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The thermoelectric coefficient q,, of an excitonic insulator was calculated. The case when the electron and 
hole scattering amplitudes by the impurities are different is considered. It is shown that in this case the 
temperature dependence of q,, goes through a maximum. It is also shown that allowance for the terms of 
higher order in the impurity interaction compared with the Born approximation leads to an additional 
contribution to vex. This contribution is of zeroth order in T / p  ( p is the chemical potential of the . 
system) and is characteristic of only the exciton phase. As a result, the thermoelectric power of an 
excitonic insulator is higher than that of semimetals at temperatures close to the transition point. 

PACS numbers: 72.20.Pa, 72.20.Dp, 71.35. +z 

Keldysh and ~ o p a e v ~ ' ]  have shown that semimetals 
with electron and hole Fermi surfaces of like shape are 
unstable to formation of electron-hole pairs at arbi- 
trarily weak electron-hole attraction. As a result a 
transition to the state of an excitonic insulator, with a 
gap in the energy spectrum, takes place at a certain 
critical temperature T,J2] Allowance for the interband 
transitionsc3I fixes the phase of the order parameter of 
the excitonic insulator and makes states with homogen- 
eous particle flow impossible. Realignment takes 
place, but there i s  no superfluidity. When the electron- 
hole attraction greatly exceeds the interaction terms 
responsible for the interband transitions, allowance 
for the latter leads to small corrections to T, and to 
other quantities that describe the realignment. 

Although an analogy exists between the excitation 
spectra of a superconductor and excitonic insulator, 
the kinetic properties are different in a number of 

cases. Thus, absorption of ultrasound of frequency 
o < 2 A  has, in contrast to a superconductor, a maxim- 
um below T,!"~] This is due to the fact that the per- 
turbation upsets the electron-hole symmetry, the co- 
herence factors enter with a plus sign and have the 
same form as for the nuclear-spin relaxation rate in 
superconductors. 

The electric conductivity and thermal conductivity in 
an excitonic insulator decrease monotonically with de- 
creasing temperat~re,c"~] inasmuch as  in this case the 
coherence factors enter with a minus sign. The expres- 
sion for the thermal conductivity is  then analogous to 
the corresponding expression for  superconductor^.[^^ 

zittartzc7] has shown that in the calculation of the 
thermoelectric coefficient the coherence factors take 
the same form as  for the thermal conductivity and the 
electric conductivity. It may seem therefore that the 
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thermoelectric coefficient q in the excitonic phase also 
decreases monotonically below T,. It is shown in the 
present paper that there a r e  two causes of the growth 
of q in an excitonic insulator. The integral with res- 
pect to energy for  q contains an odd function, and this 
makes q of the order of T/y ( y  is the chemical potent- 
ial of the system) when the relaxation time is even in 
the energy. The value of q is also of the same order 
in normal metals and in superconductors with nonmag- 
netic i m p u r i t i e ~ . ~ ~ ]  Deviation from the framework of 
the Born approximation in the calculation of the scatt- 
ering amplitude of electrons by magnetic impurities 
in a normal metal leads to a nonzero differential ther- 
moelectric power already in the zeroth order in T/C(.~'O] 
This is due to the appearance of terms odd in energy 
in the expression for  the relaxation time. The pres- 
ence of such terms in the scattering amplitude of nor- 
mal excitations of a superconductor leads to  an in- 
crease of the thermoelectric coefficient compared with 
the normal state.c1l1 The latter is due to the increase 
of the density of the electronic states near the energy 
gap, and is not connected with the presence of a homo- 
geneous superconducting current. An analogous phen- 
omenon is therefore possible also in an excitonic in- 
sulator and is one of the reasons why q increases be- 
low T,. 

It is shown in the present paper that the presence of 
an energy-odd term in the scattering amplitude causes 
the thermoelectric power of an excitonic insulator to  
become of zeroth order in T/ y and to increase a t  T <T, 
when the number of normal excitations is not exponen- 
tially small. Such an energy-odd term appears in the 
scattering amplitudes of normal excitations when 
account is taken of higher orders in the impurity inter- 
action compared with the Born appro~imat ionf '~~  

The second cause is that the expression for q ac- 
quires additional terms whose coherence factors have a 
plus sign. These terms a re  not equal to zero when the 
electron and hole scattering amplitudes a re  different. 
This leads to an increase of q even if the Born approx- 
imation is adhered to. 

The Hamiltonian of the system is, in the electron- 
hole representation,[121 

where E,= (P - kd2)/2m,,the term with A takes into 
account the appearance of a "condensate" of electron- 
hole pairs with zero momentum. The last term of (1) 
describes intraband scattering by the impurities. It 
is assumed that this scattering is isotropic. The states 
described by the Hamiltonian (1) a re  degenerate with 
respect to the singlet and triplet structures of the 
electron-hole pairs, and the spin indices a r e  there- 
fore left out of (1). The number of electrons and holes 
is assumed equal, s o  that k,, = k,. The case k,, #k,, 
which is analogous to the presence of a magnetic field 
in superconductors, was considered intl3I the Born 
approximation in the impurity interaction for  the case 
equality of the remaining parameters. 

We introduce the matrix Green's function 

where G,,,(o) a r e  the Fourier transforms of the nor- 
mal single-particle retarded Green's functions G ,,, (t) 
= -ie(t)([a,,(t),a,,+ (O)]), and G&,(w) = -G,,X- w) is 
the Fourier transform of the anomalous Green's func- 
tion ~ & - ~ ( t )  = -iB(t)(CaLk(t), a;k.(0)]).c141 The averaging 
is over the grand canonical ensemble. ~ o l l o w i n & ~ ~ ~ ~ ~ ~  
we obtain for  the Green's function averaged over the 
coordinates of the impurity atoms 

where 

N,,, is the state density of the electrons or  holes of the 
semimetal on the Fermi surface, and n is the concen- 
tration of the impurity atoms. 

Gradients of the temperature and of the electric 
field produce in an excitonic insulator a normal-etci- 
tation current 

In an open conductor j = 0, and the thermoelectric field 
is then given by 

The conductivity a,, of an excitonic insulator was cal- 
culated inc6'. It was shown that at T < T, the conductiv- 
ity a,, is lower than the semimetal conductivity a,, . 

To calculate the coefficient q,, we follow a proced- 
ure similar to the one used to obtain 7 for a supercon- 
d u ~ t o r . ~ l l ]  The difference is that in this case there a r e  
two types of carr ier ,  and we obtain 
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hse 2m. d o  ou, t (p .+o)N.  (p .+o)  -= {x j rh2(pu/2)  Im r., ( w )  l m  s.,(w) -- 

where 
p., h=kr2/2m., )c, 11 4) 

3 = [ m . ( w . - x . ) + m , L ( a h + ~ )  I/(m.+mt4), (15) 
d ,=[m. (&f  x.) -mA(al,-,) ] l (me+mh) ,  (16) 
dZ=[mh(oh+xh) -m.(S.-x.) I /  (m.+m,,), (16') 

ee , ,2=d ,~( iJz - lA , l ' )" .  ~ h ~ , ~ = d ~ * ( Q ' - - l  JmIZ) ' : .  (17) 

In the case of a semimetal, when A = 0 and Imh,,  = 0, 
we obtain in the model of free electrons and holes the 
known expression 

where Im3#, , = i re ,  , =nrJe, h2Ner , 
Expression (14) differs from those obtained in [7.131 in 

that i t  contains terms proportional to Imd, and Imd,, 
whose coherence factors have a plus sign. It is these 
terms which cause the thermoelectric power to in- 
crease in the Born approximation, when x,,,= 0, Y = Am, 
~ = c T , = Z = ( ~ , m , + ~ , m , ) / ( m , + m , ) ,  and Imd,,, 
= Im[(m,,,ij,,h - m,,, b,,,)/(m,+m,)]. The last  quantities 
a r e  not equal to zero when Je, ,Ne,, me,, # J,,, NrCe m,, ,. 
It is seen from (14) that when all the parameters of the 
e and h bands a re  equal the quantity q,, vanishes. 
Therefore at nonzero 77, there a re  always band para- 
meters that a r e  not equal and the result is IrndlV2 # 0. 
For  the sake of argument we assume that me #m,. 

The integral with respect to w in (141 is calculated by 
the method developed in [ lB1  for the investigation of the 
densities of the electronic states of superconducting 
alloys. We assume that 

The equations for u(w) a re  similar to those obtained 
in for superconductors with magnetic impurities: 

The pair -breaking parameter u for a neutral impurity 
( J  = Je = J,) is of the form 

For  a charged impurity (j, = -Jh= J), which can be con- 
sidered when the electron and hole numbers a re  equal. 
only in the presence of a compensating impurities, we 
obtain for 

Talung into account the inequality (19), we get from (14) 

where 

We break up the integration region in (20) into two in- 
tervals and substitute in each of them the correspond- 
ing values for ~ ( W ) L ' ~ '  As a result we obtain a t  
A J ~ U ~ J ~  << 1 and o<< 1. 

The quantity q,, does not depend on the sign of the 
interaction J. In the free-electron model the sign of 
N,, is determined by the factor (l/m, - l/m,) and 
coincides with the sign of the coefficient A. In other 
words, the thermoelectric coefficient is larger in an 
electronic insulator than in a semimetal. Let us est- 
imate the second term in (22). At m,- me -me/lOO, 
Am@ -1, and u -10-5 we find that i t  is of the order of 
qam and increases with increasing concentration q 
relative to TJ.,. But n is bounded from below by the 
inequality (19). As n - 0 formulas (20) and (22) do not 
hold, and the term supplementing 5, is of the order of 
u2I3 << 1, a natural result. 

Expression (22) has no analog in the case of a super- 
conductor, since the amplitude of quasiparticle scatt- 
ering by a magnetic impurity in a superconductor, un- 
like in an excitonic insulator, is the same because of 
the averaging over the spins of the  atom^.['^.^^^ This, 
together with the growth of the densities of the elec- 
tronic states near the energy gap, leads to q, > q,. 

Allowance for terms of higher order in the impurity 
interaction compared with the Born approximation 
leads to an additional contribution to the coefficient 
vex. This contribution, q,,,, just as in the case of a 
 superconductor,^"^ differs from zero in the zeroth 
order in d p  and is due to the fact that Imx,,,(o) 
= -ImX,,, (-w) a r e  not equal to zero with m, fm,. 

Removing in (14) all the smooth functions N ~ , ~ ~ V , , V ~  

to the Fermi surface and usAng the p~oper t i e s  w(w) 
= -0 *(- w), d,(w) =d,*(-w), %* (w) = %*(- w ) ,  and also 
assuming that Neve2me =N,v,zm,, we get 

haeN,u.' m. " d o o  Im(@'-IAm12)'" 
'Iex ad= - - -  S 6TzkB m.+mh ch2 ($w/2)  Im e , , ( o )  Im set ( a )  

It is seen from the last  formula that a t  x,, , = 0 we have 
te.a*=O. 

To estimate the integral with respect to o in (23), we 
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assume that the deviation from the Born approximation 
is small. Then formula (6) for Xu,, becomes 

Expanding all the quantities in (23) in powers of X, ,  
and using the inequality (19), we get 

4 hSeN.u.Zm. odo 
7 ~ ' k ~ ( & + m ~ ) '  cl1'($o12) IIII(P-I A,I')" (24) 

Calculation of the integral with respect to w in (24) is 
by the method developed in [l6]. The result is 

q =11 +I] 
ox crB ox sd 

where 

The sign of q,, at J, = J, = J >  0 is the same a s  the sign 
of q,,. Thus, in the presence of a neutral impurities 
the expression for the thermoelectric coefficient q, 
acquires an additional term and the thermoelectric 
power increases. The ratio of qeXu to tl,, is of the 
order of 

and can be much larger than unity. In the case of a 
charged impurity the sign of q,, is determined by the 
sign of J, so that in the case considered by us, when a 
compensating impurity is present, q,,,= 0. This is 
analogous to normal metals[l1: anomalous values of 
the thermoelectric power appear only if simultaneous 
account is taken of both the exchange and the potential 
interactions of the electrons with the impurity. 

In the calculation of the thermal conductivity and 
electric conductivity, terms of the type Imd, and 
Im(x, - x,) cancel out. All that a re  left a re  the terms 
proportional to Im(X, + x,), which give increments of 
the order of T/F, so  that the thermal conductivity and 

electric conductivity decrease monotonically below 
T,.CG7' 

Formulas (22) and (26) were obtained for the temper- 
ature region defined by the inequality A $ u ~ / ~ < <  1. At 
T <<T,, when the number of excitations is exponentially 
small, the formulas a r e  not valid and in this case 5, 
is also exponentially small. Substituting (22) and (26) 
in (13) we find that the thermoelectric field for an 
excitonic insulator is larger than that of a semimetal 
in the region where A,,,@*/3 << 1. 

In conclusion, the authors thank V. A. Moskalenko 
for a discussion of the results. 
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