
l2I3. I. Halperin and P. C . Hohenberg, Phys. Rev. 188, 
898 (1969). 

i 3 ~ .  Vuorio, J. Phys. C 7, 5 0974); C 9, 267 0976). 
1 4 ~ .  R. Corruccini and D. D. Osherov, Phys. Rev. Lett. 

34, 564 (1975). 
1 5 ~ .  W. Fenton, Solidy State Commun. 20, 115 (1976). 
161. E. Dzyaloshinskii, Zh. Eksp. Teor. Fiz. 46, 1420 

(1964); 47, 336, 992 (1964) [Sov. Phys. JETP 19, 960 
jl964); 20, 223, 665 (196511. 

l T ~ .  B. Sonin, Zh. Eksp. Teor. Fiz. 64, 970 (1973) [Sov. 
Phys. JETP 37, 494 097311. 

I B ~ .  S. Langer and J. D. Reppy, Prog. Low Temp. Phys. 
Amsterdam 6, 1 0970). 

1w. E. Zakharov, V. S. L'vov, and S. S. Starobinets, Usp. 
Fiz. Nauk 114, 609 (1974) [Sov. Phys. Usp. 17, 896 
(1975)l. 

2 0 ~ .  M. Gombunov, Zh. Eksp. Teor. Fiz. 67, 1386 (1974) 
[Sov. Phys. JETP 40, 689 (1975)); V. S. L'vov and A. M. 
Rubenchik, Kvazidinamicheskoe optisanie prfstranstvenno- 
neodnorodnykh singulyarnykh spektrov slaboi turbulentnosti 
Quasidynamic Description of Spatially-Inhomogeneous 
Singular Weak-Turbulence Spectra), Preprint, Inst. of 
Automation and Electmmetry , Siberian Div. Acad. Sci. 
SSSR, Novosibirsk, 1976. 

2 1 ~ .  Mercerey and P.  M. Tedrov, Phys. Rev. B 7, 318 
(1973); A. G. Aronov and G. E. Pikus, Fiz. Tekh. 
Poluprovodn. 10, 1177 0976) [Sov. Phys. Semicond. 10, 
536 0976)l; A. G. Aronov, Zh. Eksp. Teor. Fiz. TJ., 371 
(1976) [Sov. Phys. JETP 44, 193 (1976)l. 

n ~ .  A. Tulin, Zh. Eksp. Teor. Fiz. 58, 1265 0970) [Sov. 
Phys. JETP 31, 680 (1970)l. 

2 3 ~ .  M. Khalatnikov, Teoriya sverkhtekuchesti (Theory of 
Superfluidity), Fizmatgiz, 1971, 5 18. 

2 4 ~ .  G. Amnov, Zh. Eksp. Teor. Fiz. 70, 1477 (1976) [Sov. 
Phys. JETP 43, 770 (197611. 

2 5 ~ .  C.  Martin, 0. Parodi, and P. S. Pershan, Phys. Rev. 
A 6, 2401 (1972). 

2 6 ~ .  Malaspinas and T. M. Rice, Phys. Kondens. Mater. 
13, 193 (1971). 

2 7 ~ .  L .  McMillan, Phys. Rev. B 14, 1496 (1976). 
28A. I. Larkin and Yu. I. Ovchinnikov, Zh. Eksp. Teor. Fiz. 

47, 1136 0964) [Sov. Phys. JETP 20, 762 (196511. 
2%. A. Eggington and A. J. Leggett, Collective Phenomena 

2, 81 (1975). 
3 0 ~ .  E. Volovik and V. P.  Mineev, Zh. Eksp. Teor. Fiz. 

72, 2256 (1977) [Sov. Phys. JETP 45, 1186 (1977). 

Translated by J. G. Adashko 

High-energy asymptotic distribution function of "lightyy and 
"heavy" carriers in strong electric fields 

2. S. Gribnikov 
Semiconductor Institute, Ukrainian Academy of Sciences 
(Submitted 25 November 1977) 
Zh. Eksp. Teor. Fiz. 74, 2112-2122 (June 1978) 

A new mechanism is considered for the production of the drift distribution function 

of the carriers in nonmetallic crystals at high energies and in a strong electric field. This mechanism 
comes into play if several bands of the carriers-"light" and "heavyW+xist at these energies, and 
consists of a drift of the carriers over the light band and cooling in the heavy bands, the backscattering 
from which into the light band has on the average a low probability because of the low state density. In 
contrast to the single-band case, in which the drift asymptotic form appears only as a result of 
predominant spontaneous emission of phonons with energy higher than the energy eE1 acquired over the 
mean free path, in the multiband case a drift asymptotic distribution is obtained also at large occupation 
numbers of the emitted and absorbed phonons, as well as when the fraction of pure elastic scattering is 
large. Two variants of calculations performed for the simplest two-band model and leading to analogous 
results are considered. In the first variant inelastic scattering by optical phonons is assumed, with a 
transition matrix element that does not depend on the wave vector; the second variant is suitable for 
arbitrary types of scattering in the case of strong inequality of the effective masses of the carriers. It is 
assumed in the calculations that the probability of scattering of a camer into one state of its own band is 
of the same order as that of scattering into the band of another carrier. 

PACS numbers: 72.20.3v, 72.10.Di 

1. Impact ionization of carriers ind ie lec t r ics  a n d s e m i -  
conductors, which i s  responsible  fo r  the avalanche 
multiplication of the c a r r i e r s  and avalanche breakdown 
in s t rong e lec t r ic  fields, i s  determined by the distribu- 
tion function at energ ies  c of the  o r d e r  of the  ionization 
energy c, ,  which great ly exceeds the average  energy 
F even in the  breakdown regime. In connection with the 
impact-ionization theor ies ,  methods suitable fo r  
both quasi-isotropic and strongly anisotropic  distribu- 
tion functions (at a l l  energ ies  o r  in  definite energy 
intervals) w e r e  developed for  t h e  calculation of t h e  dis- 
tribution function of high energies .  

T h e  qualitative r e s u l t s  of such  calculations fo r  the 
c a s e  of a single  isotropic  band are the following: The 
energy  dependence of the quasi-isotropic distribution 
function a t  high energJi c >F is determined by one of 
two exponentials: 

f (E) -e-"T (1) 
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where E i s  the electric field, T is the lattice t empera  
ture in energy units, L(E) i s  the characteristic energy 
relaxation length of a carr ier  with energy E (the cool- 
ing length): 

D(E) = +S(E)T(E) is the diffusion coefficient, 
-- q&) = Y(E)T(E) is the freepath length, v(c) is theveloci- 

ty, 7(&) is the relaxation time, T,(E) = ~ T ( E ) ~ ( c )  is the 
energy relaxation time, [(E) is the inelasticity factor 
of the collisions; in scattering by phonons of a sin- 
gle branch we have 

1 zplr)  

i (e)= ~Uj')q'w(r) ( N q  + l) dq/3~ ' (~)  j qul(q)hQ. dq, (4) 
0 

P(E) i s  the carr ier  momentum, fiS2, i s  the energy, N, 
i s  the number of isotropic phonons with momentum q, 
and w(q) determines the intensity of the interaction of 
the carr iers  with the phonon state. In the case of non- 
dispersive optical phonons, when i2q = a,, and N,= No,  

and in the case of acoustic phonons with the speed of 
sound s 

The energy dependence of a strongly anisotropic 
(needle-shaped) distribution function i s  determined by 
the exponential 

Of the three possible laws (I) ,  (2), (5), there i s  
realized a t  a given energy the one that gives the slow- 
es t  attenuation of the function with increasing energy; 
this i s  determined by comparing the three quantities 

the largest of which is of interest to us. It i s  easily 
seen that in that range of energies E where N,, ,, , >> 1, 
i.e., where the induced emission and absorption of 
phonons (optical or acoustic) prevails, the distribution 
function is always quasi-isotropic and i s  a Davydov- 
Druyvesteyn function, which leads in the limit to laws 
( I )  and (2). In that region of energies E where N,, ,, , 
<< 1, i.e., spontaneous phonon emission prevails, a 
range of fields E i s  produced in which the distribution 
function is strongly anisotropic and depends on energy 
in accordance with the drift law (5): 

' 

Thus, in the case of a single isotropic band the aniso- 
tropic asymptotic distribution function that determines 
the law (5) is  the consequence of the predominance of 
spontaneous phonon emission in the energy-relaxation 
process, and manifests itself in a range of fields that 
i s  larger the better the strong inequality 

i s  satisfied. 

2. The purpose of the present paper is to show that in 
the real  crystals, owing to the complexity of the energy 
spectrum a t  high energies, the region of existence of 
the drift function (5) expands considerably and is nu 
longer rigidly connected with the condition (7), i.e., it 
can take place also at ti%, , , , < T in the region of large 
phonon occupation numbers. We explain the foregoing 
qualitatively using a band model with two isotropic 
bands: "heavy" and "light" c,(p), in which the den- 
sities of state differ substantially (see the figure): 

We present examples of such situations o r  qualita- 
tively close to them. 

a) Two degenerate bands - band of light holes and 
band of heavy holes. In InSb, where A>&,, and in InAs, 
where A"&, (A is the distance to the spin-split band and 
E, is the width of the forbidden band at k = 0), this mod- 
e l  is capable of describing holes that take part in the 
impact ionization. 

b) The ca r r i e r s  in a spin-split hole band in crystals 
with diamond and zincblende structure a re  lighter at 
c >  A than either the light o r  the heavy holes (see, 
e.g.,C61). Therefore our model describes qualitatively 
ionizing holes also in the case E, - E, > A, which takes 
place, fo r  example, in Ge, Si, and GaAs; the light band 
in this case is the spin-split band, and the heavy ones 
a re  the aggregate of the bands of the light and heavy 
holes. 

c) The two lowest electron bands at the point X, 
which intersect in crystals of the diamond type but a re  
separated from each other in crystals of the zincblende 
type (see Figs. 37 and 45 of Csl). (We note that the pres- 
ence of two degenerate bands o r  of bands (heavy and 
light) that a r e  close to each other a t  the extremum point 
explains why in most semiconductors the energy of the 
ionization-threshold is close to the minimal width of the 
forbidden band,r71 thus ensuring satisfaction of the mo- 
mentum conservation law .) 

d) Two groups of nonequivalent extrema in the case 
when the time of the intervalley transitions is of the 
same order of magnitude as the time of the intravalley 
momentum ~ c a t t e r i n g . ~ )  

a b 

FIG. 1. Variants of the considered two-band model with 
heavy band El(p) and "light" band E2(p). In the case b we 
have gz(&) = 0 and 0 < E 4. 
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Inasmuch as the relaxation times of the light and 
heavy carriers, determined in either case by scattering 
into and from the heavy band, are close to each other, 
T,(c) = T~(C), we have 

is the isotropic component of the distribution function at 
the energy E; the collision frequencies v,, are defined 
by the formulas 

where v{,(&) describe the possible pure elastic scatter- 
ing, which is  not represented in the functionals D,, 
[f O ( E ) ]  that determine the relaxation of the isotropic 
parts of the distribution function: 

so that 

On the other hand, in diffusion heating of carriers the 
distribution functions are the same in both bands and 
are given by 

TI" ( e )  =e'E'L12 ( e ) l e ,  

We describe the approximate procedure for solving 
Eqs. (12) and (13), analogous to that used earliefi2*l 
for the single-band case. We seek f,, in the form 

inasmuch as the contribution of the light band to the to- 
tal heating and to the relaxation is negligible: although 
the mobility of the carriers in this band is in fact higher, 
their number is smaller here by a factor g,/g,. 

Thus, the quantities to be compared are T, Tjl)(&), 
and Ti2'(&). At Nzpl(c ) >> 1 we have 

with y(c) chosen such that 

so that the range of fields in which the drift function 
(5) predominates is determined by the inequalities 

For the existence of this band it is necessary to satisfy 
in place of (7) the strong inequality 

where the condition (11) is not only valid with certainty 
when (7) is satisfied, but can be satisfied as a result of 
(9) also at ECi,,,,, ,<< T, when for all the emitted and ab- 
sorbed phonons N, >> 1. 

where 9:,,(&) are the isotropic parts of 9,,,P. 

We note that the substitutions (16) and (17) by them- 
selves do not impose any limitations whatever on the 
sought f,,,,. The idea of the approximate procedure is 
based on the assumed slow dependence of 9 , , ,  on 
and of y (E) on E. 3. In the next two sections we obtain solutions for the 

model of two isotropic bands with a common center, un- 
der the assumption that the carriers are  scattered into 
their own band and in the band of other carriers, and 
emit and absorb nondispersive (optical) phonons. It is 
also assumed that the quantities w ,,(q)(i, k = 1,2), which 
determine the scattering intensity, do not depend on q, 
as  is the case for short-range interaction forces, and 
are quantities of the same order: w,, = w,, =wl2 = so,,. 
The carrier distribution functions f, and f, in the bands 
are then determined from the equation 

After changing over in (12) and(l3) from the variables 
px, , ,  to the variables &=E,,,, and Q=px/p, we obtain 

where we have introduced the velocities 

at c1,,(#) = &, the momenta P,,,(E), and the mean free 
paths 

where 

of carriers of energy E in the bands E,  and &,; 
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change of y over interval FiCi,), provided that No is de- 
termined by Planck's formula, we have 

where 

1 fin V I  
I '  

then 
and the expression for D,(@:, @;, y) is obtained by making 
in the right-hand side of (19) the substitutions 

This approximation corresponds to crossing out in (18) 
the terms containing a@,,,/a0. Using (24') and (25) we 
write (22) in the form In the right-hand sides of (18) we have introduced the 

factor P ,  a small parameter in terms of which the 
sought solutions y and @,,, are expanded. 

y = y o ( & ) + p y ~ ( ~ ) + p 2 y 1 ~ ( e )  + . . . etc. 

where We make use in fact of the smallness of the relations 
KS~,/E and eEl/&. Eqs. (18) a re  integrated with respect 
to 0 and expressions are  obtained for @,, and a, in 
terms of @:, @:, and y. Averaging these expressions 
over 0, we obtain together with (17) a system of equa- 
tions for @;, @:, and y . The functions F ( s )  vary respectively from 1 to 0 in the 

range of s from 0 to 1. 

We consider the case when the condition (9) is satis- 
fied; since s, cannot exceed unity, s,<< 1, so  that 

4. In the zeroth approximation in y, to which we con- 
fine ourselves here, 

where 
a,. ,=p,, ZV,.  ,/2eEL,, ,, b,,  ,=PI ,  Z ~ I , Z Y / ~ ;  

@ , , a  = - I (a l , z -b , ,2;  ~ , , ~ + b , , ~ ) ,  
eE 

and it follows from (26) that 

In order for Eq. (27) to have a solution s, 1, i.e., F, 
<< 1, it is necessary that i t s  right-hand side, calculated 
at y = (eEl,)", be small. We obtain below the following 
estimates, assuming v,, = v,, = v1 = v,, vZZ = vlZ<< v,, and 
also I',,=r (the latter takes place at A,, 0 o r  if all A,, 

ZA.) The condition that we need is  of the form 

In (21) we can use the smoothness of the functions 
a:,,(&) and, writing 

neglect the terms d order -y. These equations then 
turn into a homogeneous algebraic system with respect 
to @:,,(&), whose solvability condition is determined by 
y(d:  

here 

The condition (28') is satisfied if, with sufficient mar- 
gin, 

and we have introduced the notation 
11, 2 = 1 ( ~ , ,  =-bl ,  :; a t .  ~ + b , ,  4, 

the inequalities (29) are  close to the conditions (10) ob- 
tained from qualitative considerations, and coincide 
with them at A =  0. In their derivation we took into ac- 
count the fact that 

(24) 
In the zeroth approximation in p (i.e., neglecting the 
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If there were no cl(p) band at all, then to obtain y it 
would be necessary to solve, in place of (27), the equa- 
t ion 

which contains only one collision frequency v2,. The 
condition that F ,  be small: 

~ ~ ~ = ( 1 + ) . ~ ~ ) - ' ( j . : ~ + c h [ s  2 (L-- T 'eEl,, ) ] c h i ]  RQ, (31) 

where 12,=v2/v2,, leads to the drift criteria: 

i.e., besides satisfying the condition (6) written out 
above, that the scatter be inelastic, it is necessary also 
that the contribution of the elastic scattering, which 
tends to make the distribution function isotropic, be 
small. 

The condition (29) admits of the existence of a range 
of fields in which the distribution function of the light 
carriers is anisotropic and determines the drift asymp- 
totic energy distributions (5) of both the light and heavy 
carriers,  subject to satisfaction of the condition 

which takes place at Zi>> and No>> 1, and at a rather 
large contribution of the elastic scattering. 

The foregoing analysis makes use essentially of the 
assumption that the probabilities of scattering into 
states that belong to their own and to foreign bands a re  
of the same order of magnitude. In this sense the two- 
band problem considered here is equivalent to the prob- 
lem with one band of complicated form. In this case 
ther e is no strong redistribution of the carr iers  among 
the bands in the heating field, as is the case when the 
probability of the interband scattering is small com- 
pared with the probability of the intraband scattering 
and is determined entirely by this smallness. Outside 
the field interval (29) it follows from (20) and (23) that 

i.e., the distribution function is quasi-isotropic over the 
entire complex equal-energy surface. 

Within the limits of the interval (29), the situation 
changes: inasmuch a s  in the E, band the function lp, 
becomes strongly anisotropic and most carr iers  a re  
concentrated in a needle, the average distribution func- 
tion in the c2 band greatly exceeds the average function 
in the E, band, where there is no "needle": 

i.e., a redistribution of the carr iers  among the bands 
sets in, due to the appearance of a needle-shaped dis- 
tribution in one of them. 

5. The calculation scheme developed above made ex- 
plicit use of the independence of the phonon energy and 
of the quantities w,, of the wave vector, but was subject 
to no other limitations. The conditions (8) and (9) were 
used only to obtain the drift solution of Eq. (22), which 
was derived without these conditions. We consider be- 
low a different calculation scheme in which the mech- 
anism of scattering by the phonons is not specified, but 
the conditions (8) and (9) a re  used from the very begin- 
ning. 

The equations for f ,  ,, which take the place of (12) 
and (13), are  of the form 

here vl(cl,) and u2(cZp) are the frequencies of the depar- 
ture of the carr iers  from the state with momentum fi in- 
to the heavy and light bands, respectively; I,,[ flp] is the 
operator of the arrival of the carr iers  from the heavy 
band into a state with momentum p in the heavy band: 

with v12, v2,, Dl,, D,, given by formulas (14) and (15) in 
which, however, 51,, No, w,, should be taken to mean pa- 
rameters, independent of the wave vector, of scattering 
with participation of optical phonons, and functions c 
determined by the concrete scattering mechanism. 

The possibility of expressing the operators of the in- 
terband scattering in the form (36) is connected with the 
smallness of p2(&) compared with p,(&): 

which follows from (9). It is seen from (37) that the 
momentum transferred in interband scattering through 
any angle is approximately equal to pl(c), and it is this 
which determines the quantities2' no(&), No(&),  and 
PL)~,(E). In addition to writing the interband-scattering 
terms in approximate form in (35), we have omitted 
from this equation the terms responsible for the scat- 
tering within the light band, which has low probability 
according to (8). 

Finally, from (9) it follows that the distribution func- 
tion of the heavy carr iers  is quasi-isotropic: 

(inasmuch as  even in the case of s,(c) = 1 we have sl(&) 
<< 1). This enables us to replace Eq. (34) by a system 
of two equations that determine the first  two spherical 
harmonics off,, namely ff(clp) and f:(cl,): 

where D,O,[ff(&)] is the isotropic component of the dif- 
ference 
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-;,(&) f;(&) is the first  spherical harmonic of the same 
quantity, it being assumed for simplicity that this quan- 
tity can be expressed with the aid of the relaxation time 
ti'. 

Obtaining from (35) the solution f, expressed in 
terms of f,0(&): 

where p' and p" differ from p in that the momentum 
projection p, is replaced respectively by p: and pi', and 
also expressing f;(&) in terms of fP(&) from (40) and 
substituting the obtained f, and f , ' (~ )  in (39), we obtain 
a closed integro-differential equation that determines 
f,O(&). 

Using in (41) the same asymptotic procedure which 
was used in Secs. 3 and 4, we have 

so that 

where 

d ln I,, 
s , --eEl,  - d l n f ; ( s )  = -eElz - 

ds  ds ' 

The sought equation is of the form 

r,, and r,, are  given by the same expressions a s  in 
formula (24'), and y in these expressions should be 
taken to mean s,/eEl,, while no= S1,(&) should be taken 
to mean the frequency of the "interband" phonon. 

The condition for substantial anisotropy of f,, which 
takes the form s , 4  1, i.e., F(s,)<< 1, is satisfied if 

I t  is easy to note the analogy between (45) and (28), into 
which (45) goes over if we use in .S[ff] the same para- 
meters for scattering by optical phonons a s  were used 
in the derivation of (28). With the aid of (45), formulas 
(29) and (33) can be generalized to include an arbitrary 
scattering mechanism; in this case Eno should be taken 
in these equations to mean the characteristic energy of 
those phonons that make the main contribution D:,. 

The results of this article can be easily generalized 
to include the case of more than two bands, to the case 
of different positions of the extrema in momentum 
space, and also to the case of a complicated band shape. 

" ~ h e  considered mechanism that causes the drift of the 
asymptotic distribution function can operate also in the case 
of a single anisotropic band. The band anisotropy must be 
such that the carr ier  motion in the electric-field direction 
on different sections of the equal-energy surface be 
described by essentially different effective masses (for 
example, a "fluted" band). 

)1f we put no = 0 o r  wi2 = 0, we have the case of pure elastic 
interband scattering, when ri2 = r2, = 0; the inelasticity of 
this scattering plays qualitatively no role, since energy 
relaxation occurs in the heavy band in all  cases. 
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