us to seek the solution in the form 

Bearing in mind 
weak effect, we 
ing approximate 

that the collisionless damping is a 
can write for the function q,, the follow- 
expression: 

Then for the function g,(k) we obtain the following inte- 
gral  equation: 

Here we have introduced the notation 

n . 2 ' h a  [ sonr'(p0) 1% 
An,=- 

S W ~ " ( P ~ ) P ~ '  ( P O )  ~ ~ n ( p o ) - ~ - f l t  ' 

B(n ,  s ;  m, r )  =-inhoNnSm' 
a ( p o ,  P C  (m ,  r )  ) a ( p l ( m ,  r ) ,  P O )  

ap"' (p , (m,  r )  ) lrom' (pt (m .  r )  ) I ' 
A". 

- 
w n , ( k ) =  ~ , , , ( k ,  po) j dkl { ~ . , , ( k ' ,  po)ev(p0, 0) -in%o 

0 

,,,, a(~~,~i(m,r))ev(~t(m,r)~O) Im, (k , ,  p ,  r )  ) ] ~ ( k , ) ,  '2 put ( p ,  ( m ,  r) ) Iron,' ( P ,  (m ,  r )  ) I 
7.m 

where 

and a! =@(po, po). In this case po =pO(k, = 0). 

Bearing in mind the smallness of the coefficients B, 
we can write the solution to Eq. (3.3) in the following 
form: 

1-A..N.,-An. 2 B(n ,  s ;  m', r ' )~:"'  ] ' d l ( )  I., (k'.  po) 
1,1..1. 

{ 
0 

+A.'N.. B(n .  s ;  m", r t ' ) I . ~ ~ . * ~  (1'. p. (mu. r" ) )  }. (3.4) 
1. ' .I. .  

Hence i t  follows that the electron distribution has a res- 
anant dependence on the frequency, while the value of 
the frequency of such a resonance is itself determined 
by the equation 

We then have 

Here the contribution of the collisionless damping is 
characterized by the quantity 

4n3h3s20n'(po)aNn, 2 a ( p o ,  p, (m. r )  ) a ( p t ( m ,  r ) ,  P O )  [NnS""12 
v, (n,  s )  =- 

~ " " ( P O )  [ ~ , ' ( P O )  lZ ,+, P"' ( P <  (m, 4 )  Irwm1(P'(m. r ) )  1 
. 

If the resonance frequency is close to the maximum val- 
ue of the transition frequency, when og(po) < 0, then, 
according to the solution (3.6), w >swn(po). If, on the 
other hand, the resonance occurs in the vicinity of the 
minimum of the transition frequency, then o < s w,(p,). 
In both cases the necessary condition for the existence 
of the solution (3.6) is 

which determines that sign of the function, a!, charac- 
terizing the interelectron interaction for which the res- 
onance (3.6) turns out to be possible. 

According to our estimates, in the experiments that 
have been performed on cyclotron resonance on glanc- 
ing electrons vLr << 1. Therefore, below we shall focus 
our attention on the consideration of effects in which 
the collisionless damping is neglected. To begin with, 
with the aid of (2.12) we write 

where Ln,=ln[6(n-a)/s], n>>s. 

According to this, and without allowance for the col- 
lisionless damping, the formula (3.6) assumes the fol- 
lowing form: 
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This expression 
imental data. 

2x"aw,(po) aZ hQ ( p , )  " L..l i 

r l s o m l l ( ~ o )  [ p ; ( p o j v ; ( p o )  I -1-7. 
(3.10) 

will be used below to analyze the exper- 

Let us give here without derivation the solution to Eq. 
(2.15) for k,# 0. Here we neglect the collisionless 
damping. As a result 

G ( k ,  p , )  = [Al ip , ' (po)  I [ o - ~ o , ~ ( p ~ )  - ~ , L . , ( P o ,  O ) - ( P ~ - P O ) '  

x ( s o . " ( p o )  + k A " ( p , , ,  0 )  ) / 2 + i l ~ I - '  - 
XI . .  ( k , p o )  J dk'l.. ( k 1 , p 0 )  e v  (po,O) E (k')A-'. (3.11) 

0 

Here Po =pO(kL), while 

where we have used the notation 

According to (3.11) the resonance frequency is deter- 
mined by the equation: 

where 

3,  - ?n".xL,, hB ( p , )  Y3 S61.  ( p o )  + k r ~ . z ( ~ o , O )  

3va(n-1i , )3,r  I pi (Po)  u; (p . )  I S W P ~ ~ ,  (P") +i ." . , , (p . .0 )  . 

(3.15) 
The solution to Eq. (3.14) corresponds to the resonance 
frequency, provided 

For a finite value of k, the resonance should be identi- 
fied with waves of frequency 

propagating along the metal surface. The admissible 
value of k, is determined by the condition for [~(k,)]"' 
for T - to be real. In particular, for s w i  + kp," < 0 
this condition has the form 

while in the opposite case 

At small  values of k,, when a power ser ies  expansion is 
possible, these inequalities get simplified. If the reso- 
nance is connected with electrons of a noncentral cross  
section of the Fermi surface, then v,(po(0)) # 0 and 
po(0) is determined, a s  usual, by the extremum of the 

surface-transition frequency w',(po(0)) = 0. Then, ac- 
cording to (3.17) and (3.18), we have 1 k,v,(p,(O)) I <  l w 
- sw,(po(0)) I. If, on the other hand, the resonance is 
due to electrons of the central cross  section, then 
v,(po(o)) =o  and P&O) = O ,  Po(k,) =- k,[v:(O, O)/w;(O)]. 
Hence for k, we have 

In conclusion of this section, let us point out that the 
formula (3.11) determines the resonance contribution to 
the current due to the glancing electrons. Assuming 
that v(po, 0) has only an x component, we have: 

. res 
I .  = - 2 e ( 2 n ~ ) - 3 J  ~ P , G ( ~ , P , )  ( a 2 ~ / a p ~ ~ ~ ) , = , ~ ~ . ( p Z , o ) / ~ ( ~ , ,  o) I ,  

where a is an element of a rea  of the Fermi surface. 
According to (3.11) 

where 
2u: (p0,O) 

,=, ,z-,. v(po,O)p, '  ( P , )  [ son"(p0)  +kA"(po) I ' 

(3.20) 

4. THE RESONANCE FREQUENCY FOR A METAL WITH 
AN ELLIPSOIDAL FERMl SURFACE (BISMUTH) 

In the experiments described in Refs. 2,  11, and 12, 
the cyclotron resonance on skipping electrons in bis- 
muth, which has an ellipsoidal Fermi surface, was 
studied in detail. In this case the theory allows signifi- 
cant progress to be made in the particularization of the 
general formulas of the preceding section. The energy 
spectrum of the electrons of a metal with an ellipsoidal 
Fermi  surface is described by the formula 

where m,, m,, and m, a r e  constants having the dimen- 
sions of mass,  while the Fermi energy EF determines 
the components of the Fermi momentum and velocity: 

In accordance with (4.1), for the case when the P, axis 
of the ellipsoid i s  oriented along the direction of the 
constant magnetic field, and 

the transition frequency, 

s o , ( p , )  =s[2n3e'B2/3h(n-'14) m.rn,c2]'" ( e F - p 2 / 2 m , )  'l, (4.2) 

entering into the formula (3.10) has an extremum at  the 
central cross  section p, = 0. This allows us to write for 
it and fo r  its second derivative such expressions: 
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As a result, according to the formula (3.10), we have where 

For an ellipsoidal Fermi surface it is useful to repre- 
sent the quantity a! by means of the parametrization, 
introduced in Ref. 13, of the function @(p, p'). In this 
case it is necessary to take into account the fact that in 
our case, when the p, axis of the ellipsoid is oriented 
along the magnetic field, @(~,p , ,  p; E', pi, ~o')=(m,rn,)"~ 
x 8(p,  p'). In accordance with Ref. 13, we have: 

Here the A, a r e  the parametrization coefficients, P, is 
a Legendre polynomial, 0 is the angle between the vec- 
to r s  w and  which a r e  c_onnected with p ~d p' by the 
relations w = Tp and w' = Tp'. The tensor T then trans- 
forms the space of the momenta p into the space w, in 
which the constant-energy surfaces a r e  spheres. As- 
suming, in accordance with (4.1), that the axes of the 
coordinate system a r e  directed ?long the principal axes 
of the ellipsoid, for the matrix T we have: 

Let us,  in accord with the parametrization (4.5), write 
Eq. (2.3) in the following form: 

where 0, J ,  and 0', J,' a r e  the polar and azimuthal angles 
of the vectors w and w' , while is the associated 
Legendre polynomial. Bearing in mind that 

and taking into account the fact that dpdrp = ( 2 m , ~ ~ ) ~ ' ~  
x do,, we obtain for the function (2.7) the following ex- 
pression: 

Hence we have a relation connecting a and A,: 

The relation (4.6) allows us to represent the formula 
(3.10) with the use of the constants A, in the form 

The formulas (4.7) and (4.8) will be used in Sec. 6 to 
compare the theoretical results with the results of the 
experimental investigations described in Refs. 2, 11, 
and 12 and to obtain information about the magnitude of 
the Fermi-liquid interaction constant cy . 

5. THE RESONANCE PROPERTIES, DUE TO THE 
GLANCING ELECTRONS, OF THE IMPEDANCE OF 
A METAL 

In this section we shall demonstrate how allowance 
for the interaction of electrons leads to a qualitatively 
new possibility of the existence of impedance resonances 
and surface electromagnetic waves, a s  compared with 
the that neglects the electron interaction. 

In deriving the expression for the impedance we use 
the fact that the volume and surface electrons make in- 
dependent contributions to the current density that en- 
t e r s  into the Maxwell equation. The motion of the vol- 
ume electrons is virtually not affected by a weak mag- 
netic field. Therefore, for the determination of the con- 
tribution made by the volume electrons to the total cur- 
rent, we should use the well-known results  (see,  for 
example, Refs. 7 and 14) obtained for a metal with an 
anisotropic Fermi surface. If we orient the coordinate 
axes along the principal axes of the tensor 

where K(4) is the Gaussian curvature of the Fermi sur-  
face and n, = v , / v ,  then we can obtain from the Maxwell 
equations two independent equations for the E ,  and E ,  
components of the electric field. Assuming the electric 
field of the surface H-wave is polarized along the x di- 
rection, we write for the Fourier transform of the elec- 
t r ic  field the equation: 

where 6 = ( c ~ I ~ R ~ / ~ ~ B , w ) " ~  is the depth of penetration 
of the field into a metal with an anisotropic Fermi  su r -  
face and Et(0)  is the value of the derivative of the elec- 
t r ic  field a t  the point y =O. 

Noting that, when the Fermi-liquid interaction is 
taken into account, the expression, (3.19), for the res-  
onance current differs from the corresponding expres- 
sion obtained in the theory of noninteracting particles'4' 
by the resonance factor, we can write the following ex- 
pression for the surface impedance: 
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where (cf. Ref. 4) 

2 
an. ( k , )  = - f I,,, (k ,po)  [k , t+kz - i6 -3k-1] -1  dk, 

0 

In the formula (5.2) the f i rs t  term describes the im- 
pedance of the metal in the absence of a magnetic field. 
In the case of specular reflection of the nonresonance 
electrons from the surface P =  1; in the case of diffuse 
reflection p =%. The impedance peak, corresponding 
to the vanishing of the denominator of the second term 
in (5.2), corresponds to the possibility of the excitation 
of a surface electromagnetic wave. The dispersion 
equation of such a surface wave is obtained by substitu- 
ting the solution to Eq. (5.1) into the right-hand side of 
the expression 

When the inequality k,6 <<1 is fulfilled, we can neglect 
in Eq. (5.4) the contribution connected with the volume 
terms a s  compared to the contribution of the resonance 
term. Bearing in mind the kc values satisfying in the 
conditions for the anomalous skin effect the stronger 
inequality I k,v,(p,(k,)) I < I w -so,(p,(k,))l , let us write 
the dispersion equation for the surface oscillations in 
the form 

[ A  ( k , )  ( 2 [ s ~ , ( ~ ~ ( k : ) )  +k,az ( p , ( k r )  ) - o - i / ~ l /  
/ [ s o . " ( p o ( k , ) )  +k,u,"(po(kz)  l } " = A - ~ D 3 n . ( k , ) / 2 .  (5.5) 

In the k, = 0 case,  when the condition 

is fulfilled, from Eq. (5.5) we obtain 

It follows from (5.8) that two terms coqtribute to the 
imaginary part of w: first ,  the term equal to 7-' and, 
secondly, the term proportional to Im@,,(O). Let us ,  
using the results of Ref. 4, write down the explicit ex- 
pressions for  0,(0) in two limiting cases. If the "fine" 
glancing-electron level lies wholly inside the skin lay- 
e r ,  i.e., if 

1 S[l-6/(ns)']'ynLln(6iy,) 
y.=-Rq.'<6,  p . , ( O ) = L + i  

2 2 ( i t s )  x5s'6 ' 

If the level is located a t  a depth much greater than the 
depth of the skin layer, i.e., i f  yn>> 6, then B,(O) 

=~6~e ' ' ' ~ /6 , J3~ , .  It follows from the formulas given 
that when the level is located a t  a depth, y,, that coin- 
cides in order of magnitude with the depth of the skin 
layer,  then ImB,(O) = 5. 

The magnitude of the imaginary part of the frequency 
(5,8) is, when the inequality 

1 
fie ~ ~ ~ ( 0 )  Im p . , (O)zD-  10,"l 

SO"? I 2 0 ,  

% 
2an"~e'v,(po.0)  6 [ A R  ( p o )  I 'Ln.o. ( p a )  -- ( (5.9) 

Y1afi?czp,' ( p u )  [p,' (po)c , '  (po) ]" ' (n- ' / , )">I  an" ( p a )  I dp,ricp ,-, 

is fulfilled, determined by the momentum relaxation 
time. 

In the k,# 0 case,  from Eq. (5.5) we obtain the follow- 
ing frequency spectrum and damping constant for the 
surface cyclotron oscillations: 

In the w: > 0 case,  when the value of D R#,(O) < 0, 
the solution of the dispersion equation (5.5) is possible 
upon the fulfillment of the condition 

Such a solution exists, in particular, in the gas model 
of a metal (for w <so,), whenA=O (cf. Ref. 4). If, 
on the other hand, the Fermi-liquid interaction constant 
is sufficiently large in absolute value and negative, s o  
that the inequality (5.11) is not fulfilled, then the propa- 
gation of cyclotron waves in the vicinity of the minimum 
of the surface-transition frequency, including those 
studied in Ref. 4, is forbidden. In the opposite case, 
when w i  < 0 and, according to (3.18), DRe@,(O) < 0,  the 
waves studied in Ref. 4 cannot exist. On the other hand, 
the solution (5.10) to the dispersion equation (5.5) exists 
in our theory when the condition (5.6) is fulfilled. The 
frequency spectrum (5,lO) lies above the surface-tran- 
sition frequency, which causes the suppression of the 
collisionless Landau damping. 

6. THE POSSIBILITIES OF A COMPARISON WITH 
EXPERIMENT 

In discussing the possibilities of comparing our theo- 
ry with experiment, it is first  of all necessary to em- 
phasize that, according to the results obtained in Ref. 
4, in which the electron interaction is neglected, reso- 
nances in the surface impedance near the maximum of 
the frequency of the transition between the glancing- 
electron levels a r e  forbidden because of the collision- 
less  Landau damping. As shown in Ref. 4, in the gas 
model resonances a r e  admissible only in those metals 
for which the transition frequency a s  a function of the 
momentum component along the direction of the constant 
magnetic field has a minimum. Accordingly, resonances 
should not have been observed in bismuth on the orbits 
of the glancing electrons, for  the frequency of the tran- 
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sition between the surface levels in bismuth does not 
possess minima; on the contrary it has a maximum near 
the central cross section of the ellipsoidal Fermi sur- 
face. Therefore, the fact that our theory allows the 
elimination of such a disagreement that has existed up 
to the present between theory and experiment evidently 
constitutes at present the main qualitative agreement 
of the theory with experiment. Thus, according to our 
theory, the results of the investigations, described in 
Refs. 2, 11, and 12, of the oscillations in the surface 
inpedance of bismuth a re  connected with the interelec- 
tron interaction, which is the cause of the shift of the 
transition frequency from the region of collisionless 
Landau damping. Here we can assert  that the quantity 

turns out to be positive in the case'of bismuth. 

The qualitative estimates that we can try to obtain 
from a comparison of the theory with experiment cannot 
be accurate, f irst  because the experimental results a re  
not of sufficiently high accuracy and, secondly, although 
this is at present of less importance, because of the 
fact that the most accurate measurements have.been 
performed at  low values of the numbers n. Below we 
shall discuss the available possibilities, using apparent- 
ly the most detailed experimental data, given in Refs. 
11 and 12, for bismuth. 

First  of all, let us note that the positiveness of the 
quantity (6.1) for bismuth is necessary, according to 
(3.14), for the existence of resonance frequencies in 
the case when electrodynamic effects a r e  neglected. 
Allowance for the latter leads to the necessity for the 
satisfaction of the inequality (5.6), which allows us to 
find a lower bound for the magnitude, (6.1), of the inter- 
electron interaction. Using, in accord with Ref. 15, the 
following parameter values for the electronic spectrum 
of bismuth: EF = 2.86 X 10-l4 erg ,  m, = 0.57 X 10-'m, m, 
=1.15~101m ,andm,=1.27m,wherem is the free-electron 
mass,  we-can, in accordance with the formulas (4.9), 
(3.19), and (5.3), write down the following inequality, 
which follows from the condition (5.6): 

where B is the magnetic-field intensity in oersteds. In 
deriving this relation to fit the data presented in Refs. 
11 and 12, we assumed that thep, axis of the ellipsoid- 
al Fermi surface of the electrons in bismuth is oriented 
along the magnetic field. Consequently, according to 
the results obtained in the fourth section of our paper, 
the following expressions 

which lead to the inequality (6.2), a r e  valid. 

For the resonances observed in the work published 
in Ref. 11 in the surface impedance of bismuth on the 
glancing-electron orbits, the right-hand side of the 
formula (6.2) is maximal for the resonance correspond- 
ing to the transition with the quantum numbers n = 3  and 
s = 2 for B =2.11 Oe. The right-hand side then turns 
out to be "0.02. If we address ourselves to the analysis 
of the data given in Ref. 12, then among the impedance 
resonances distinguishable in Fig. 19 of that paper, to 
the maximum of the rightrhand side of the formula (6.2) 
corresponds the n = 4, s = 2 transition in a magnetic 
field of intensity 1.25 Oe. These data correspond to a 
slightly higher value for the lower bound of the quantity 
(6.1), since in this case for the right-hand side of the 
formula (6.2) we obtain the value 0.04. 

It seems to us that the quantitative data given in Ref. 
11 for the locations of the impedance resonances of 
bismuth cannot be easily used for a detailed compari- 
son with our theory since the experimental e r r o r  in the 
determination of the locations of the resonances consti- 
tutes &. On the other hand, if we suppose that, within 
the limits of such an e r r o r ,  there does not ar ise  any 
discrepancy between these data and our theory, then we 
can, in accordance with the formula (4.8), asser t  that 
for bismuth the quantity (6.1) does not exceed ten. The 
cause of the difficulty encountered in the comparison of 
the theory with the experiment described in Ref. 11 
should be seen in the relatively short mean free time of 
the electrons (07 * 8), which gives rise to the consider- 
able broadening of the resonances. Bearing in mind 
that Fig. 19 in Ref. 12 exhibits a number of cyclotron- 
resonance peaks that a t  least several times exceeds the 
number of such peaks observed in the investigation pub- 
lished in Ref. 11, we can infer that experimenters 
possess, o r  a t  any rate can obtain, data on the loca- 
tions of the impedance resonances due to the glancing 
orbits with an accuracy higher than the accuracy 
achieved in the work described in Ref. 11. Therefore, 
it seeins to us that the upper limit for the quantity (6.1) 
in bismuth can be determined more accurately than is 
indicated by the estimate obtained in our paper. 

APPENDIX 

With the aid of the results obtained for cyclotron 
waves we can also write down a dispersion equation for 
the surface spin oscillations whose frequency i s  close 
to the frequency of the transition between the glancing- 
electron levels. Such a dispersion equation, which 
generalizes the results obtained in Ref. 1 to the case of 
an anisotropic Fermi surface, has the form 

[ (o+i lr-so,(po)  )I(-so,"(po)  ) ]'5=-pn"12'h3-'f' 
x t h a ( ~ ~ ) l p , ' ( p ~ ) ~ , ' ( p ~ )  l ' ' t L n . ~ . ( ~ o )  ( n - ' l ~ ) - " ~ [ o . " ( ~ ~ )  I-'. 

In this formula we have used the same notation used in 
Eq. (3.12) and B is the analog of the function a ,  with the 
difference that it is obtained as a result of the convolu- 
tion of the resolvent operator of Eq. (2.3) with the spin- 
dependent Landau function describing the interelectron 
interaction. 

For the frequency of the spin excitations we can write 
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the following expression: 

(A.1) 
Bearing in mind the overestimation of the integral 
(2.19) in Ref. 1, let us also write the formula (A.l) for 
a spherical Fermi surface in the case when p 3  =(Bo/l 
+ B0)/4n : 

where SZ = l e I B/mc, m being the electron mass on the 
spherical Fermi surface, 

In order for the frequency shift to exceed the frequen- 
cy decrement, the second term on the right-hand side 
of (A.1) should be greater than the third term. This im- 
plies that the inequality 

should be fulfilled. In the case of bismuth, when it is 
assumed that p 3  = 0.1, the latter inequality implies 
that, in fields of intensity B = 10 Oe, 1/7< lo9 sec-'. 
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Theory of nonradiative processes in the "non-Condon" 
approximation 
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Institute of Chemistry, Bashkir Branch of the USSR Academy of Sciences, Ufa 
(Submitted 13 February 1978) 
Zh. Eksp. Teor. Fiz. 74, 2154-2166 (June 1978) 

The exact solution of a model with shifted and distorted terms is obtained by expressing the transition 
probability in terms of a correlation function and applying the functional differentiation method. The 
nondiagonal terms are allowed for within the perturbation theory framework. It is shown that the 
dependence of the matrix element of a transition on the nuclear coordinates gives rise to an additional 
factor in the correlation function. In some specific cases an analytic expression can be obtained for this 
factor by solving an appropriate differential equation. The expression for the transition rate constant 
reduces to quadrature in the case of an arbitrary dependence of the matrix element of the transition on 
the nuclear coordinates if this matrix element can be represented as a Fourier integral. The validity 
criterion of the Condon approximation is obtained. The results may be used to describe various 
multiquantum processes. 

PACS numbers: 32.50.+d, 33.50.H~ 

In studies of multiquantum processes-such a s  radi- 
ative and nonradiative transitions in impurity centers 
in crystals or  transitions in polyatomic molecules, 
neutron scattering by lattice vibrations, vibrational 
relaxation of impurity molecules, and chemicaI reac- 
tions-it is necessary to isolate two subsystems between 
which energy i s  exchanged in the course of a quantum 
transition. In such processes the matrix element of the 
first subsystem generally depends on the coordinates 
of the second subsystem. This dependence may become 
unimportant for large separations between the terms 
and then the Condon approximation may be used to des- 

cribe multiquantum processes. This case has been in- 
vestigated quite thoroughly. t1-5' However, there a r e  
certain optical phenomena which cannot be explained 
employing the Condon approximation.[617' It i s  also 
known that, in contrast to optical transitions, the in- 
fluence of the dependence of the matrix elemedt on t h ~  
nuclear coordinates i s  much more important in non- 
radiative transitions since such transitions occur in 
the case when the nuclear codfiguration i s  far from 
equilibrium and the dependence of the matrix element 
near the term quasicrossing point i s  of resonant nature. 
Moreover, in the case of a strong electron-vibrational 
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