
scattering is observed. In the range T,,< T,,< T,, the 
emitted radiation is the partly thermalized hot lumi- 
nescence, whose properties approach that of the ordi- 
nary luminescence. The completely thermalized lumi- 
nescence appears in the A52<< y case only after the re -  
laxation processes a r e  completed. Thus, the hot lumi- 
nescence is an intermediate type of radiation on trans- 
ition from resonance Raman scattering to lumines- 
cence. 

We shall conclude by noting that our polarization an- 
alysis of the relaxation processes applies to relatively 
low rates of excitation when the frequency of the exci- 
ton-exciton collisions ve-, (10' se~- ' )  is less than the 
frequency of the exciton-phonon collisions v,,,, which 
is (6-8) x 10'' sec-I. Therefore, the main mechanism 
of the excitation energy dissipation is the interaction 
between excitons and phonons. At high rates of exci- 
tation the exciton-exciton interaction processes may 
alter considerably the relaxation and the nature of the 

emitted radiation. 
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States analogous to those with supertluid currents in an ordinary supertluid can exist in a Bose-condensed 
electron-hole liquid as well as an easy-plane antiferromagnet. For easy-plane antiferromagnets these states 
are metastable helicoidal structures with an antiferromagnetic vector that rotates inside the easy plane. 
These structures are investigated with the aid of the usual phenomenological theory based on the Landau- 
Lifshitz equations to which some dissipative terms are added. The metastable helicoidal structures can be 
produced by injecting spins into the antifemomagnet. This gives rise to magnetization far from the point of 
injection, a manifestation of a real spin transport in these states. For a band antiferromagnet, the 
stationary phenomenological equations are the Ginzburg-Landau equations, which are derived by using an 
excitonic-state model with extrerna that do not coincide in k-space. 

PACS numbers: 75.10. -b 

INTRODUCTION 

BoSe condensation of electron-hole pairs in a solid 
leads to the appearance of a complex order parameter 
A = / A  IeiW,['] and for this reason the possible existence, 
in analogy with ordinary superfluids, of nondissipative 
currents proportional to Vq (supercurrents) has been 
under discussion for quite some It has been 
established that this analogy must not be drawn too far. 
Fi rs t ,  a current of electrons and holes transports 
neither mass nor energy, thereby excluding a large 
number of traditional methods of producing and observ- 
ing supercurrents. Second, the electron and hole con- 
servation law is satisfied a t  best only approximately, 
since interban! transitions take place. These, a s  
shown by Guseinov and Keldysh, lift the phase degen- 
eracy of the order parameter and make the existence 
of stationary spatially homogeneous supercurrents im- 
possible. There can exist, however, stationary states 

with finite supercurrents, which a re  inhomogeneous 
along the supercurrent direction. They were investi- 
gated with the aid of the Ginzburg-Landau (GL) equa- 
tions for  a semimetal with band extrema that coincide 
in k - s p a ~ e , [ ~ '  as well as for a system of spatially 
separated electrons and holes.c71 It was shown in "I 

that such inhomogeneous states a r e  metastable so  long 
as the processes that fix the phase a r e  weak enough. 
A generalization of the results of c61 to the case when 
the pair-forming electrons and holes pertain to extrema 
that do not coincide in k-space and the wave function of 
the electron-hole pairs is triplet in spin is briefly re- 
ported in [']. In analogy with the A-phase of superfluid 
~e~ Igl one can speak here of two Bose condensates of 
pairs with spin projections + 1 and -1 on the wave vec- 
tor  of the spin-density wave (SDW) that is produced in 
this caseOf3] If both condensates have equal superfluid 
velocity, then a current of electron-hole pairs exists, 
and if  their velocities a r e  equal but opposite, then a 
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spin current exists. These two currents were called 
in ['I exciton and spin supercurrents. An excitonic 
state with a triplet pair wave function is the band- 
ferromagnetism model used to explain the properties of 
antiferromagnetic chromium.c101 The GL equations 
which describe the states with spin supercurrents a re  in 
this model also the spin-hydrodynamics equations and 
a re  suitable for any antiferromagnet, regardless of the 
microscopic nature of the spin ordering. Spin super- 
currents can therefore be observed in any antiferromag- 
net with easy-plane anisotropy. The last condition is 
necessary for the metastability of these supercur- 
rents.[81 

In Secs. 1 and 2 of this paper, states with spin super- 
currents a re  investigated on the basis of a simple 
phenomenological theory that is a particular case of the 
more general phenomenological theory used repeatedly 
fo r  magnetically ordered systems.[lll A sim ilar phe- 
nomenology was developed also for  superfluid ~ e ~ . ~ ~ ~  
Within the framework of such a phenomenology, the 
concept of superfluid spin- transport velocity, in other 
words supercurrent, was introduced long ago by Hal- 
perin and f oh en berg['^' in a hydrodynamic analysis of 
spin waves. In superfluid He3, spin supercurrents were 
investigated theoretically by V ~ o r i o , ~ ' ~ ~ w h i l e  their criti- 
cal velocities were observed in experiments on the 
relaxation of inhomogeneous magnetization.[14] Super- 
currents in chromium were discussed by F e n t ~ n , [ ' ~ ~  
who concluded that they can exist only in a direction 
perpendicular to the SDW wave vector, whereas accord- 
ing to ['] and to the present paper the supercurrent can 
be arbitrarily directed. The cause of the discrepancy, 
in our opinion, is Fenton's incorrect interpretation of 
the Landau criterion, in which he included the excita- 
tions of the surrounding medium. 

The results of the present paper for easy-plane anti- 
ferromagnetism can be briefly formulated as follows. 

1. Metastable helicoidal structures with antiferro- 
magnetic vector that rotates inside the easy plane exist 
and can be produced in experiment. In contrast to the 
previously investigated helicoidal which 
a re  the ground state of'the antiferromagnet, in these 
structures there exists a spin current proportional to 
the gradient of the angle of rotation of the antiferro- 
magnetic vector. The period of the structure is much 
larger than the lattice period. 

2. In open geometry, a helicoidal structure with a 
rotating antiferromagnetic vector should be maintained 
by constant pumping of spins a t  one end of the anti- 
ferromagnet (by spin injection). A finite magnetization 
will then be observed at the other end, 'and will de- 
crease in inverse proportion to the sample length, and 
not exponentially with length a s  in diffusion spin trans- 
port. The connection with the spin injection and the ap- 
pearance of magnetization far from the injection point 
show that the spin supercurrent is indeed connected 
with real spin transport. 

3. A spin supercurrent exists in the volume only when 
it exceeds a certain critical value determined by the 
anisotropy energy within the easy plane. When another 

critical value is reached, determined by the energy of 
the anisotropy that distinguishes the easy plane, the 
states with supercurrents cease to be metastable and a 
supercurrent relaxation mechanism appears and is due 
to the onset of special singular lines similar to super- 
fluid vortices$121 

Corresponding results can be formulated also for  ex- 
citon s u p e r c ~ r r e n t s . ~ ~ ~ ~ ~  In Sec. 3 is presented a deri- 
vation of the GL equations for an excitonic state with 
non-coinciding extrema in k-space, which makes i t  
possible to obtain microscopic expressions for the 
quantities that enter in the phenomenological theory. 

1. HELICOIDAL STRUCTURE WITH SPIN 
SUPERCURRENT 

We express the free energy of the antiferromagnet in 
terms of the functional 

Here cp is the angle of rotation of the antiferromagnetic 
vector in the easy plane, m is the magnetization along 
the axis perpendicular to the easy plane (the "difficult" 
axis), x is the susceptibility, while A and the length 
I a re  constants. The third term in (1) is the anisotropy 
energy inside the easy plane, and the integer n is the 
order of the symmetry axis that coincides with the dif- 
ficult axis. In the Landau expansion near the phase 
transition, n is equal to the degree of the order param- 
eter in the principal term that fixes the phase (the 
angle cp). 

The functional (I) is suitable for the description of 
only the very lowest motions of the lower branch of the 
antiferromagnetic-magnon spectrum. The equations 
of motion a re  the Hamilton equations for the canonically 
conjugate pair of variables uz/y and cp (y is the gyro- 
magnetic ratio): 

These equations can be obtained from the Landau- 
Lifshitz equations for a two-sublattice antiferromagnet. 
The first  is the analog of the hydrodynamic continuity 
equation from which i t  differs by the term that fixes the 
angle cp.  If the gradient of both halves of the second 
equation is taken, this equation becomes the analog of 
the Euler equation for a superfluid: 

where the effective field H ,  = 6~ /6m along the difficult 
axis plays the same role a s  the chemical potential for  a 
superfluid. The second term in the right-hand side of 
(2) is of the form of the divergence of the spin super- 
current +Avcp. 

Equations (2) and (3) have stationary solutions corre- 
sponding to zero magnetization m = O  and to an angle cp 
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determined from the stationary sine-Gordon equation: 

In the one-dimensional case Eq. (5) i s  the equation of 
motion of a physical pendulum, in which the time is re- 
placed by the spatial coordinate1) z .  We are interested 
in solutions that correspond to rotation of the pendulum: 

where q is the value of Vcp averaged over z , and +(z) i s  
a periodic function with period 2n/nq. At small q<< 1/1 
the obtained structure constitutes domains that corre- 
spond to n different extremal directions in the easy 
plane. The domains are  separated by walls of thickness 
-1, inside of which there is a supercurrent of the order 
of A/l which is damped exponentially outside the walls. 
With increasing q the density of the domain walls in- 
creases and the walls coalesce at q >> l / l ,  while the end 
point of the antiferromagnetic vector describes, for a 
displacement along the z axis, a line close to a helix, 
i.e., Vcp - const and the fixing of the phase in this limit 
is immaterial (the anisotropy in the easy plane leads to 
small corrections). 

We have obtained a helicoidal structure which i s  not 
the ground state of the antiferromagnet and has a non- 
zero spin supercurrent. We show now that this struc- 
ture can be metastable. Consider the limit q << 1/1. The 
vanishing of this structure constitutes relaxation of the 
spin supercurrent, which is proportional to the number 
of the domain walls. If the values of the angle cp are  on 
the boundaries," then the increment of cp along the 
supercurrent can increase only by multiples of 277, i.e., 
n walls must vanish simultaneously in the system [see 
n in (I)]. They vanish in the following manner: Holes 
appear inside of n walls. The hole boundary is a 
singular line that can be called, in analogy with a super- 
fluid, vortical. The edges of the n walls are  joined 
together along the vortical line in such a way that on 
going around the line the angle cp changes by 2n (see the 
figure). The growth of the hole is in fact the process of 
the vanishing of the n walls. In the course of this pro- 
cess, the change of the energy consists of the vortex- 

FIG. 1. The appearance of a hole in the domain walls at 
n=4. The domain walls are shown by the solid lines. The 
numbers are the values of the rotation angle in the easy plane 
on going around the vortex line (the point V). The dashed 
line is  the cut where a discontinuity 27r is  assigned to the 
angle. 

line energy, which is proportional to the line length L,, 
and of a decrease of the energy of the walls themselves, 
due to the decrease of their surface area by an amount 
equal to the area of the holes S,. Taking both contribu- 
tions to the energy into account (for details see C1'], 

where the vortex energy for Eq. (5) with n = 1 was con- 
sidered), we obtain the energy of the intermediate "vor- 
tex" state of the n walls: 

Here r, is the radius of the vortex core, or  in other 
words the distance from the vortex line where the func- 
tional (1) ceases to hold because of the large growth of 
Vcp. We choose the hole in the wall in the form of a 
half-ring of radius R in contact with the sample boun- 
dary. The maximum of the energy E,, corresponding 
to the value R =(~/8)ln '~~ln(l / r , ) ,  is the activation bar- 
r ier  that ensures metastability of the structure: 

The angle cp becomes indeterminate on the vortex 
line. In contrast to an ordinary superfluid, however, 
the order parameter need not necessarily vanish for 
this purpose. It is energywise more profitable in an 
antiferromagnet to take the antiferromagnetic vector 
from the easy plane onto the difficult axis. The radius 
r, is then defined as  the distance from the vortex line, 
at which the kinetic energy ~ ( V c p ) ~  becomes of the order 
of the anisotropy energy E, that singles out the easy 
plane, in exactly the same way a s  the length 1 can be 
defined as  the distance at which the kinetic energy be- 
comes comparable with the aniostropy energy E ,  inside 
the easy plane. Normalizing all energies to the crystal- 
lattice unit cell and using the estimate A / y -  J / U ,  where 
J is the exchange energy and a is the lattice constant, 
we obtain the following estimates for the lengths r, and 
1: 

r,-a(J/EA)'h, 1-a(J/Ep)". (9) 

Substitution of these values in (8) yields a rather large 
value of the activation barrier: 

At large q >> 1 /l , when the anisotropy energy leads to 
small corrections, the barrier E, is defined in the 
same manner a s  for a s u p e r f l ~ i d . ~ ' ~ ~  Its value is ob- 
tained from (8) by replacing 1 with 4/7rn112q, and it 
vanishes at q - l/r,. This corresponds to the critical 
value of the supercurrent, when intense vortex forma- 
tion sets in, a process that can be taken into account 
phenomenologically by introducing into Eq. (4) a "fric- 
tion force" for the supercurrent: 

where T - exp(~,/kT) at (Vcp)<< l/r,, in analogy with the 
~ordanskil-~an~er-~ischer theory.c1s' For a super- 
fluid, E ,  depends on the supercurrent down to its lowest 
values determined by the system dimensions. This 
leads to a nonlinear dependence of the friction force on 
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the supercurrent. A similar nonlinear dependence, in 
the case when the phase is fixed, takes place only for 
large supercurrents (~cp)>> l / l .  At small supercur- 
rents, @cp)<< 1/1, the barrier E,, according to (a), is 
independent of @cp) and the friction force is proportion- 
a l  to the s ~ p e r c u r r e n t , ~ )  but 7 can in this case be very 
large, and i t  is this which justifies the neglect of the 
friction force. 

2. POSSIBILITY OF PRODUCING AND OBSERVING 
SPIN SUPERCURRENT 

A spin transport proportional to Vcp takes place when 
ordinary spin waves a re  excited. This is one of the 
arguments favoring the use, by Halperin and Hohen- 
berg,'''] of the terminology of two-speed hydrodynam- 
ics to describe spin waves. According to Halperin and 
Rice,c3' a manifestation of the "superproperties" of such 
a transport might be undamped low-frequency spin 
waves. We must emphasize here the difference be- 
tween magnons and phonons in normal liquids and in 
solids. Phonons, too, do not attenuate in the low-f re- 
quency limit, but this is not a manifestation of super- 
fluidity. The point is that in the case of acoustic vibra- 
tions of the body a s  a whole there a r e  no sources of 
resistance to  the motion in the volume. Spin currents, 
on the other hand, move relative to the crystal lattice 
and do not attenuate, even though a possibility of their 
attenuation is potentially present; this is in fact super- 
fluidity. Similarly, a pure metal differs from a super- 
conductor, although both have infinite conductivity at 
T =O. However, the conductivity of a metal becomes 
finite when impurities a re  introduced, but that of a 
superconductor does not. All this means that magnons 
a re  analogous not to ordinary sound but to fourth sound. 
In the linear regime of magnon excitation, however, it 
is impossible to attain very slow oscillations because 
of the gap in the magnon spectrum. 

As already mentioned, spin supercurrents were used 
to explain experiments on the relaxation of the inhomo- 
geneous magnetization of superfluid This phe- 
nomenon is analogous to the flow of a helium film over 
a wall between reservoirs with different helium levels, 
since the spin transport takes place a t  critical veloci- 
t ies determined by vortex formation. One can hope to 
realize such experiments also in easy-plane antiferro- 
magnets if other nonlinear phenomena do not set  in 
ahead of the vortex formation. Such phenomena include 
parametric instabilities!lgl The threshold for their 
onset can be roughly estimated by using the condition 
that the damping of the spin waves be equal to the non- 
linear increments of order orn/rn, to the frequency w, 
where m is the inhomogeneous magnetization and nz, is 
the magnetization of the sublattices of the antiferro- 
magnet. In the case of inhomogeneous magnetization, 
in a region of dimension d, the damping is determined 
by the rate a t  which the spin is taken out of this region 
and is equal to u/d (u is the magnon velocity). Since 
the characteristic frequencies a re  also of order u/d, 
we find that the parametric instabilities set  in when 
rn/m,- I . ~ )  Vortex formation, on the other hand, sets 

in sooner, a t  m/m, - ( E ~ / J ) ~ / ~ .  In this estimate we dis- 
regard the influence of the anisotropy energy E ,  inside 
the easy plane. This is permissible even a t  frequencies 
of the order of the gap in the spectrum, provided that 
the magnetization is large enough, i.e., m/m, 
>(E,/J)'/~. 

A stationary spin supercurrent and the associated 
metastable helicoidal structure can be produced by in- 
jecting in some manner spins into the antiferromagnet. 
The method is similar to that proposed in for pro- 
ducing an exciton supercurrent. Spins can be injected 
in a conducting antiferromagnet, say chromium, by 
passing an electric current through a contact between 
the antiferromagnet and a ferromagnet. Spin injection 
from a ferromagnet was investigated experimentally 
and theoreticallycz1 and a rather high degree of current 
polarization, a s  high a s  40°/0, was reached. 

Consider spin injection into a semi-infinite antiferro- 
magnet occupying the region z >O. The injection flux j, 
determines the limiting value of the supercurrent: 

This limiting value corresponds, generally speaking, to 
a whole se t  of solutions of (5). However, so  long a s  
Vcp 1 1/1, all the solutions of type (6) yield helicoidal 
structures with large period l/q >> 1. It is natural to ex- 
pect that when the current j ,  is increased smoothly 
from zero the realized solutions will be closest, ener- 
gywise and in structure, to the ground state (trivial 
solution cp =O). This means that the spin supercurrent 
and the associated rotation of the antiferromagnetic 
vector will occur only in a region near the boundary, 
with a dimension not larger than the thickness 1 of the 
domain wall. If vcp I ,,, >> 1/1, however, all the solutions 
(6) satisfying the boundary condition (12) correspond to 
helicoidal structures with a small period l/q << 1 and 
with a supercurrent -j, practically constant over the 
entire volume. Thus, when the injection current j, is 
increased and reaches a critical value -A/ l ,  the super- 
current and the helicoidal structure penetrate into the 
entire large volume occupied by the antiferromagnet. 
In the reverse process when j, is decreased, the vanish- 
ing of the structure and of the supercurrent can occur in 
the volume at  a smaller critical value of j,, i.e., hys- 
teresis is possible. 

In the estimate of 1 [see (9)] we must use static mea- 
surements of the anisotropy energy E, inside the easy 
plane, since its estimate from the frequency of the 
antiferromagnetic resonance turns out to be much lar- 
ger, owing to the interaction with the nuclear spins, 
which a re  unable to follow the motions of the electron 
spin at the resonance frequencies.c221 Altogether, the 
length 1 can reach values of the order of lo9 cm. 

In the foregoing calculation i t  was assumed that the 
entire injected spin current is immediately transformed 
on the boundary into a supercurrent. Actually spins can 
be transported in an antiferromagnet also by diffusion, 
s o  that in general the spin current is 
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where D is the diffusion coefficient. Expression (13) is 
analogous to the division of the mass flux into super- 
fluid and normal parts in two-speed hydrodynamics. 
To take diffusion into account we must add dissipative 
terms to Eqs. (2) and (4), which now become 

We have discarded here the term stemming from the 
anisotropy energy E,, for reasons that will become 
clear presently. The second term on the right in (15) 
is analogous to the dissipative increment -div v, to the 
Euler equation for a ~uperfluid!~~' Addition of dissi- 
pative terms in (14)and (15) raises the order of the sys- 
tem of equations, and, besides the solutions with m = O  
considered above, where there is no diffusion, we must 
take into account another possible solution rn - exp 
(-X-'z), where X-'=~[D/A. Accordingly, we must add 
to the boundary condition (12), in which the supercurrent 
on the left is replaced by the total current (13), one ad- 
ditional condition, for example that there be no super- 
current on the boundary. Solving the new boundary- 
value problem for the half-space, we find that the spin 
current, being a pure diffusion current on the boundary 
itself, is transformed at  distances on the order of X 
into a supercurrent, while the total spin current re- 
mains ~ o n s t a n t , ~ )  and t l z  decreases exponentially to 
zero. This justifies the use of the boundary condition 
(12) if all the characteristic dimensions exceed the 
length X .  In particular, the condition I must be satis- 
fied, since it enables us to discard the anisotropy-ener- 
gy contribution from (14) and (15). The validity of the 
condition I >> .>X is based on the fact that in (14) and (15) 
all the terms a re  due to exchange interaction; the length 
X is therefore also of this origin. On the other hand, the 
length I is determined by the relativistically small 
anisotropy energy E, [see (911. 

Besides the spin-nonconserving anisotropy energy 
E,, which fixes the phase of the order parameter (the 
angle q ) ,  it is necessary to take into account the dis- 
sipative incoherent processes that do not conserve spin 
but a re  independent of phase. They lead to the appear- 
ance of a Bloch longitudinal-relaxation term in the 
Landau-Lifshitz equations, o r  of a term nz /TI in the 
right-hand side of the continuity equation (2). Since 
112 = O  in the half-space for the stationary solutions ob- 
tained above, the Bloch relaxation has no effect what- 
ever on these solutions. This holds true also for sta- 
tionary supercurrents in rings, where there is also no 
magnetization. The fact that in such geometries the 
supercurrent leads nowhere to changes of magnetiza- 
tion may raise doubts a s  to whether the supercurrent is 

the angle q ,  then the rotation will have constant velo- 
city, and the spin-transport "velocities" -Vq  will like- 
wise be constant in time, and this, according to (4), 
leads to the condition Vln = 0. It is analogous to the con- 
dition that the chemical potential be constant in the 
stationary state of a superfluid. Since m # 0, the Bloch 
relaxation must be taken into account and we must write 
the stationary continuity equation in the form 

Assume that the spins a r e  injected a t  one end of the 
antiferromagnet [boundary condition (12)] and that the 
other end borders on a paramagnetic medium, where 
the spin propagates by diffusion: 

At the contact of the antiferromagnet and the pararnag- 
net ( z  =L) we equate the spin currents in them to the 
current through the contact expressed in terms of the 
difference between the effective fields in the two media 
H e  = ~ n / ~  and of a constant j3 that depends on the proper- 
ties of the contact: 

Solving Eqs. (16) and (17) with boundary conditions 
(12) and (18) we obtain the magnetizations in the anti- 
ferromagnet and the paramagnet: 

where the primed quantities pertain to the paramagnet. 
The case when the antiferromagnet borders on vacuum 
is obtained from (19) in the limit X' = O .  

We note that the corrections connected with the aniso- 
tropy, while small a t  large injection currents, make 
the problem essentially nonstationary and lead to oscil- 
lating increments of In and Vq, with frequencies that 
a re  multiples of w/n, where w = y m  /X is the frequency 
of rotation in the easy plane. 

It is known that the spin is part of the total angular 
momentum, which is an integral of the motion. The 
weak relativistic interaction of the spin and the orbital 
angular momentum makes i t  more justified to separate 
the spin a s  an autonomous hydrodynamic variable than 
the use of this procedure for the internal orbital angular 
momentum, as is done, e.g., for liquid crystals (see 
C251 and footnote 3 therein). The spin-nonconserving 
processes transform the spin into an orbital angular 
momentum regarded a s  a thermostat, and can lead to 
the appearance of torques acting on the lattice. 

connected with real spin transport. We examine there- 
fore the problem of spin injection into an antiferromag- 3. GINZBURG-LANDAU EQUATIONS-EXCITON 
net of finite length L. In this case a magnetization AND SPIN SUPERCURRENTS IN  THE MODEL OF 
m # O ,  albeit small, appears in the entire volume. Ac- THE TRIPLET EXClTONlC STATE 
cording to (3), this is accompanied by rotation of the 
antiferromagnetic vector, i.e., strictly speaking, there The conclusion that follows below makes it possible 
will be no stationary solution. If, however, we consider to obtain the constants that enter in the phenomenology 
large supercurrents (Vq >> 1/1) and neglect the fixing of discussed above for a band antiferromagnet, where ex- 
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citon supercurrents (currents of electron-hole pairs) 
can exist besides the spin supercurrents. 

Assume the presence of overlapping conduction and 
valence bands (electron and hole extremum o r  "pocket") 
and satisfaction of the conditions k,a, >> 1 and k,a<< 1, 
where k, is the Fermi  radius, a, is the Bohr radius, 
and a is tke lattice constant. We represent the electron 
operator *(r) in the form of a sum over the Bloch func- 
tions of two bands, leaving out initially for simplicity, 
the spin index: 

I i (r) =*, (r) + i , ( r )  - Fz (u. (k. r)d, (k) +u.,(k, r)6%(k) )a'". 
k 

(20) 
where V is the volume, k is the quasimomentum, and 
1 and 2 a re  the band indices. 

Owing to the entanglement of the states of the two 
bands there appear in the self-consistent-field method 
mean values (i?;(k)i?2(k+ Q)) and a corresponding order 
parameter, whose Fourier component in the absence of 
interband transitions is defined by 

where u(p) is the Fourier component of the electron in- 
teraction potential. The condition k , ~ < <  1 allows us to 
regard the interband transitions a s  small corrections 
and use (21) in the derivation of the expansion of the 
free energy in terms of A(k,Q), which take the form, 
neglecting the dependence of A(k, Q) I ,=,F=A(Q) on k 
near the Fermi surface, 

+v ,(Q, Q,) (A(Q)A (Q,)+A(Q)'A (QI) ' )~x(Q+Q~-G),  (22) 
C,Q.Qt 

where G is the reciprocal-lattice vector, 6, is the 
Kronecker symbol, and the summation over Q and Ql 
is confined to the Brilluoin zone. The last two sums in 
(22) stem from the interband transitions, and the values 
of gl and g, a r e  

where u, is the Fourier component of the interaction 
potential u(k, -a) and is averaged over the Fermi  sur- 
faces of the electrons (quasimomentum k,) and holes 
(quasimomentum &), while F,(k,p) is a form factor 
equal to [ 

where the integration is over a unit cell of the crystal 
lattice with volume 7,. The form factor is small in the 
parameter k+. 

The kernel K(Q) that characterizes the phase-invari- 
ant part of the f ree  energy has been calculated a number 
of times (see, e.g., C261). Let the kernel K(Q) have one 
minimum at a certain Q =Q = Q, + Q, where Q, is the 
vector joining the extrema of the two bands in k-space. 

As will be seen from the analysis that follows, the 
main contribution to (22) is made by a region of dirnen- 
sion -1/1 near the point Q, where the kernel is a mini- 
mum, where 1 is the phase-fixing length (see (27) be- 
low). Therefore the terms linear in A of (22) can con- 
tribute to the energy and fix the phase of the order 
parameter only if the point Q = 0 lies in this vicinity. 
This takes place for the case considered in ['I, when 
the extrema coincide in k-space. Here, however, we 
consider, just as  in the case Q, =G/2, when the 
phase is fixed by the terms quadratic in A .  We note that 
if the extrema do not coincide, then the number of non- 
equivalent extrema is equal to two only if Q, = G/2. In 
chromium, in particular, there is one electron ex- 
tremum at the center of the Brillouin zone and six 
equivalent hole extrema at its corners.c101 It is conve- 
nient in this case to shift the unit cell of the reciprocal 
lattice relative to the Brillouin zone in such a way that 
only one of the equivalent extrema is situated in the new 
cell. This predetermines the choice of one value of the 
vector Q, from among the six equivalent vectors. 

Near the minimum of the kernel K(Q) we can use the 
quadratic approximation 

where the derivatives a 2 ~ ( & ) / a ~ , a ~ ,  a r e  connected 
with the superfluid mass tensor 

We choose a s  the mass M the effective mass of the 
electron-hole pair. The spectrum of the elementary 
excitations in the presence of supercurrent then takes 
the form r ( k ) +  k-v,, where v, = t i V q / ~ .  Let the axes 
x ,  y ,  and z coincide with the principal axes of the ten- 
so r  N,, and let the largest eigenvalue of N, correspond 
to a z axis parallel to the vector q,. We define two 
characteristic lengths: the coherence length 5 and the 
phase-fixing length I: 

Next, varying the f ree  energy (22) with respect to A ,  
we obtain an equation for the determination of A .  A 
second-order differential equation, i.e ., a G L  equation, 
is obtained after separating from A the factor 
exp(iQ, e )  that oscillates rapidly in space and going 
over to the "smooth" order parameter 

Assuming the modulus ( i ( r )  I to be constant in space, a 
valid assumption at small phase gradients Vcp, and weak 
interband transitions, i.e., when ( v q  << 1 and 5 << 1, we 
obtain for the phase of the smooth order parameter an 
equation that goes over into (5) a t  scalar superfluid den- 
sity: 

where 
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We consider now one-dimensional solutions of (29), of 
type (6), which depend only on z. To obtain a solution 
corresponding to the ground state we must find the 
minimum of the free energy with respect to q = (Vcp,), 
which yields the dependence of q on the vector q=Q, 
- Q,. It turns out here that rp,(z) = 0 and q = 0 at 
q, < 4/rl and q #  0 at q, > 4/rl. Thus, Eq. (29) makes i t  
possible to describe the phase transition from an order- 
parameter structure commensurate with the lattice 
(q=O) to a structure that is not commensurate with the 
lattice (q+O), a technique already used for equilibrium 
helicoidal structures in antiferrornagnet~~'~'  and for a 
Peierls dielectric .c271 At Q, = G/2, however, it suffices 
for the crystal to have an inversion center in order that 
the kernel K(Q) have not one but two minima corre- 
sponding to the vectors q, and -q,. In the case of cubic 
symmetry we already have six minima, and for ideally 
spherical bands the kernel K(Q) reaches a minimum on 
the sphere I q, I = const. In the latter case, allowance 
for the anharmonic terms left out of (22) shows that 
without the interband transitions a solution in "band" 
form 

A (r) =A cos ( q u z )  eiQ, (30) 

i.e., with two harmonics q, and -q, in the expansion 
for A(r), is energywise favored over a solution with one 
or  with more than two harmonics. This was demon- 
strated by Larkin and ~ v c h i m i k o v ~ ~ '  for the mathemati- 
cally equivalent problem of the paramagnetic effect in 
superconductors, and by Malaspinas and a ice,['^] who 
generalized this result to include finite temperatures. 
An attempt might be made to take interband transitions 
into account by replacing the phases q,z and -q,z for 
the two harmonics in (30) by more general functions of 
z ,  again determined by varying the free energy with 
respect to these functions. But a second-order differ- 
ential equation of the type (29) is obtained for them 
only if the quadratic approximation of the kernel K(Q) 
is valid in vicinities with dimensions 1/1 near these 
two minima. This is certainly not the case in the vicin- 
ity of the commensurability-noncommensurability phase 
transition, where q,l - 1. Thus, a t  Q, = G/2, owing to 
the presence of two neighboring degenerate minima of 
K(Q), equations of the type (29) for the phase a re  not 
suitable for a quantitative description of noncommen- 
surate structure near the phase transition. F a r  from 
the transtion, however, at qo >>.l/l, interband transi- 
tions do not alter noticeably the spatial structure (30) 
for &(r), and merely fix the phase cp. As a result, 
expression (30) is suitable for the ground state for both 
a commensurate (q, = 0) and a noncommensurate (q, # 0) 
structure fa r  from the phase transition. 

Proceeding to a description of metastable structures, 
we must forego the condition cp = const in (30) and deter- 
mine cp from the condition that the free energy (22) be 
an extremum; this again yields Eq. (29), but not for cp 
rather than p,. It is precisely the phase cp, as we shall 
see below, which determines the values of the super- 
currents, which a re  thus independent of the order-pa- 

rarneter gradients produced by i ts  equilibrium spatial 
oscillations. 

For  ideally spherical bands we have in (29) a, = a,, = 1 
in the commensurate case. For  the noncommensurate 
structure, on the other hand, a, = a, =0, since K(Q) is 
independent of the direction of q,. Even a small non- 
sphericity, however, makes the values of a, and a, 
finite. 

If the spin is taken into account, the order parameter 
A becomes a matrix with elements AaB, where a, 0 = *i. 
Each of them corresponds to an electron-hole pair 
spin a-0, since f l  is the spin of the unoccupied state in 
the valence band 2. 

We consider now the triplet state that leads to the 
transversely polarized SDW observed in chromium in 
the temperature interval T = 120 - 312 K. The matrix 
A,, is left with only two off-diagonal elements corre- 
sponding to Bose condensates of pairs with spins + 1 
and -1. We shall designate them A,; each corresponds 
to  a separate smooth order parameter A, and to a 
separate phase pi, connected by Eq. (30). We introduce 
the exciton phase cp,, = 1/2(cp,+ cp,) and the spin phase 
cpu= 1/2(cp+ - cpJ. Let only one of them be different from 
the fixed equilibrium value. We can then obtain for each 
of them an equation (29), but with different I and n. For 
the spin-independent interaction there is no fixing of 
the spin phase, and we have for it I - -. Connected with 
the exciton and spin phases are ,  respectively, exciton 
and spin supercurrents. The exciton supercurrent is a 
nondissipative current of electron-hole pairs with spins 
+ 1 and -1 9 one !irection, and is determined via the 
operators 9, and @,of the electrons of the two bands 
from the expression 

where m is the mass of the free electron. Expression 
(31) is meaningful only for small gradient, and is 
equivalent in this limit to  an expression in terms of the 
group velocities of the electron bands6' 

1 ' 8 e  (k) 
[ 1-n,(k) 1). I - = ~  z{*n.(k)+-- ak 

k 

Here cl,,(k) and n,,,(k) are  the energies and occupation 
numbers of the two bands. The method of producing and 
observing such a supercurrent in chromium was dis- 
cussed in cs]. 

The spin supercurrent is the result of two oppositely 
directed supercurrents of pairs with spins + 1 and -1, 
and is expressed in terms of the complete electrons 
operators, which a re  spinors: 

where a, is a Pauli matrix. 

Calculating (31) and (33) in the self-consistent-field 
approximation we obtain, by the usual procedure, the 
connection between the supercurrent and the phase de- 
fined by (30) (we omit the indices ex and o): 
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In the considered model the tensor N, [see (26)] i s  the 
same for the exciton and spin supercurrents. 

The phenomenological equations of Secs. 1 and 2, used 
to describe states with spin supercurrents, correspond 
to the case of a scalar superfluid density, and in this 
caseA =ytiZNdM and the spin phase i s  the same as the 
angle of rotation of the antiferromagnetic vector in the 
easy plane. Similar phenomenological equations exist 
also for the description of states with a perturbed ex- 
citon phase and with supercurrents of electron-hole 
pairs. These will already be Hamilton equations for the 
canonically conjugate pair of variables-the number of 
electron-hole pairs and the exciton phase. These lead to 
a collective-oscillation spectrum with a gap, similar to 
the magnon spectrum and considered in C5'. 

CONCLUSION 

The foregoing investigation of the possible existence 
of analogs of undamped superfluid currents shows that 
this possibility exists so long as  the violation of the con- 
servation of the transported quantity (the number of 
electron-hole pairs, the spin) and the ensuing fixing of 
the phase are weak enough. Fixing the phase always 
gives rise to a gap in the collective-excitation spectrum 
and results in suppression of the large phase fluctua- 
tions that disturb the long-range order in the one- and 
two-dimensional cases for ordinary superfluids. In the 
mixed electron-hole representation for an electron-hole 
liquid, this long-range order can be represented as an 
off -diagonal long-range order (ODLRO) of some density 
matrix. It may turn out here that the phase i s  fixed so 
strongly that there are no metastable supercurrents, 
but ODLRO is present. This confirms once more the 
viewpoint that ODLRO has no direct bearing on the 
presence or  absence of superfluid properties (see the 
pertinent discussion and bibliography in C291). 

It i s  obvious that the phenomena considered above, 
being similar to superfluid phenomena in many respects, 
nevertheless are substantially different. Among the 
most important differences i s  that the supercurrent has 
not one but two critical values that limit from below and 
from above the interval of the supercurrents that lend 
themselves to observation in large volumes. 

Both the ordinary superfluidity and its analog consid- 
ered in this article are closely connected with the 
topological properties of the region where the order 
parameter varies; the study of these properties was 
stimulated of late by the investigations of superfluid 
~ e ~ . ~ ~ ~ ~  For superfluidity it is necessary that the region 
of the order parameter be in certain scales topological- 
ly equivalent to a circle. In our case these scales lie 
between r, and I .  In the case of strong phase fixing, 
when r ,  2 1 ,  or if the length scales exceed I ,  the region 
of variation of the order parameter reduces to n points 
on a circle. 

It i s  natural to expect to be able to search analogs of 
superfluid properties also in other ordered systems 

with similar topology of the order parameter. Fore- 
most among them are a ferromagnet with easy -plane 
anisotropy, The analysis of this system, however, 
calls for allowance for the fields of the scattering and 
of the long-range dipole-dipole interaction, which can 
lead to the same effect as anisotropy, but this calls for 
a special analysis. 

The author thanks A. F. Andreev, A. G. Aronov, G. 
E. Volovik, E. I. Golovenchits, V. S. L'vov, V. P. 
Mineev, V. L. ~okrovskc ,  and V. A. Sanin for useful 
discussions, and A. I. Larkin for numerous remarks 
concerning the superfluidity of electron-hole pairs. 

)In making an analogy with the physical pendulum, it must be 
remembered that for the pendulum Eq. (5) corresponds to 
an extremum of the Lagrangian, whereas in our case it 
corresponds to an extremum of the energy. The potential 
energy (the anisotropy energy in our case) enters in the 
Lagrangian and in the Hamiltonian with opposite signs. The 
ground state in our problem corresponds therefore to a 
pendulum in the upper unstable position. 

2 ) ~ o  get around completely the question of the boundaries, the 
supercurrent can be considered in annular geometry. 

3 ) ~ h e  importance of this circumstance was pointed out to the 
author by A. I. Larkin. 

4)This estimate was suggested to the author by V. S. L'vov 
(see also[201). 

5 ' ~  similar conversion of dissipative current into a super- 
fluid current occurs on the boundary of a superconductor 
(see[24' and the bibliography therein). 

6 ) ~ h e  pair current can also be represented in the fo rp  of a 
 onl local functional of the usual electron operators * (r) and 

(r)+ by expressing in their terms the Bloch operators 
alSz and st2 of the two band?. This was pointed out to the 
author by V. L. Pokrovskii. 
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A new mechanism is considered for the production of the drift distribution function 

of the carriers in nonmetallic crystals at high energies and in a strong electric field. This mechanism 
comes into play if several bands of the carriers-"light" and "heavyW+xist at these energies, and 
consists of a drift of the carriers over the light band and cooling in the heavy bands, the backscattering 
from which into the light band has on the average a low probability because of the low state density. In 
contrast to the single-band case, in which the drift asymptotic form appears only as a result of 
predominant spontaneous emission of phonons with energy higher than the energy eE1 acquired over the 
mean free path, in the multiband case a drift asymptotic distribution is obtained also at large occupation 
numbers of the emitted and absorbed phonons, as well as when the fraction of pure elastic scattering is 
large. Two variants of calculations performed for the simplest two-band model and leading to analogous 
results are considered. In the first variant inelastic scattering by optical phonons is assumed, with a 
transition matrix element that does not depend on the wave vector; the second variant is suitable for 
arbitrary types of scattering in the case of strong inequality of the effective masses of the carriers. It is 
assumed in the calculations that the probability of scattering of a camer into one state of its own band is 
of the same order as that of scattering into the band of another carrier. 

PACS numbers: 72.20.3v, 72.10.Di 

1. Impact ionization of carriers ind ie lec t r ics  a n d s e m i -  
conductors, which i s  responsible  fo r  the avalanche 
multiplication of the c a r r i e r s  and avalanche breakdown 
in s t rong e lec t r ic  fields, i s  determined by the distribu- 
tion function at energ ies  c of the  o r d e r  of the  ionization 
energy c, ,  which great ly exceeds the average  energy 
F even in the  breakdown regime. In connection with the 
impact-ionization theor ies ,  methods suitable fo r  
both quasi-isotropic and strongly anisotropic  distribu- 
tion functions (at a l l  energ ies  o r  in  definite energy 
intervals) w e r e  developed for  t h e  calculation of t h e  dis- 
tribution function of high energies .  

T h e  qualitative r e s u l t s  of such  calculations fo r  the 
c a s e  of a single  isotropic  band are the following: The 
energy  dependence of the quasi-isotropic distribution 
function a t  high energJi c >F is determined by one of 
two exponentials: 

f (E) -e-"T (1) 
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