
this method of selectively influencing the molecules and 
i ts  practical application. 

It is, however, important to  remember the secondary 
chemical processes which may reduce the selectivity, 
Complex molecules usually decay into radicals from 
electronically excited states, It is, therefore, import- 
ant to select molecules whose decay products have no 
appreciable effect on the isomerization reaction, o r  
have low decay probability. The following excitation 
scheme can be used for such experiments. The mole- 
cule is first taken to the low-lying vibrational levels of 
the singlet electronic state and then undergoes transi- 
tions to the triplet state, followed by relaxation to the 
ground state. Molecular isomerization will be the 
leading process in this scheme. 

Apart from its selective effect, multistep excitation 
of molecules can also be used in other fields, for ex- 
ample, in the spectroscopy of electronically excited 
states of complex isolated molecules. 

Iv. S. Letokhov and S. B. Mur , Kvantovaya Elektron. (Moscow) 
3, 248, 485 (1976) [Sov. J. Quantum Electron. 6, 129, 259 
(1976). 

2 ~ .  V. Ambartsumyan, V. S. Letokhov, G. N. Makarov, and 
A. A. puretskif, Pis'ma Zh. Eksp. Teor. Fiz. 15, 709 (1972) 
[JETP Lett. 15, 501 (1972)l; 17, 91 (1973) [JETP Lett. 17, 
63 (1973)l. 

3 ~ .  V. Ambartsumyan. Yu. A. Gorokhov, V. S. Letokhov, G. N. 
Makarov, E. A. Ryabov, and N. V. Chekalin, Kvantovaya 
Elektron. @loscow) 3, 802 (1976) [Sov. J. Quantum Electron. 
6. 437 (1976)l. 

5 ~ .  I. Brauman, T. J. O'Leary, and A. L. Shawlow, Opt. 
Commun. 12, 223 (1974). 

6 ~ .  D. Robinson and K. A. Holbrook, Unimolecular Readions, 
Wiley Interscience, New York, 1972 (Russ. Transl., Mir., 
N. Y., 1975). 

'J. G. Calvert and J.  N. Pitts Jr. ,  Photochemistry, Wiley-In- 
terscience, N. Y., 1966 (Russ. Transl., Mir., N. Y., 1968). 

8A. Yogev and R. M. J. Loewenstein-Benmair , J. Am. Chem. 
SOC. 95, 8487 (1973). 

9 ~ .  V. Ambartzurnian, N. V. Chekalin, V. S. Doljikov, V. S. 
Letokhov, and V. N. Lokhman, J. Photochemistry 6 ,  55 
(1977). 

IOH. J. Bernstein and D. A. Ratsay, J. Chem. Phys. 17, 556 
(1949). 

'IJ. R. Lacher, L. E. Hummel, E. F. Bohmfalk, and J .  D. Park, 
J. Am. Chem. SOC. 72, 5486 (1950). 

121. N. Knyazev, V. S. Letokhov, and V. G. Movshev, IEEE J. 
Quantum Electron. QE-11, 805 (1975). 

I3v. N. Bagratashvili, I. N. Knyazev, Yu. A. Kudryavtsev, and 
V. S. Letokhov, Pis9ma Zh. Eksp. Teor. Fiz. 18, 110 (1973) 
[JETP Lett. 18$ 62 (1973)l. 

i 4 ~ ~ .  A. Kudryavtsev and N. P.  Kuz'mina, Kvantovaya Elektron. 
(Moscow) 4, 220 (1977) [Sov. J. Quantum Electron. 7 ,  131 
(1977)l. 

15R. Ausubel and M. H. J. Wihnen, J. Photochem. 4, 241 (1975). 
I6M. H. J. Wihnen, J. Am. Chem. Soc. 83, 4109 (1961). 
I7p. B. Ayscough, A. J. Cocker, and F. J. Dainton, Trans. Far- 

aday Soc. 58, 284 (1962). 
18R. Ausubel and M. H. J. Wijnen, Z. Phys. Chem. (Frankfurt 

am Main) 100, 175 (1976). 
1 9 ~ .  H. Knox and J. Riddick, Trans. Faraday $oc. 62, 1190 
(1966). 

2 0 ~ .  Ausubel and M. H. J. Wijnen, J. Chem. Kin. 7, 739 (1975). 
2 1 ~ .  D. Lambert and R. Salter,Proc. R. Soc. London Ser. A 253, 
277 (1959). 

2 2 ~ .  M. Sverdlov, M. A. Kovner, and E. P. ~ r a i n o v ,  Koleba- 
tel'nye spektry mnogoatomnykh molekul Nibrational Spectra 
of Polyatomic Molecules), Nauka, M., 1970, p. 387. 

4 ~ . - ~ .  Le&khov, Physics Today, May 23, 1977. Translated by S. Chomet 

.... 

Anomalous Senftleben effect 
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Some features of the Senftleben effect are considered for polar molecules. It is shown that, in contrast to 
the Kagan vector, the use of the Waldmann vator, previously employed in the description of nonspherical 
collisions in polar gases, is unjustified. It is established that molecular collisions leading to the violation of 
the principle of detailed balancing are accompanied by a change in the component of the angular 
momentum along the axis of symmetry of the molecule. The characteristic collision frequencies associated 
with the nonequilibrium polarization of the angular momenta of the molecules are determined for the 
CH,CN gas. 

PACS numbers: 34.10. + x 

1. INTRODUCTION monatomic molecules. The principal aim of such in- 
vestigations is to obtain information on the frequencies 

Studies of phenomena such a s  the change in the trans- of elastic and inelastic collisions involving a change in 
port coefficients in external fields, birefringence in a the direction of the angular momentum of the molecule. 
viscous flow of gas, the thermomagnetic rotation effect, This information is essential for the solution of many 
depolarized Rayleigh scattering, NMR and ESR relax- applied problems and, in particular, problems such as 
ation, and so on, ['I have resulted in an increased inter- the development of masers  using rotational transitions 
e s t  in the properties of nonspherical scattering by in molecules and controlled chemical reactions. 
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The common feature of all the phenomena mentioned 
above is the polarization of the angular momenta in a 
gas of monatomic molecules when macroscopic-temp- 
erature gradients o r  velocity gradients a re  established. 
The existence of this polarization is directly confirmed 
by the appearance of birefringence in a viscous gas 
flowc2] and also the polarization of molecules in the gas 
stream issuing from an ultrasonic nozzle.c31 An exter- 
nal field acting on the dipole or  magnetic moment of the 
molecules changes the polarization of the angular mo- 
menta and this, in turn, produces a change in the trans- 
port coefficients of the gas (this is the Senftleben effect). 

Experiment shows that the resulting polarization of 
the angular momenta is connected with the point sym- 
metry of the gas molecules. Thus, for simple diatomic 
and linear molecules, and molecules in the form of a 
spherical spinning top, which exhibit high symmetry, 
the change in the polarization in the field leads to a re- 
duction in thermal conductivity and viscosity in a low- 
pressure gas of such molecules. However, in highly polar 
gases (CH,CN, C,H,CN, CH,NQ, etc.), the dependence of 
the heat flow on the applied field is anomalous: the appli- 
cation of a low electric field results in an increase rather 
than a reduction in the heat f l o ~ . ~ ~ - ~ ]  It has been s h o ~ n ~ " - ~ '  
that, if there a re  collision for which the probabilities of 
direct and inverse collisions a re  not equal, this may re- 
sult in an increase in the transport coefficients in the 
field. However, existing theory does not provide an ex- 
planation of the anisotropic effect, i.e., the dependence 
of the phenomenon on the angle between the field and the 
temperature gradient, and the connection between the 
phenomenon and the point symmetry of the gas mole- 
cules. 

The usual Senftleben effect is due to collisions re- 
sulting in a change in the direction of the angular mo- 
mentum of the molecule. The frequency of such col- 
lisions is usually obtained from the field dependence of 
the transport coefficients.c101 The case of highly polar 
molecules, for which the anomalous Senftleben effect is 
observed, is different in that it involves inelastic col- 
lisions in which there is a change in the angular momen- 
tum component along the rotational axis of the molecule. 
The contribution of such collisions increases as the 
shape of the molecule departs from the spherical shape. 

To investigate the polarization of angular momenta in 
a nonequilibrium state, we shall employ the model 
based on nonspherical potential scattering which has 
been used C11*121 to study the scattering of diatomic 
molecules and the scattering of molecules with ar-  
bitrary symmetry. Since the mean wavelength of the 
molecules in the gas is small even in comparison with 
the molecular ineraction range and, moreover, with 
the exception of light gases such as Hz, D,, and HD, 
the rotational levels excited a t  room temperature have 
quantum numbers that a re  large in comparison with 
unity, we shall use the quasiclassical approximation 
both for the translational and the rotational degrees of 
freedom. The transport equation for a gas consisting 
of monatomic molecules with rotational degrees of free- 
dom was obtained in this approximation by Borman et 
d.[l41 They showed that, in the quasiclassical approxi- 

mation for the rotational degrees of freedom, the col- 
lision probability can depend only on invariant com- 
binations of nonspherical variables that a re  constants 
of the rotational motion and, at the same time, a re  in- 
variant under symmetry transformations of the point 
symmetry group of the molecule. This property of the 
collision probability averaged over rapid rotations en- 
sures  that a symmetric molecule does not exhibit cross 
effects suchas viscosity-thermal conductivity in-an ex- 
ternal field,C8*15"81 i.e., i t  does not lead to the diagonal- 
ization of the matrix of transport coefficients. Point 
symmetry of nonspherical molecules, in general, leads 
to a simplification of the selection rules for the matrix 
elements of the collision operator. These selection 
rules, in turn, enable us to establish the nature of the 
polarization of angular momenta that appears in the non- 
equilibrium state. 

In Sec. 2, we shall investigate the properties of the 
nonspherical-collision operator that a r e  responsible for 
the appearance of polarization of angular momenta in 
nonequilibrium states and, in Sec. 3, these properties 
will be used to explain the anomalous behavior of the 
components of the thermal conductivity tensor for the 
CH3CN gas in an electric field. 

2. PROPERTIES OF THE NONSPHERICAL- 
COLLISION OPERATOR 

It is well known that the field dependence of the trans- 
port coefficients is due to the nonspherical nature of 
scattering by rotating molecules. We shall therefore 
write the collision operator in  the form of the sum 

where Sl,  represents the spherically symmetric part of 
the collision probability and a, describes collisions in- 
volving a change in the direction of the angular momen- 
tum. To investigate the properties of Sl,, we introduce 
a set of basis vectors Iv) that a r e  orthogonal with 
weight f,, where f, is the local equilibrium distribution. 
For  molecules in the form of a symmetric spinning top, 
we have 

where the set  of indices (rlHlhl) determines the depend- 
ence of the basis vector on the velocity u, the set of 
indices (r,H,h,r) describes the dependence on the angu- 
l a r  momentum M,  the indices Hlhl characterize the de- 
pendence on the direction of the velocity vector, and 
H,h,r specify the dependence on the direction of the 
angular momentum in the laboratory frame and in the 
frame attached to the molecule. We note that the basis 
vectors I v) must be invariant under transformations 
belonging to the point symmetry group of the molecule, 
and can depend only on combinations of nonspherical 
variables that a r e  the constants of rotational motion.[14' 
Thus, for example, averaging over rapid rotations in 
the case of asymmetric molecules leads to the effective 
point symmetry group D,, (the "symmetry" of the func- 
tion f,). Since the symmetry elements of this group in- 
clude both inversion and reflection in a plane, the col- 
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lision probability averaged over rapid rotations is in- 
variant under space inversion. consequently, in the 
zero-order approximation in U,T, (a, is the frequency 
of free rotation of the molecule and 7;' is the collision 
frequency), cross effects such a s  viscosity-thermal 
conductivity, which a re  possible for stereoisomeric 
gases in a magnetic field, C17s183 a re  absent. For  mole- 
cules in the form of a symmetric spinning top, invar- 
iance under the transformations of the point symmetry 
group of the molecule ensures that odd values of T (the 
values of T determine the dependence of the vector Iv) 
on the orientation of the angular momentum in the coor- 
dinate frame attached to the molecule) a re  possible only 
for molecules with point symmetry C,. 

Since the operator 61, is a scalar,  i t s  matrix elements 
a re  given by 

where I p) = y , y g , H a ~ ,  7)-and (tl,h1H,h2  IN^) is the 
Clebsch-Gordon coefficient. To investigate the matrix 
(p' (a, I b), the operator Q, can be written in the form 

where subscript 1 refers to a molecule participating in 
the collision and the prime indicates functions that de- 
pend on the post-collision variables. Each of the oper- 
ators &I(') in (2.4) will be written in the form of the sum 

where the superscript + represents Hermitian conjuga- 
tion. Using (2.4) and the relation Sp, , ,, w = Sp, . ,, w ' , 'I4] 

we obtain 

Q:." =O for ~ ( f , 2 + 1 ' ,  2')=-w(l',2'+1,2), 

nB' -0 for w ( i ,2-+iJ ,  2') -w (2, i+2' ,  I'),  (2.6) 

Q r '  -0 for ~(1,2-.1',2'.)-rw(lJ, 2 ' 41 ,2 ) ,  

Q> =O for ul (I,  2-1', 2 ' ) = ~ w  (Z', 1'-2,1). 

It is clear from (2.6) that, if the probabilities of direct 
and inverse collisions a re  not equal, the collision oper- 
ator will not be Hermitian. In fact, the anti-Hermitian 
part of this operator is connected only with the opera- 
tors  ) and 61' ) which, clearly, describe the depar- 
ture of the moles from the I' state (r is the set  of vari- 
ables necessary to describe the molecule) due to col- 
lisions per unit volume. 

It is well known that, for particles with internal de- 
grees of freedom, the relationship between the proba- 
bilities of direct and inverse collisions is 

where the state 1, is that in which the velocity and ang- 
ular momentum change their signs. This relation re- 
flects the symmetry of the collision probability under 
time reversal. In the case of rotational degrees of 

freedom, the internal state of the molecule in the form 
of a symmetric spinning top is determined by the quan- 
tum numbers J ,M,K,  where M and K a r e  the components 
of the angular momentum along the external and internal 
axes. There is degeneracy in M and in the sign of K. 
Because of this degeneracy, we can select any combina- 
tion of degenerate functions. Let us therefore consider 
states (JKMPU) of the form 

where P=O, 1; P = O ,  s = O ,  1 for K=O, and r = O  for 
M=O. The phase factors q, and q, in (2.8) a re  deter- 
mined in accordance with 

f J I K M ) = q r J I - K M ) ,  TI JKAf)=q,I I -K-M) ,  (2.9) 
where E and f' are  the space inversion and time rever- 
sal  operators. Using (2.8) and (2.9) we find that 

(kt,  IfK'Y'P'a'l 31 k .  I K I M P ~ )  
= (- l )A ' ( -k ,  JKMPrr (9-1 -k'. J'K'M'P'n') 
= (- 1 )  AP+A"(k, JK.4fPx 13) k'. I'K'Jf'P'rr'), (2.10) 

where T is the scattering matrix, k is the wave vector 
of the molecule, and 4f=f'- f is the change in f in a 
collision. If we use (2.10), we obtain the much simpler 
result 

for the collision probability which is proportional to the 
square of the modulus of the matrix element of the 
scattering matrix. When an external field is present, 
the choice of linear combinations of degenerate func- 
tions ceases to be arbitrary if the wave functions a re  
subjected to the requirement that the applied field pro- 
duces a small change in them (small perturbation). 
This condition will be satisfied when the nondiagonal 
matrix elements of the perturbation operator a re  small 
in comparison with the diagonal matrix elements. The 
functions introduced in (2.8) do not satisfy this condi- 
tion because, for these functions, the matrix elements 
with different P and n are  not small. Moreover, the 
change in the functions JJKM) o r  the quasiclassical 
functions I J B ~ U @ ) " ~ ~  is small, i.e., we can use the 
usual perturbation theory methods. For  transitions be- 
tween the states (JKM) or  I~8cp@), only (2.7) is satis- 
fied. However, for molecules with a definite point sym- 
metry, the relation given by (2.11) can be obtained from 
(2.7) for the chosen model based on nonspherical poten- 
tial 

Thus, for molecules that do not have optical isomers, 
the probability of collision is unaffected by space inver- 
sion or  time reversal. These symmetry properties lead 
to selection rules for the collision operator.c201 In our 
notation, these rules have the following form: 

H t 1 + H , + ~ ' + 7  even for 8, and 9-, 
H,' fH2 even for Q+, (2.12) 

H,'+H, odd for Q-. 

For  molecules with a definite point symmetry, the sel- 
ection rules given by (2.12) can be simplified by eval- 
ulating the integrals with respect to the angular vari- 
ables in the matrix elements of the operator a,. From 
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the point of view of the momentum conversion law, i t  is 
convenient to introduce the variables cA and c , which 
a re  related to the relative velocity and the center of 
mass, a s  follows" 

After integration with respect to the velocity of the cen- 
t e r  of mass (see Appendix A), we obtain 

where Ir]) = ~ , ~ , , A H , Q ~ ,  7).  The matrices of the oper- 
ator a, on the left-and right-hand sides of (2.14) have 
the same form if  we make the following formal substi- 
tutions in the matrix elements (p' la, Ip): 

and modify the indices in the appropriate fashion. The 
only terms that are nonzero in (2.14) a r e  those for 
which 

r,'+H,'!?=A,'+A'/2+Bl+B/2, r,+H,/2=A1+A12+Bl+B/2, 

A ' t d  +T'+T - even . (2.16) 

The following relations then follow from (2.16) for in- 
teger values of the indices: 

A'+A even for IIl'fHt even 

A'+.Z odd for If,'+II, odd 

To evaluate the integrals with respect to the angular 
variables in the matrix elements (r]' In, Iq), we write 
the collision probability in the form of an expansion in 
terms of spherical tensors that depend on the directions 
of the velocities and the angular momenta of the collid- 
ing molecules 

where Z = (cLc,, J'JJ:,x'xx:x,) and A represents the set  
of indices (1'1 L ,  s 'sT,s~s,T,) .  To abbreviate the nota- 
tion in (2.18), the spherical tensor of rank s is repre- 
sented simply by the symbol s. The dependence on the 
directions of the velocities is represented by the sym- 
bols I' and 1, and the dependence on the directions of the 
angular momenta is represented by the symbols s'ss:$,. 
Each spherical tensor of rank L in (2.18) is defined with 
the phase factor iL. The  coefficients W,(Z) a r e  then 
real functions. 

To ensure that the collision probability is invariant 
under space inversion, the coefficients W, in (2.18) 
must satisfy the relation 

where Z,= (tic,, JtJJ:J,, -x' - x  -x: -xl). In precisely 
the same way, invariance of the collision probability 
under time reversal yields 

where 

It is clear from (2.19) and (2.20) that the probabilities 
of direct and inverse collisions will not be equal only 
when the coefficients W, in (2.18), for which s '+s+s ' ,  
+s l  is an odd number, a re  not zero. In other words, the 
departure from the equation w =w' in the case of mole- 
cules that do not have optical isomers is due to expan- 
sion terms that a re  odd in the angular momenta of the 
colliding molecules. We also note that i t  follows from 
S p , . , , ~ = S p ~ , ~ , w '  that, fo r  s f = s ; = I f = O ,  only those W, a re  
nonzero for which s + s, is even (condition I). 

After integrating with respect to the angles, we ob- 
tain 

( q i ~ ~ ~ t ' ~ q ) - ~  (QICL,~ I I . ) ~ ~ I I ~ ~ ( - ~ ) Q + L { ~ , ~ Q  } [ , , , 1 : ~ ~  , 
L H A L  

In these expressions, 

Il)= IA,Ar2Hlr), A,=(OLL, OLL, O O O ) ,  Ar= (OLL, OHt'Il,', OHzHI), 
As=(AIAL, Ht'H2L, 000). A,=(AIAL, Ift'OHA OH,H,), 

and the subscript At in the matrix element (h' (S lA1 IA) 
indicates that i t  is defined with the coefficient WAt in 
the expansion given by (2.18). When the transport co- 
efficients (thermal conductivity, viscosity) of mole- 
cular gases a r e  determined, one is interested only in 
"transitions from the state" with H, = 0 because the 
macroscopic homogeneity does not then depend on the 
direction of the angular momentum. The presence of 
the 6j  symbol in (2.21) then leads to the condition HL =L 
(condition 11). Conditions I and I1 and also (2.16) can 
readily be used to obtain the following selection rules 
for the operators a,, and a,: 

where and henceforth Hz = 0. 

It follows from (2.21) that condition I is not valid for 
i = 3,4 .  Using condition 11, we note that the restrictions 
on the allowed values of H;+Hz a r e  only possible if the 
values of L a r e  determined by the point symmetry of the 
colliding molecules. On the other hand, it follows from 
(2.19) that the allowed values of 1 +I' always depend on 
the point symmetry of the molecule. Consequently, 
when the allowed values of H;+Hz a re  restricted, the 
values of I +I' +L must be even (condition 111). It can be 
shown on the basis of published results r14a191 that con- 
dition 111 will be satisfied for the distorted-wave ap- 
proximation, widely used in scattering theory, if the 
distorting potential is taken to  be the spherical part of the 
interaction between the molecules. From (2.16), (2.211, 
and condition 111, we obtain the selection rules for the 
operators a,, and aA4: 
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Thus, in accordance with (2.17), (2.22), and (2.23), the 
selection rules for the operators 62, and 62, are  a s  fol- 
lows: 

Hl' + HI 
odd , (2.24) 

T' + T 
where, in the above approximation, the matrix ele- 
ments of the operator 0. are  nonzero only for mole- 
cules with symmetry C,. We note in this connection 
that the anomalous Senftleben effect is observed in 
gases consisting of the molecules with C,, symmetry,[@] 
and that, by using the selection rules given by (2.24), 
we can verify the absence of viscosity-thermal conduc- 
tivity cross effects that has been p r e d i ~ t e d [ ~ * ' ~ * ' ~ ]  fo r  
molecules in the form of a symmetric spinning top. 

3. THERMAL CONDUCTIVITY OF CH, CN 
GAS IN AN ELECTRIC FIELD 

The formal solution of the transport equation for 
molecules with rotational degrees of freedom in an 
electric field will be written in the form2) 

where 52, describes the precession of the molecules in 
the electric fieldCl4] and the functions A,, characterize 
the given macroscopic inhomogeneity .c201 Using (3 .I), 
we obtain 

A [ ( A ~ . I ~ ~ . ) I = ( ~ ~ ! ?  IQ,KQ,I-/.I? ), Ks(Q+QE)-'-Q-', (3.2) 

where A@ is the change in @ in the field. We note that 
we have not assumed in the derivation of (3.2) that the 
change in the collision probability with changing orien- 
tation of the angular momentum is small. Using (3.2), 
we obtain the following expressions for the heat flux 
components q " ( ~  (1 VT) and qL(E 1 vT): 

where x0 is the thermal conductivity in the absence of 
the external field. Henceforth, the formulas for the 
perpendicular effect (Ax1) will be written out only when 
they a re  substantially different from the analogous for- 
mulas for the parallel effect (Ax"). The expressions for  
Ax" can be written in following way with the aid of the 
operators 52, amd 62-, introduced in Sec. 2: 

A~==Azc+l~+Ax-~, 

where 10) = x 2. In deriving (3.4), we have neglected 
the nondiagonal matrix elements of the operator K, 
which corresponds to the frequently valid assumption 

that the nondiagonal matrix elements of the operator 62 
a re  small. 

Comparison with experiment has sh~wn['~' that,  for 
molecular gases with the normal Senftleben effect, we 
can confine our attention in (3.4) to terms of the form 
( v &  = I ~ l h , ,  02h2,0), which describe collisions with a re-  
orientation of the angular momentum. We note that, in the 
Cartesian set  of coordinates, the term I v,) corresponds 
to the vector u s  [M] '" ([a] ''I is an irreducible tensor of 
rank 2) which is referred to a s  the Kagan vector in the 
literature. This simplified two-moment approximation 
is inconvenient in the case of the anomalous Senftleben 
effect because, in addition to the term u . [MI "), one 
must then also take into account the terms that a re  odd 
in the angular momentum and appear a s  a result of col- 
lisions described by the anti-Hermitian part of the op- 
erator 62. From the phenomenologic point of view, the 
simplest term of this type is the Waldmann vector [u MI. 
This vector is widely used at present in the study of ef- 
fects due to nonspherical interactions between mole- 
cules (detailed information can be found in the litera- 
t ~ r e ~ ' * ' ~ ~ ) .  However, in contrast to Kagan's vector, the 
applicability of the Waldmann vector is  not a s  well just- 
ified because of the large number of parameters that is 
necessary to describe the experimental data. More - 
over, i t  follows from (2.24) that the Waldmann vector 
is  forbidden by selection rules in the case of the model 
based on nonspherical potential scattering.["-l3 In 
addition, when the positive change in the thermal con- 
ductivity in a field is described with the aid of the Wald- 
mann vector, it is not possible to explain the absence of 
the anomalous behavior in a mixture of monatomic and 
polar gases for low concentrations of the 
This feature of the anomalous Senftleben effect can eas- 
ily be explained if  it is  assumed that the operator 62- de- 
scribes collisions with a change in the component of the 
angular momentum along the axis of the spinning top. 
As a matter of fact, for symmetric top molecules, such 
collisions correspond to spherical tensors in the expan- 
sion of the scattering matrix T for  which 1 3 for scat- 
tering by the molecule and I 3 6 for scattering by the at- 

It is clear that, if nonspherical expansions of the 
matrix T converge rapidly, terms with I 2 6 can be ne- 
glected. 

Collisions with a change in the component of the ang- 
ular momentum along the spinning-top axis ensure that 
the nonequilibrium distribution function of the gas mole- 
cules depends on x = cos a. In view of this, and because 
of the selection rules given by (2.24), we choose the 
vector [u] (2) .Mx for the description of the positive 
change in the thermal conductivity when E 11 VT, which 
corresponds to IvJ = 102h1, Olh,, 1). This model leads 
to the following expression for the relative change in 
. ~ c "  in the field: 

1058 Sov. Phys. JETP 47(6), June 1978 A. S. Bruev 1058 



where d is the dipole moment of the molecule, p is the 
gas pressure, a,, and ws a r e  the matrix elements of the 
operator 0: 

and the general definition of the vectors I F) and Iv) is 
given in Sec. 2. We note, in particular, that I F,) = 100, 
1210, O), 1 /A,)= 100,2110, 1). 

The expression for the relative change in xL in a field 
can be obtained in similar way. However, in addition to 
the vector [u] ' Mx, we now take into account Mx , 
which is allowed by the selection rules but does not con- 
tribute to the parallel effect. The result is 

6x-L=-0.6$a[0.59t(yk, i t )  + 3 , ( 2 ~ r ,  Z )  I ,  
1 5 x , ~ = 0 . 7 $ 9 ~  ( y . ,  x )  + 1 1 , J e ( y s  x ) ,  

(3.7) 

where the subscript b refers  to the vector Mx, Ipd 
= (00,0111, I), and the remaining notation is similar 
to that in (3.5). The integrals fil(y, u) in (3.5) and (3.7) 
cannot be expressed in terms of elementary functions 
and must be evaluated approximately. Using the for- 
mulas given in Appendix C, we obtain the following re- 
sults for the CH,CN molecule (%= 17.3): 

To determine the theoretical parameters ICI, and fl, 

(s = k ,  a ,  b) in (3.5) and (3.77, i t  is convenient to use a 
graphical method similar to that described by De Groot 
et a1 .c221 It then turns out that a single set  of parame- 
t e r s  lDS, g, cannot describe the experimental functions 
6~!'=cp(E/p) and bt*=3/56d1 +2/56xA=+(E/p) to within 
experimental e r r o r  (about 10%). To describe the ex- 
perimental results in this case, one must take into 
account the nondiagonal matrix elements of as,* in the 
evaluation of the matrix of the operator K in (3.4). It is 
shown in Appendix C that, in this case, one must sub- 
stitue -# (for the parallel effect) and $s - $ (for the 
perpendicular effect) in (3.5) and (3.7). This procedure 
was used to obtain the se t  of parameters t, $:,rs that 
is in satisfactory agreement with experimental data. 
The figure shows the experimental and theoretical re- 
sults for &It and &*. The theoretical parameters a r e  
listed below (the asterisks indicate the field dependence 
of h*): 

Parameter: II,* #a' II,* IIl IIp T, r, r b  

Result in 
units of 7 .83  7.62 7.27 7.54 1.86 1.60 1.80 5.30 

The dimensions of nS a re  Or . cm/~orr)-l . The precision 
to which qS, ns a r e  calculated corresponds to the exper- 
imental e r ro r  (about 10%). 

The calculated valus of ns enable us to calculate the 
effective collision frequency w,/p. The result is: 

oklp--35.2. 10'. wdp=82.2. lo8, 
o./p=242.1. loe, w/p=i8.8.1OS. 

F/p 

FIG. 1 .  Relative change in the thermal conductivity as a func- 
tion of ~ / p  (double logarithmic scale): 1-6d1= = ( E / p ) ;  2- 
bx* = J . (E/p)  for CH3CN gas. 

The ratio w,/p is given in sec-' .Torr-'. 

For  comparsion, we also give the effective frequency 
of elastic collisions w/p = q7, 1231 where is the viscos- 
ity. We note that the figure w,/p = 82.2 characterizing 
the effective collision frequency for the polarization Ivlx 
is in agreement with the result w , / p  = 75.4, deduced 
from measurements of nonresonance absorption in 
CH,CN gas.C241 

It is clear from the formulas in Appendix C that $1 
and (1$1 a r e  proportional to the matrix element of the op- 
erator 51". In general, the operator a-l is nondiagonal 
not only in the indices H,H,r, but also in the projec- 
tions h, and h,. This leads to an increase (as  compared 
with the diagonal approximation) in the number of para- 
meters  in the theory. To determine these parameters, 
one must, naturally, increase the number of independ- 
ent experiments. We note that this can be done by in- 
vestigating the anomalous behavior of the thermal con- 
ductivity of CH,CN gas in a magnetic field. Unfortun- 
ately, however, this information is lacking a t  present. 
On the other hand, the data reported by Borman et 
al . ,  LZ51 who investigated the perpendicular anomalous 
magnetic Senftleben effect in the case of CH,CN gas, 
give r ise  to some doubt because they can only be ex- 
plained by assuming that the CH,CN molecule has an 
anomalously large magnetic moment .c23 

It is clear from the foregoing discussion that the field 
dependence of both 6d1 and 6+ must be known if one 
wishes to obtain complete information on the polariza- 
tion characteristics of the anomalous Senftleben effect. 
Such experiments have so  fa r  been performed only for 
CH,CN gas. However, some qualitative predictions 
about the anomalous behavior of other polar gases can 
be made on the basis of the concept of effective symme- 
try. As an example, consider the effect for the CH,F 
and CHF, molecules. These molecules (d,,, = 1.86D; 
d m 3  = 1.640) a r e  symmetric spinning tops and have the 
symmetry C,,. Moreover, studies of the parallel effect 
in these gases have that CHF, differs from 
CH3F in that i t  does not exhibit an increase in the ther- 
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ma1 conductivity even for small values of the ratio E / p .  
This behavior may be due to the fact that the terms in 
the nonspherical expansion (2.18) with odd values of L ,  
which provide the contribution to the anti-Hermittian 
part of the collision operator, a re  more important for 
CHF, than for CH,F. The 'light" H atom in CHF, is 
located a t  a shorter distance from the c atom than the 
"heavy" I? atom in the CH,F molecule. For  nonspheri- 
cal collisions, therefore, the effective symmetry of the 
CHF, molecule may be the same a s  the symmetry of the 
planar molecue, i.e., D,,. On the other hand, for mole- 
cules of this symmetry, odd values of L a re  forbidden 
by symmetry ~ o n s i d e r a t i o n s . ~ ' ~ - ~ ~ ~  We note that the 
Kagan vector is sufficient in this case for the descrip- 
tion of the field effect and, a s  is well known, [6nA/6d'] 
=3/2 in this case for E -.o. A similar analysis is valid 
for the NF, molecule (d,, = 0.23401, in which the nitro- 
gen atom is located close 10 the plane passing through 
the fluorine atom, so  that the effective symmetry of the 
molecule is D,,. For the NF, gas, the measured value 
of [&1/6d'] for E - w  is 1.56.[263 In contrast to CH,F, 
the symmetry of the CH,CN molecule (d, ,, = 3.921)) is 
an elongated symmetric top, and this is d e a r l y  differ- 
ent from the symmetry of the planar molecule. 

In conclusion, the author regards it a s  his pleasant 
duty to thank U.M. Kagan, L.A. Maksimov, A.A. Ovchin- 
nikov, V.D. Borman, B.I. Nikolaev, and V.I. Troyan 
for discussions and valuable advice. 

APPENDIX A 

The dependence of the basis vector Iv) in (2.2) on the 
velocity u is described by the function 

where r(x) is the gamma function, L:@) is the Laguerre 
polynomial, and ~,,(g) a r e  spherical harmonics. To 
evaluate the integral with respect to the velocity of the 
center of mass, we need a formula relating the function 
@rm [2-1/2(ca + c,)] to the functions (c,) and 
(c,). Let q be the sum of the vectors a and b, and con- 
sider the function b,(q)Y,,(q). Using the 6-function re- 
presentation, we obtain 

Having evaluated the integrals with respect to the angles 
in (A.2), and using the well-known expansion for a plane 
wave, we obtain 

- - 
B,,. (a, b )  - 5 d z z 2 b l  ( z )  drr'j, ( z r )  j; (ar) jB ( b r ) ,  (A'3) 

0 0 

n ,,... =[ @ + I )  (2y+1) .  . .]'", 

where j , (x )  is the spherical Bessel function and the sym- 
bol €3 represents the irreducible tensorial product of 
spherical tensors. Using (A.3) and the expansion of the 
spherical Bessel function in terms of the Lagurre poly- 
nomials, we obtain 

where the nonzero terms in the sum a re  thoseforwhich 
r + ~ / 2 = A ,  +A/2+Bl+B/2. 

APPENDIX B 

We shall now derive the approximate formula for the 
integrals f l (y ,  n) and d2(y, n). Using the Biirmann ex- 
pansion, C z 7 1  

(B.1) 
where 5 is a constant, and retaining the first  nonvanish- 
ing term in (B.l), we obtain 

This result gives the asymptotic behavior in y because 
the accuracy that can be achieved by including the next 
terms in (B.l) increases only for sufficiently large y. 
However, comparison with numerical calculations per- 
formed on a computer has shown that one can confine 
one's attention to the f i rs t  terms for the entire range of 
values of y if the experimental range of uncertainty 
(-  10%) is to be achieved in (B.2). 

APPENDIX C 
We shall now take into account the nondiagonal ma- 

tr ix element of the operator SZ in the evaluation of the 
matrix K,,, . We have 

where the last  two terms contain the nondiagonal ele- 
ments K ,  and K,,, 

and the expression for  differs by the sign and the 
replacement of k with a. Using (2.3) in (C.2), we obtain 

We now take the set of vectors 1s) a s  the basis for the 
operator H. We then have 

The function P will now be chosen so that 

where H(O"is the diagonal part of H. From (C.4), we 
then have 
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This result readily yields the formal expression for the 
matrix elements of the operator H": 

From this, we obtain 

Using the Biirmann expansion (B.l) in (C .7), we have 

R A I K v = -  - - n;'<qI ( f h i )  (liZ.F)-'lv.). [ ""' I' 51;' l+nAyA (C.8) 

The coefficient n, in (C.8) can be found with the aid of 
(C.7) by allowing y, to tend to infinity: 

where, in the expression for n,, we have neglected the 
nondiagonal elements of the operator (xh;/J)'. When 
(C.6), (C.8), and (C.9) are taken into account, the final 
expression assumes the following form: 

We note that, in accordance with this result, the field 
dependence of the nondiagonal elements Kka and Kak i s  
the same a s  the analogous dependence for the diagonal 
elements K,, and K,,. 

"we have introduced the dimensionless velocity c= (rn/2~)'/2u. 
where n7 is the mass of the molecule and T is the tempera- 
ture. 
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