
( 8  3) reaches saturation only when the magnetic pres- 
sure  becomes comparable with the plasma pressure. 
Let us assume that initially we have B<< 1 (low-pres- 
sure  plasma). According to Eq. (16) the value of ( H z )  
increases proportionally to p, whereas p p7 in the case 
of adiabatic compression (y is the specific heat ratio). 
Since y> 1, the plasma pressure finally prevents com- 
pression. Consequently, a turbulent medium acquires 
regions with a much higher local pressure. 

4. The nonpotential forces acting on a plasma appear 
because of the anisotropy ( 8  1) o r  a re  manifested a s  a 
negative resistance [§4, Eq. (27)]. Large-scale flow 
may be produced in a plasma under the action of these 
forces. By way of example, we shall mention the ex- 
citation of shear motion in the solar wind because of the 
inhomogeneity of ( H z )  and a possible anisotropy of the 
magnetic inhomogeneities. 
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Magnetic moments of iron atoms in the fcc lattice of a 
transition d-metal 
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The atomic magnetic moment m,  was investigated in the fcc modification of iron (the y phase) and in its 
alloys with transition d-metals. The behavior of m,  was investigated as a function of the integral V of 
the transition between the localized levels of neighboring atoms at a fixed value of the mixing constant of 
the s and d states. In the assumed model, the magnetic state of the atom is determined only by the 
influence of its nearest neighbors. It is shown that the atomic magnetic moment of y-iron decreases with 
increasing V .  At V--0.35 eV, m,  vanishes, but in the same region of V the value of m, for the bcc 
modification of iron changes insignificantly. The function m,(V) for y-Fe is considered with allowance for 
the transition of the conduction electrons to localized levels as V increases. It is shown that m,, of 
impurity iron atoms in d-metals with fcc lattices depends on the quantity E g and E;, where E ,  is the 
energy of the d level of the iron atom at V = 0 with a spin direction corresponding to the less occupied 
part of this level, and E ,  is the analogous quantity for the matrix atoms. If the condition 
EL - E ,>4V is satisfied, then m,, of the impurity iron atoms depends little on V. This conclusion 
explains why impurity iron atoms in many d-metals with fcc lattice have large and approximately equal 
values of m ~ , ,  equal to (2.5-3) pB, whereas y-Fe has a small atomic magnetic moment, (0.5-0.7) p,. 
The dependence of the mean value fi,, on the iron concentration in alloys with d-metals having an fcc 
lattice is considered. In accord with the experimental data, the obtained relation f iFe(c) tends rapidly to 
zero at a certain critical iron concentration c,,. 

PACS numbers. 75.50.Bb. 35.10.D 

INTRODUCTION ly large spin magnetic moments that vary over a small  
range, approximately from 2 . 5 ~ ~  to 3y, for different 

The magnetic properties of iron in the face-centered matrices. Magnetic moments of this order a r e  pos- 
cubic (fcc) modification (y  phase) differ strongly from 
the properties of i ts  usual body-centered cubic (bcc) sessed by alloys based on Agr3] ; Ad4* 51; core]  ; CU[~] ;  

modifications (a phase). Iron in the y modification is 
~ i [ ' *  51; pdcQ1; ~t.[ '" '  These alloys a r e  either ferro- 
magnets o r  paramagnets. 

antiferromagnetic. Its atomic magnetic moment i s  - - 
(0.7-0.5)~,,[ ' 9  21 much higher than the atomic magnetic The magnetic properties of the iron atoms vary 
moment 2 . 2 ~ ~  of a, iron. In the fcc  lattice of transition strongly in alloys based on y iron. In the fcc alloys 
d-metals, however, impurity iron atoms have relative- FeCrNi (stainless steel) and FeMn the magnetic mo- 
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ment of the iron atoms is only (0.3-0.5)~, .[~* These 
alloys a r e  antiferromagnetic. [12* 13] 

Thus, iron atoms can be in two different magnetic 
states in the fcc lattice of a d-metal. This circum- 
stance was f i rs t  noted by Tauer and ~ e i s s . ~  14* 15] The 
process of the transition of the iron atoms from a state 
with large magnetic moment to a state with a small  
magnetic moment is observed in certain disordered 
alloys when the iron concentration is increased. A 
classical system in this respect is made up of the 
y-FeNi alloys. At low iron concentrations the total 
magnetic moment of these ferromagnetic alloys is made 
up almost additively of the atomic moments of nickel 
( 0 . 6 ~ ~ )  and iron (2.8C1B).r161 When the nickel content is 
decreased below 4%, the spontaneous magnetization 
begins to decrease rapidly with increasing iron concen- 
tration. This decrease is the result of the change of 
the magnetic state of a fraction of the iron atoms in the 
y-FeNi alloys.[ 17* 18* 19s201 At a large iron content in 
these alloys, however, the 7 phase becomes unstable 
a t  low temperatures. It is therefore impossible to trace 
directly the change produced in the magnetic properties 
of y-FeNi alloys by a change of the magnetic states of 
al l  the iron atoms in the alloy. 

The pattern of the transformation of the magnetic 
properties of individual iron atoms in the fcc lattice 
as they interact with one another can be most clearly 
traced with CuFe alloys a s  an example. The iron can 
form a solid dilute solution in the copper, o r  else exist 
in the copper lattice in the form of clusters o r  segrega- 
tions of y-Fe. The CuFe alloys constitute therefore a 
convenient system for  the study of the magnetic proper- 
ties of isolated iron atoms and their complexes. The 
states of the iron atoms in CuFe we investigated ex- 
perimentally with the aid of the Mhssbauer . - effect,['ln ''I 
nuclear magnetic resonance,[231 as well as magnetic 
 measurement^.[^] The results  of these investigations 
have shown that when the iron atoms a r e  completely 
surrounded by copper atoms they have a localized mag- 
netic moment equal of 2 . 5 ~ ~ .  If the nearest neighbors 
of these atoms include a small  number of other iron 
atoms, their magnetic moment does not change sub- 
stantially. But if the number of nearest neighbors of 
the Fe-Fe type is large enough, the iron atoms lose 
their magnetic moment. To interpret this effect we 
must call attention to the following facts. 

1) The crystal-lattice constant tf  copper is very 
close to that of y -Fe, being 3.616 A for the former and 
3.588 A for the latter.r241 

2) Impurity iron atoms in a copper matrix a r e  in a 
3d74s1 state.[231 

3) The partition of the electrons between the 3d and 
4s  bands of y iron also corresponds to the 3d74s1 con- 
figuration. This statement follows from theoretical 
calculations of the electron structure of y - ~ e . [ ~ ' @  
In addition, this conclusion is confirmed by results of 
investigations of the positron annihilation in alloys 
based on y - ~ e . [ ' ~ ]  It should be noted that the 3d'4s1 
configuration is also realized in the usual ferromagnetic 
a! modification of iron.r281 

The arguments advanced in items 1)-3) above give 
grounds for  assuming that replacement of the copper 
atoms surrounding the iron atom in question by other 
iron atoms is equivalent to turning on a d-d interaction 
between thein. The most significant part of this inter- 
action is connected with "hopping- of the electrons be- 
tween d levels of neighboring atoms.[291 

Experiments ) show that the principal effect 
is exerted on the value of the localized atomic magnetic 
moment of iron by i t s  nearest neighbors. This conclu- 
sion holds true also for the atomic magnetic moments 
and for  other transition d - m e t a l ~ . [ ~ ~ *  311 Thus, the 
analysis of the effect of interatomic transitions on the 
magnetic state of the atom can be confined to the first  
coordination sphere. This paper deals with the influ- 
ence of this effect on the localized spin magnetic mo- 
ments of an iron atom in an fcc lattice of a d-metal. 

1. THE HAMlLTONlAN 

We assume that the atomic magnetic moments of the 
considered d-metals have the same nature a s  the im- 
purity magnetic moments in Anderson's theory. [''I 
This approach to the description of ferromagnetic d- 
metals was f i rs t  used in.["- In this model the atomic 
magnetic moment depends on the overlap of the d-wave 
functions of the neighboring atoms. 

We assume also that the atomic magnetic moments 
a r e  the result of the existence of only one state localized 
in the atom. 

The Hamiltonian for this model is of the form 

The symbols in this expression a r e  standard. The 
f i rs t  term of (1.1) describes the kinetic energy of the 
conduction electrons, Ei is the energy of the localized 
state in the field of the i -th ion and in the intracrystal- 
line field. The third term determines the spin-splitting 
energy of the localized states a s  a result of the intra- 
atomic interaction characterized by the constant U,. 
In the Hartree-Fock approximation, a s  a result of this 
interaction, the energy of the localized state turns out 
to be 

where np is the average occupation number of the elec- 
tron level with spin o, localized in the i -th site. The 
fourth and fifth t e rms  of (1.1) describe the s -d  and 
d-d mixing; V,, is the integral of the transition be- 
tween the s and d states: 

where qz(r )  and cpi ( r )  a r e  the wave functions of the s 
and d electrons, and vi (r) is the effective potential of 
the ion located in si te i . The quantity V,, is the inte- 
gra l  of the transition between the localized states of 
the neighboring si tes i ahd j . 
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2. GREEN'S FUNCTION OF THE LOCALIZED 
STATE 

It is convenient to calculate the localized magnetic 
moments in a system with Hamiltonian (1 .1 )  with the 
aid of Green's functions, using the equations[321 

Here G f ,  ( E )  is the Green's function for a state localized 
at site i. The integrationwith respect to E in (2.1) is 
carried out up to the Fermi level E , .  We can write in 
general form 

where M ~ ( E )  is the mass operator that takes into ac- 
count the interaction of the i -th atom with the surround- 
ing medium. We represent the expression for  the mass 
operator in the form of two terms that describe different 
physical processes: 

The f i rs t  term in the right-hand side of (2 .3 )  takes into 
account the interaction of the level localized in site i 
with the conduction-band levels. The second term is 
connected with the d-d interaction between the i -th 
atoms and the remaining lattice sites. If we start  with 
the Hamiltonian ( 1 . 1 ) ,  then the expression for  M ; , ( E )  
takes the form[341 

This function has nonzero real  and imaginary parts, so  
that 

It follows from (2 .4 )  that the imaginary part of MP, is 

where p z ( ~ )  is the conduction-electron density distribu- 
tion function. The square brackets with the subscript E 

indicate that k  corresponds to ck equal to E .  

When indirect-interaction effects a r e  disregarded, 
M f ,  can be represented by the following series[351 : 

In this expression, the summation corresponds to all 
the electron trajectories that begin and end with the 
i -th site. These trajectories pass through the sur-  
rounding atoms in a l l  possible ways. 

In the case of a pure metal we assume that V,, = V if 
j and 1 a r e  nearest neighbors. For si tes that a r e  not 
nearest neighbors, V ,  , = 0. In addition, for a pure met- 
a l  with ferromagnetically arranged atomic magnetic 
moments the quantity E; + M ; , ( E )  does not depend on the 
subscript 1. Taking these remarks into account, we can 
represent the aggregate of those terms in expression 
(2 .7 )  for  M;,(E)  which pertain only to the f i rs t  coordina- 
tion sphere, in the case of an fcc lattice, by the ser ies  

This expression takes account of the fact that each si te 
of the first  coordination sphere includes among its  
nearest neighbors four si tes that a r e  contained in the 
coordination sphere in question. 

The complete expression for  M;(E  ) is the ser ies  

where 

The coefficients C, a r e  constants that depend only on 
the lattice symmetry. 

The contribution made to (2 .9 )  by the second, third, 
and fourth coordination spheres begins with terms pro- 
portional to (ha)3.  The more remote coordination 
spheres contribute only to the terms containing Aa 
raised to higher powers. It is obvious that with de- 
creasing I Aa ( the relative role of the nearby coordina- 
tion spheres increases in expression (2 .9 )  for  M ~ ( E ) .  
The quantiy F a ( € )  in (2 .5 )  is usually approximated by a 
constant r that characterizes the virtual width of the 
energy level. In this case the maximum value of 1 Aa 1 
is v/I'. For real  metals this ratio is much less than 
unity. 

According to ( 2 . 8 ) ,  the expression for  M : ( E ) ,  when 
account is taken of only the f i rs t  coordination sphere, 
takes the form 

This expression takes exact account of the t e rms  pro- 
portional to Xa and (Aa)' of the ser ies  ( 2 . 9 ) .  In this ap- 
proximation, if M y ( € )  is constant, the function G ; * ( E )  
has only two poles. In the general case, when account 
is taken of all  the terms in expression ( 2 . 9 )  for M ~ ( E ) ,  
the number of poles of G P i ( € )  is equal to the number of 
energy levels in the corresponding band; then 

where G o ( € ,  k )  is the one-electron Green's function in 
the quasimomentum representation and N is the number 
of atoms in the system under consideration. 

3. EQUATIONS FOR THE DETERMINATION 
OF THE ATOMIC MAGNETIC MOMENT 

The localized magnetic moment mi of an atom located 
at si te i is equal to 

The factor 5  ar ises  a s  a result of five-fold degeneracy 
of the localized d level. The subscript i will be omitted 
from now on. The average occupation numbers no a r e  
determined by two equations ( 2 . 1 )  corresponding to two 
values of o. These equations become much simpler if 
M y ( € )  is taken to be constant. 
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This approximation leads to the same main conclu- 
sions concerning the properties of the localized magne- 
tic In addition, we assume that M : = M ; .  
This condition presupposes the absence of spin splitting 
of the states in the conduction band. Under the indicated 
assumptions, with allowance for expression (2.11) for 
Mi(€),  the equations (2.1) for no take the form 

The integral in the right-hand side of this equation can 
be calculated in explicit form. As a result of the inte- 
gration we obtain the following equations for no: 

where Ea = E0 + Un". The function tan-' x in these equa- 
tions ranges from zero to n. 

To elucidate the physical meaning of (3.3), we must 
consider the effect of V on the local density of states 
pi"(€, V): 

1 
p ie (€ ,  V )  =- - Im Giia(e, V ) .  

IT (3.4) 

If there i s  no interaction between the atoms, the local 
density of states has only one peak, whose shape is 
described by the expression 

When account is taken of the interatomic interaction in 
the employed approximation, pa ( t ,  V) splits into two 
unequal parts, p y ( ~ ,  V) and p g ( ~ ,  V). The maxima of 
p: and p i  occur at the respective values 

The distance between the maxima of p: and p: is 
6: - €7 = 8V. If V is equal to several tenths of an elec- 
tron volt, the value of t: - €7 is of the order of the en- 
ergy width of the 3d band of iron. The two terms in the 
right-hand side of (3.3) a re  the occupation numbers of 
the levels corresponding top: and pi. 

FIG. 1. Dependence of the atomic magnetic moment m,, for 
the fcc and bcc modifications of iron on the transition integral 
V. The dashed line corresponds to a constant Fermi energy 
EF in the case of an fcc lattice. The dash-dot line is the 
analogous plot for the bcc lattice. The solid line describes 
the function m,,( V) for the fcc modification of iron with 
allowance for the EF( V) dependence that results from the 
transition of some of the conduction electrons to d levels 
with increasing V. 

We note that the splitting of the local state density of 
the magnetic atoms under the influence of their nearest 
neighbors was pointed out in, [301 where the effect of the 
nearest neighborhoods on the atomic magnetic moment 
of the central atom was treated by the methods of the 
coherent-potential theory. 

The constants E O +  A - E, and U can be determined by 
using the experimental results. ~ c c o r d i n ~ + t o ' ~ ~ ~ ,  for 
an iron impurity atom in copper we have n = 0.95, 
n- = 0.45, and l? = 0.71 eV. If i t  i s  assumed that V= 0 
in this case, then it follows from (3.3) that E O +  A -E, 

= -8.62 eV and U =  9.19 eV. For these values of the 
constants E O +  A - r, and U, Eqs. (3.3) were solved 
numerically for different values of V. The values of 
m, obtained in this manner zs functions of V a re  shown 
by the dashed line of Fig. 1. As seen from this plot, 
the value of m ~ ,  calculated with the aid of Eqs. (3.3) 
vanishes when V exceeds approximately 0.35 eV. The 
value of V for y-iron can be estimated from the band 
widthC2'* 331 by using the relation 

where PE i s  the width of the band and z is the number 
of nearest neighbors. According to the results of the 
calculations of the band structure of y the 
value of V for this modification of iron is approximately 
0.25 eV. The estimate of V with the aid of (3.7) is ,  how- 
ever, a crude one. 

The physical causes of the decrease of m,, with in- 
creasing V a r e  the following. When there is  no inter- 
action between the atoms, the energy 3d level of the 
iron atom with negative spin direction (n' < n t )  lies near 
the Fermi level (Em + A - E, = 0.11 eV). When the inter- 
atomic interaction is turned on, p-(E, V) splits into two 
unequal parts. That part of the initial level which has 
the larger capacity drops below the Fermi level. As a 
result, the number n- increases. The increase of n- 
leads to a decrease of the intra-atomic splitting and ac- 
cordingly to a decrease of n+  . This process leads to a 
decrease of m,, . 

Calculations show that the sum of the values of n+ 
and n' satisfying Eqs. (3.3) does not remain constant 
when V i s  varied. In the region of V where m, tends 
to zero, n+  +n' increases by approximately 1%. This 
change of n+ +n- i s  due to the transition of the conduc- 
tion electrons to localized levels with increasing V. In 
the real  case the d level has 5 orbital states. Therefore 
an appreciable part of the 4s  electrons in y-iron should 
go over to the 3d levels, owing to the interaction be- 
tween the localized electrons of the neighboring sites. 
It is therefore necessary to take the dependence of E, on 
nf (V)+n-(V) into account in the initial equations (3.3) 
for  no. 

In the case of the simplest dispersion law for the 
conduction electrons, when eF = K 2 k  '/2m, the expres- 
sion that takes the t,(V) dependence into account is of 
the form 

[ 
n' ( V )  +n- (V)  -n+ (0) -n- ( 0 )  " 

E ~ ( V ) = E ~ ( O )  1-5 
n. (0) ] * (3.8) 
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where n,(O) i s  the average number of 4s  electrons per 
atom. As already noted in the Introduction, the experi- 
ment described inrz3] shows that the impurity atoms of 
iron in copper (the case V= 0) a re  in a state with con- 
figuration 3d44s1. We shall therefore assume that n,(O) 
= l .  Accordingly, we set c,(O) equal to the Fermi ener- 
gy of copper. In the employed approximation, this quan- 
tity i s  equal to 7.42 e ~ . ~ ~ ~ ~  The factor 5 in expression 
(3.8) takes into account the existence of orbital states 
for  the d level. 

The values of m,, a s  functions of V, with allowance 
for the t,(V) dependence in Eqs. (3.3), a re  shown in 
Fig. 1 by the solid line. A characteristic feature of 
this curve i s  that m, varies little in a wide range of V, 
approximately from zero to 0.35 eV, and drops steeply 
to zero near 0.38 eV. In addition, allowance for the 
t,(V) dependence causes n+ +n- to remain constant 
within 20h with changing V. The last result agrees with 
the conclusiont271 that the y-iron atoms a r e  in a state 
with configuration 3d74s'. 

The equations for the occupation numbers no in the 
case of a bcc lattice differ from Eqs. (3.3) for the fcc 
lattice. The difference i s  due to two causes. First ,  
the numbers of the nearest neighbors of the bcc and fcc 
lattice sites a re  different and equal 8 and 12, respec- 
tively. Second, the coefficient C 2 =  0 in expression (2.9) 
for Mz(t)  for the bcc lattice. In this case, if account 
i s  taken of only the first  coordination sphere, 

In this approximation, the equations for no take the 
form 

1 E"+A-VVX-E, ) ( E ~ + A + V Y ~ - E I  
no = - {IIrcCtg ( + arcctg 

2n I' r. 

The values of r n ~ ,  for the bcc lattice, determined from 
Eqs. (3.10) a re  shown in Fig. 1 by the dash-dot line. In 
the calculation of these mpe, the values of E0 + A - t, 
and U were taken to be the same as  in the case of y-Fe. 
As seen from Fig. 1, the magnetic moment for a - F e  
depends little on the value of V in the region of V that 
is of physical interest. 

4. MAGNETIC MOMENT OF THE IRON ATOMS IN  
ALLOYS 

In Anderson's theoryL321 the localized impurity mo- 
ment depends only on the internal properties of the im- 
purity atom and on the s-d interaction. ~ x p e r i m e n t s [ l ~ *  
show, however, that magnetic moments of the impuri- 
ties depend substantially on the properties of their 
nearest-neighbor atoms. This effect can be interpreted 
by taking the interatomic transitions into account. In 
the employed approximation the Green's function of the 
impurity atom takes the form 

where E?,',, and Efi a r e  respectively the d-level energies 
of the isolated impurity and matrix atoms. It is as-  
sumed in (4.1) that the transition integral Vi does not 
depend on the type of the atoms situated in the sites i 

and j .  'I'he virtual widths of the localized levels of the 
impurity and matrix atoms a re  assumed to be the same 
and equal to 1'. In addition, the atomic-level shifts due 
to the s-d mixing a re  also assumed to be the same for 
the in~purity and matrix atoms. The quantity A is in- 
cluded in E:,,,, and %. The impurity-atom local state 
density p:",,(t, V), which corresponds to the Green's 
function (4.1), is equal to 

where 

If V = 0 then, as  follows from (4.2), p~,,,,(t, 0) has 
only one peak, whose maximum i s  located at E =a:*. 
Its shape i s  described by the Lorentz curve (3.5). 
Under the influence of V, the local state density of the 
impurity atom splits into two parts corresponding to 
the two terms of (4.2). The positions of the maxima of 
these parts, a s  well a s  their intensities, depend on 
V, EL,, and G. 

As already noted in Sec. 3, the decrease of mFe with 
increasing V is physically due mainly to the character 
of splitting of p-(c, V), since the maximum of p-(c, 0 )  
for iron lies near the Fermi level. To draw general 
conclusions concerning the influence of the matrix on 
the value of m,of the impurity iron atom i t  is therefore 
sufficient to consider the pattern of the splitting of 
P ~ , ( E ,  V ) .  

If E-i ,  -EG> 4V, i.e. A _ >  0, the the more intense 
part of pLp(c, V) corresponds to the f i rs t  term in (4.2). 
The value of c ; increases with increasing V. Thus, if 
the d level of the matrix atoms with negative spin direc- 
tion lies below the corresponding level of the impurity 
atom and the condition ELp -%>> 4V is satisfied, then 
m,, does not decrease when V is increased. 

If EL, -%< 4V, then the more intense peak corres- 
ponds to the second term in expression (4.2) for 
p' (c, V). In this case m can decrease with increas- 
ing V. At sufficiently r a re  absolute values of E k  -EM, 
when the condition (EG, - EG - eV)'>> 48V2 i s  satisfied, 
the effect of the matrix on the localized level of the im- 
purity atom becomes weak. 

As already noted in the Introduction, the lattice pa- 
rameters and the conduction-electron concentrations of 
copper and of y-Fe a r e  close to each other. Therefore 
the appreciable difference between the values of the im- 
purity moment of iron in copper and of the atomic mag- 
netic moment of y-Fe must be attributed to the differ- 
ence in the character of the d-d interactions in these 
two cases. The 3d band of copper is completely filled, 
so that EL-E&>O. It must be concluded from the ex- 
perimental and theoretical data[371 that E;,- E& = 3 - 4 
eV. Thus, the condition under which the iron impurity 
atom retains a large moment i s  satisfied in this case. 

For the remaining transition metals listed in the In- 
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troduction and in which iron is dissolved, the d band is 
either likewise completely filled, o r  else contains a 
larger number of electrons per atom than the d level 
of the iron impurity atom. The condition EGP- E; > 0 
is therefore satisfied also for  these metals and contri- 
butes to the conservation of the impurity magnetic mo- 
ment of the iron. 

In concentrated iron alloys, the individual iron atoms 
have different values of m~. ,  depending on the concrete 
form of the distribution of the alloy-component atoms 
around them. The character of the influence of the iron 
and of the second component of the alloy on the m, of 
the introduced atoms is in general different. The aver- 
age atomic magnetic moment ?&, of the iron atoms in 
the allov is therefore a function of the alloy composition. 

To gain a general idea of the m,=(c) dependence, we 
make a number of assumptions that simplify the deter- 
mination of this function. We assume that for the second 
component in the iron alloy the condition (Ekp= - E c  
- 4V)'>>48V2 is satisfied, i.e., that the atoms of this 
component exert no significant influence on m,,. We 
need therefore retain in the general expression (2.7) for 
Mg only those terms that pertain to the lattice si tes oc- 
cupied by the iron atoms. To calculate the average 
atomic moment mFe we determine next, with the aid of 
(2.11, the mass operator @g(t, c). It i s  necessary for  
this purpose to take into account the probability of the 
iron occupying the individual lattice sites. We sum in 
(2.7) not only over the si tes occupied by iron atoms, 
but over all  the lattice sites, but each summation sign 
in (2.7) will be supplemented by an additional factor c 
equal to the iron concentration. In this approximation, 
the mean value @(E, C) determined in this manner is 

With this approximation, Eqs. (2.1) for m, take the 
form 

At c =  1 these equations go over into the initial expres- 
sions (3.3), and at c = 0 Eqs. (4.5) coincide with the 
usual Anderson equations. [321 

FIG. 2.  Plots of the average magnetic moment GF, against 
the iron concentration c in alloys having an fcc lattice at 
different constant values of V. The dashed line corresponds 
to a constant Fermi energy EF. The solid lines take into 
account the E,(c) dependence resulting from the transition of 
some of the conduction electrons to the d levels with increas- 
ing c. 

The dashed line in Fig. 2 shows a plot of mFe against 
the concentration c of the iron in the alloy for  the case 
V = 0.4 eV. This &Fe (c) dependence is determined with 
the aid of Eqs. (4.5), in which E ,  is assumed constant. 
In this case, when c is varied, the occupation numbers 
n+ and n', which a r e  solutions of Eqs. (4.5), do not 
leave the quantity n+ +n' constant. Therefore, an anal- 
ogy with the solution of Eqs. (3.3) for  pure y-Fe, i t  is 
likewise necessary in this case to take into account the 
changes of the conduction-electron concentration. Al- 
lowance for this effect leads to replacement of E ,  in 
(4.5) by E,(c): 

where n+(O) +nm(0) = 1.4. Expression (4.6) presupposes 
that a s  c -0 the concentration of the conduction elec- 
trons corresponds to one electron per  atom. 

The plots of KFe(c) with allowance for the expression 
(4.6) a t  different fixed values of V a r e  shown solid in 
Fig. 2. Compared with the curve corresponding to a 
constant value of cF these curves show a steeper depen- 
dence on the iron concentration near certain critical 
values c,. At lower values of c the curves shown solid 
in Fig. 2 a r e  more gently sloping than the dashed curve. 
These features of the curves of Fig. 2, with the E,(c) 
dependence taken into account, lead to a better agree- 
ment between the calculated values of &,(c) with the 
experimental dataL 5 8  9* lo* ''I for  the alloys FeNi, FePd, 
and FePt with fcc lattice. 

CONCLUSION 

The model assumed in the present paper makes i t  
possible to interpret the main experimental facts on the 
atomic magnetic moments of iron in d-metals. One 
such fact is the considerable difference between the 
atomic magnetic moments of the y and a! modifications 
of iron. The solid curve in Fig. 1 shows that at a 
certain V the value of m, of y-Fe decreases steeply to 
zero. However, according to the experimental re- 
sults['* '] this iron modification has a small  atomic 
moment. The fact that y-Fe has a small  mFe is prob- 
ably due to the so-called antiferromagnetism of the 
collectivized electrons. This phenomenon is the result 
of the interaction between electrons, which has a col- 
lective character and is not accounted for by the Hamil- 
tonian (1.1). 

The employed model provides a simple explanation of 
the experimental results  of D'lOn ''I, which show that 
the impurity iron atoms in d-metals with fcc lattice 
have relative large and approximately equal magnetic 
moments. In addition i t  is possible to interpret the 
behavior of the localized magnetic moments of iron in 
i t s  alloys with some of these d-metals. 

~ x p e r i m e n t s [ ~ *  99 lo* ''I show that the magnetic mo- 
ments of the iron atoms in FeNi, FePd, and FePt alloys 
with fcc lattice remain practically constant when the 
iron concentration is increased to 60-70 at .%. At a 
higher iron concentration, the spontaneous magnetiza- 
tion decreases abruptly. These properties indicate that 
there exist for these alloys critical numbers N, of the 
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iron atoms surrounding the central atom. If the number 
of surrounding iron atoms exceeds N ,  , then m Fe of the 
central atom vanishes jumpwise. This conclusion con- 
cerning the behavior of m ~ ,  in the indicated alloys was 
drawn earlier in.[19* 201 It is confirmed by the experi- 
mental results on the properties of the iron clusters 
produced in CuFe  alloy^.^^'^^^^ In the present paper, 
the fact that m,, remains approximately constant when 
the number of the surrounding iron atoms increases to 
N, is connected with the transitions of the s electrons 
to d levels. This follows from the shapes of the curves 
of Fig. 2. 

The rapid decrease of the spontaneous magnetization 
with increasing iron concentration in y -FeNi, y -FePd, 
and y-FePt alloys is closely connected with their invar 
anomalies. The physical singularities of the invar al- 
loys a re  the result of instability of their spontaneous 
magnetization relative to different external actions 
(magnetic fields, changes of temperature, and others). 
This instability of the spontaneous magnetization is due 
to the fact that the iron concentration in invar alloys 
corresponds to the steep part of the 6 F,(c) plot. 

Thus, a simple model of localized magnetic moments, 
which takes interatomic transitions into account, makes 
it possible to interpret all the main features of the be- 
havior of mFein d metals with fcc lattice. 
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