
(6.10) 

in a wider range, we find that 

Throughout the frequency range, with the exception of 
narrow (-  w;) intervals near the limits and near the 
middle of the spectrum the functiong(c) is identical, 
apart  from small corrections of the order of w i ,  with the 
density of flexural vibrations of the corresponding planar 
lattice. Near the upper limit of the spectrum the behavior 
of g ( r  ) is analogous to that of quasilongitudinal vibrations. 
Figure 5 shows schematically the behavior of g ( ~ )  for a 
quasiflexural branch. 

The properties of local vibrations in a quasiflexural 
branch a re  also similar to the properties of vibrations 
polarized in the plane of a layer. It should be noted that 
if the difference between the behavior of the densities 
of vibrations in the limit Q - 0 described by Eqs. (5.la) 
and (6.2) had occurred in the optical zone, the condi- 
tions for the appearance (below the bottom of the zone) 
of local flexural vibrations near a heavy impurity would 
have been quite different from the case of vibrations 
polarized in the plane of a layer. The difference be- 
tween the threshold values, due to the different behav- 
ior of the vibration density, would have ensured the 
existence of only local flexural vibrations for a wide 
range of impurity masses. 

It must be stressed that the numbers and positions of 
the critical points of strongly anisotropic crystals have 
been obtained above for the simplest most symmetric 
case. In other situations the number of the critical 
points may be greater. 

We shall conclude by pointing out that all the results 
obtained above apply equally well to the spectra of other 
excitations in strongly anistropic crystals provided 
their dispersion law agrees with one of the types dis- 
cussed above. 

The author is grateful to I.M. Liftshitz, E.A. Kaner, 
and A.M. Kosevich for their interest in the above anal- 
ysis and valuable discussions of the topics considered. 
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An investigation was made of the dependence of the derivative of the magnetoresistance of antimony 
whiskers on magnetic fields of 0-80 kOe intensity applied at temperatures of 1.34.2"K. These 
whiskers were broken up into ribbon-shaped samples with the following dimensions: thickness from 0.08 
to 0.44 p, width from 1.1 to 31 p, and length from 0.2 to 3 mm. The size cutoff of quantum oscillations 
of the magnetoresistance was observed and investigated. It was also found that quantum oscillations 
appeared in truncated extremal electron orbits in fields below the cutoff value. These phenomena were 
predicted by A. M. Kosevich and I. M. Lifshitz in 1955 [Sov. Phys. JETP 2, 646 (195611. The 
experimental results indicated that the probability of specular reflection of conduction electrons from the 
surface of a sample was close to unity. 

PACS numbers: 72.20.My, 72.20.Dp, 72.80.C~ 

INTRODUCTION the case of specular reflection of electrons from the 
surface. The possibility of specular reflection has been 

One of the important current problems in the physics demonstrated experimentally.r1s21 
of metals i s  the interaction of conduction electrons 
with the surface of a sample. The most interesting i s  The interaction of electrons with a specularly reflec- 
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ting surface subject to the ccniition 2 r > d  (r = cp,/eH i s  
the Larmor radius of the electron trajectory and d i s  
the thickness of the sample) modifies the Landau level 
system and gives rise to new effects that a r e  not found 
in bulk samples or in samples with diffusely scattering 
surf aces. 

Quasiclassical quantization of the electron motion un- 
der conditions of specular reflection from the surface 
was first  considered theoretically by Kosevich and Lif- 
shitz in 1955.C31 Their calculation was carried out for 
oscillations of the magnetic moment of electrons but i t  
applies also to the magnetoresistance oscillations, be- 
cause the same authors showed laterc4' that in strong 
fields characterized by r << I the oscillating part of the 
magnetoresistance of a compensated metal with convex 
Fermi surfaces obeys 

Pox a HaJfOx 

(1 i s  the mean free path of electrons in a metal). 

For the case of quantum oscillations in thin conductor 
plates the theory of Kosevich and ~ i f s h i t z ' ~ ~  predicts a 
dependence of the oscillation period and amplitude on 
the applied magnetic field, thickness of the sample, and 
shape of the extremal sections of the Fermi surface in 
the range of magnetic fields in which the electron orbit 
diameter exceeds the thickness of the sample. This ef- 
fect has not been observed experimentally until the in- 
vestigation reported below. The main difficulty in stud- 
ies  of this kind has been the preparation of sufficiently 
thin high-quality samples with specularly reflecting 
surfaces. 

We carried out an experimental study of quantum os- 
cillations of the magnetoresistance of thin antimony rib- 
bons and discovered the effect mentioned above. A pre- 
liminary communication of the results obtained was 
published earlier.c51 

2. SAMPLES AND MEASUREMENT METHOD 

Our samples were made from whisker crystals. It is 
well known that whiskers a r e  characterized not only by 
small dimensions but an extremely high quality of the 
structure in the bulk and on the surface, and also by a 
high chemical purity. Antimony i s  the most suitable 
material for the following reasons: 

a)  The Fermi electron momentum in semimetals i s  
low so that the probability of specular reflection from 
the surface i s  high; 

b) the Fermi surface of antimony i s  relatively simple 
and well known; 

c) attempts to grow samples have revealed that, un- 
like bismuth, crystals of antimony grow in the form of 
sufficiently thin and wide ribbons which a re  most con- 
venient for measurements. 

Such antimony whisker ribbons were grown for the 
first  time by the present authors from the vapor 
phase.16' The purity of the starting material was char- 
acterized by the resistivity ratio p,,,/p,.,- 1500 (for a 
sample 1 mm thick). These whiskers were then separ- 

TABLE I. 

Transverse field Elle ,lI 

Longitudinal field HllczllI 

43 1 O:f3 1 $1 1.25 hrr 
69 021 1 40ii9 ( 1 5 1.3 1 el1 

Note. The values of the fields Hdr  H i ,  and Hz were found ex- 
perimentally; the values of nd were calculated. The type of 
carrier was determined from the SdH oscillation periods. 

ated into ribbons with the following dimensions: thick- 
ness d = 0.08-0.44p, width A = 1.1-31p (Table I), and 
length from 0.2 to 3 mm. All these ribbons were ori- 
ented in the basal plane of the crystal and the growth 
took place along the binary axis (Fig. la). The orien- 
tation of the samples was determined by measuring the 
anisotropy of the Shubnikov-de Haas (SdH) oscillation 
period and comparing the results obtained with those 
reported earlier; C7*81 information was also deduced 
from the direction of cleavage in the basal plane. The 
quality of the antimony whisker crystals used was char- 
acterized by the Dingle temperature TD = 0.8 * 0.5OK 
(electron orbit, Hilc,) and was high compared with the 
quality of bulk crystals of the same material, charac- 
terized by T ,  = 3.4 + 1°K. 

A mounting method avoiding damage to the sur- 
face of the sample was developed: a whisker was 
placed on a plate made of Getinaks (plastic insulator) 
foil of 7 x 20 mm dimensions with contact str ips made 
of the foil and coated with an indium film (Fig. lb). 
Contact was established because the smooth surface of 
the whisker adhered to indium; the assembly was rein- 
forced by bonding the ends of the whisker with an adhes- 
ive containing a conducting filler. Four of the shorter 
whiskers (out of fifteen investigated) were mounted in 
such a way that they had two contacts (Fig. lc). The 
distance between the potential contact str ips was L 
= 100-700~;  it was measured under a MIM-7 micro- 
scope to within i 5  p. After completion of all the mea- 
surements, the whisker was removed from the contacts 

IQ Whisker Adhesive 

FIG. 1. a) Schematic representation of ribbon-shaped anti- 
mony whisker. b), c) Sample mounted on a base with four 
and two contacts. 
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FIG. 2. Derivative of the magnetoresistance of sample 
Sb-45, d= 0.42 p , recorded at T =  1.4"K. Here, and in 
Figs. 3-5, the arrows identify the calculated cutoff fields 
and the first two peaks; the derivative is shown on an 
arbitrary scale. 

FIG. 4 .  Dependences of the derivative of the magnetoresis- 
tance on the transverse magnetic field applied to sample 
Sb-69, d=  0.21 p thick, at T=1.4"K: I )  field H in the plane of 
the sample, H II c,; 11) field H inclined to the plane of the 
sample at 8 =  18". 

and placed on a quartz substrate where i t s  thickness 
was determined by the interference method.cg' This 
thickness was found to within 10%. The thickness mea- 
surements were accompanied by determination of the 
whisker width to within i0.15 p. 

At room temperature the resistivity determined from 
the total resistance and geometry was found to be  with- 
in the range (40-50) x lo-@ &2-cm and at  helium temper- 
atures it Was (0.5-1.5) X S1.cm; s o  significant de- 
pendence on the thickness was found. 

The galvanomagnetic measurements were carried out 
at  temperatures of 1.3-4.2% in magnetic fields of 0-80 
kOe. The oscillatory effects were recorded by a modu- 
lation method of measuring the magnetoresistance de- 
rivative ap(H)/aH. 

3. RESULTS OF MEASUREMENTS 

Figures 2-5 give examples of records of the deriv- 
ative of the magnetoresistance of samples of different 
thickness. The SdH oscillations, observed in strong 
fields, vanished at  H, and in weaker fields H <H, there 
appeared a group of new oscillation peaks of the deriv- 
ative ap(H)/aH. We shall show in a discussion of the re- 
sults that the field H, was the "cutoff field" at  which the 
condition 2r = d was satisfied. 

We shall now consider in greater detail the experi- 
mental curves in Figs. 2-5. 

3.1. In a magnetic field perpendicular to the electric 
current and parallel to the plane of the ribbon, i.e., in 
H(lc,, the SdH oscillation periods in fields H >Hd cor- 
responded to small sections of the electron and hole 
Fermi  surfaces of antimony with periods in the interval 
A(Hml)- (13-15) x 1V70e-' (Figs. 2 and 3 and curve I in 
Fig. 4). The new peaks observed in weak fields H<H, 
were of completely different nature and were character- 
ized by the following features: a)  the separationbetween 
these peaks a s  well a s  their amplitude increased on re- 
duction of H; b) the number of the peaks 4 z  was limited 
and much smaller  than the total number of the SdH 
peaks in fields H,<H <-; c )  an increase in the thickness 
of the sample did not al ter  basically the effect but the 
range of existence of the new peaks shifted toward weak- 
e r  fields and their number increased; d)thefieldH, 
corresponding to the f i rs t  peak on the weak-field was 
comparable with the field Hd(0.3Hd<H <Hd) and reached 
values of 20-30 kOe for the thinnest samples. 

3.2. Rotation of a ribbon in a magnetic field about the 
c, axis,') resulting in an increase of the angle 8  
=+(H, c,), shifted the new peaks somewhat toward higher 
fields, reduced their amplitude, and caused the mono- 
tonic part of the derivative to r i se  deeply (curve I1 in 
Fig. 4). The peaks practically disappeared when the 
angle of inclination of the field to the plane of the ribbon 
reached 8  -30". In a field perpendicular to the plane of 
the ribbon, H~\c,, the oscillations were of the conven- 
tional SdH type with a period of A@ ") = 10 X l V 7  Oe" 
right down to weak fields of -7 kOe in which the oscil- 
lation amplitude became comparable with the noise 

FIG. 3. Derivative of the 
magnetoresistance of 
sample Sb-41, d =  0.14 p 

&7 L -- thick, recorded at T 
=4.2"K. 

I 

-4 ---3 

0 20 40 60 H kOe 

FIG. 5. Dependence of the derivative of the magnetoresis- 
tance on the magnetic field parallel to the current applied to 
sample Sb-69, d=O. 21 p thick, at T=1.4"K.  
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FIG. 6. Shift of the positions of the peaks in H< Ha as a func- 
tion of the angle of inclination 9 of the field H relative to the 
plane of sample Sb-62, d = 8.43 p thick: 0) experimental 
positions of the fields H corresponding to peaks; X) calculated 
positions of the first peak. 

background. 

The displacement of the new peaks on inclination of 
the field relative to the ribbon plane i s  shown in Fig. 6 
for sample Sb-62. 

3.3. In the longitudinal orientation of the field, 
Hllc,llI, new peaks were again observed (Fig. 5) and the 
field H ,  was approximately the same a s  f o r  Hllc,, 
whereas the peak positions differed somewhat. 

3.4.  We shall now consider for which sections of the 
Fermi surface the cutoff of the SdH oscillations should 
take place, i.e., which groups of carr iers  should dom- 
inate the contribution to the oscillating part of the con- 
ductivity in fields H >H,. 

For  all the samples with the exception of two (Sb-58 
and Sb-73) the SdH periods in the field HllclU corres- 
ponded to small cross sections of the hole and electron 
Fermi surfaces: A@"), = 13.3 X 0e-' and A@-'), 
= 14.9 x 10'70e'1 (Ref. 7). We shall denote the corres- 
ponding "ellipsoids" of the Fermi  surface of antimony 
by hx and e,. The other "ellipsoids" with larger cross  
sections for the same direction of the field H will be de- 
noted by h,, and ex,. Oscillations due to these extremal 
sections were observed in samples Sb-58 and Sb-73 and 
the periods were within the range A@")-(7-8) 
x 10-'Oe". 

Table I lists, in accordance with this notation, the 
groups of carr iers  dominating the oscillatory part of the 
magnetoresistance in fields H >H,, the experimental 
values of the fields H,, the fields corresponding to the 
first  two peaks H, and H z ,  and the number of peaks An 
in the range 0-H,. 

4. DISCUSSION OF RESULTS 

4.1. H > Hd . Cutoff of quantum oscillations 

The interpretation of the field H, a s  the field in which 
the SdH oscillations a re  cut off by the size of the sam- 
ple i s  proved in Fig. 7. This figure gives the experi- 
mental values of the field H, a s  a function of dl and two 
straight lines corresponding to the theoretical depend- 
ence of the cutoff field in the 2 r = d  case: H,= 2p,c/ed, 
where p, i s  the quasimomentum along the c, axis, which 
governs (in the field Hllc,) the size of the electron or- 
bit at right-angles to the current Illc,. One line is 
drawn for the h,  holes ( p ,  = 4.6 x 10"' g.cm-set-') and 
the other for the ex electrons (p, = 5.3 x g-cm-sec-I). 

FIG. 7. Experimental values of the cutoff field H, for samples 
of different thickness (Table I) obtained for Hll c,. The lines 
represent the dependences Hd= 3pzc/ed for the hI holes (p ,  
= 4.6 ~10-~l g-cm-sec-i) and e1 electrons (pz = 5.3 xl0-~1 
g.cm.sec"). 

Here and later, we shall use the quasimomenta taken 
from Ref. 10. The large number of points fits, within 
the limits of the experimental e r ro r ,  the line for  h, but 
the two lines a r e  close to one another. We do indeed 
find that for the majority of the thin samples subjected 
to strong fields H >H, the main SdH oscillation period 
corresponds to the h, hole group and only thicker sam- 
ples, with d>0.4p, show more clearly the influence of 
the ex electron group (Table I). 

In a longitudinal field the value of H, is the same one 
a s  in the transverse field. This can be explained by the 
fact that in HIIc,  this field i s  given by H,=2plc/ed, 
where p ,  = 6.3 X 10'21g~cm~sec" for the hxl holes o r  pl 
= 5.3 X 10'21g.cm.sec-1 for the ex, electrons, i.e., the 
momenta p, are  close top,  for hI and e, governing the 
field H, in the Hl[c, case. 

4.2. H < Hd. Quantum oscillations for truncated orbits 

We shall consider the nature of the new effect ob- 
served in fields below the cutoff value and we shall 
show that i t  i s  associated with the quantization of the 
electron motion in an extremal orbit which i s  truncated 
by the two surfaces of the sample. In fields H <H, for 
n>> 1 (n i s  the number of the Landau levels) the theory 
of Kosevich and ~ i f s h i t z ' ~ ]  predicts a strong dependence 
of the oscillation period on the shape of the extremal 
section a s  well as on the magnetic field and plate thick- 
ness d. The experimental results can be used to draw 
conclusions on the period and i t s  changes only when the 
number of the observed peaks i s  large. However, in 
our case the number of new resistance peaks i s  An " 3-7. 
The direct application of the general theoretical expres- 
sionsc3' to the experimental results would have been too 
cumbersome and inconvenient. A qualitative analysis 
of the effect, which will be given below, i s  based on 
simple physical ideas about the quantization of the elec- 
tron motion in a magnetic field and i t  allows us to es- 
tablish a number of relationships and to estimate the 
positions of the magnetoresistance singularities along 
the magnetic field scale when the number of these sing- 
ularities i s  small. 

Figure 8a shows the dependence of the number of 
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P- - 
FIG. 8. a) Dependence of the number of quantum levels on the 
magnetic field: I) H > H,, conventional SdH effect; 11) H < H,, 
oscillations for extremal orbits truncated by two surfaces of 
a ribbon-shaped sample. b) Extremal section through the 
Fermi surface truncated by two surfaces of a thin ribbon of 
thickness d .  c) Extremal section in a field equal to the cutoff 
value H = H,. 

filled quantum levels n on the magnetic field H. In 
fields H >H, we have the conventional SdH effect and n 
is found from 

from which it follows that n an-'. Here, S:,, i s  the 
a rea  of an untruncated extremal electron orbit in the 
momentum space. 

In fields H < H ,  an extremal electron orbit no longer 
fits inside the sample and the electron motion changes 
significantly. Figure 8b shows, in the momentum space, 
an elliptic section of the Fermi surface with semiaxes 
p, and p, in a magnetic field H([cl cut off by the size of 
the sample eHd/c. It corresponds to an extremal elec- 
tron orbit in the momentum space on condition that 
electrons are  reflected specularly from the surface of 
the sample. Moreover, the sections should satisfy the 
quantization condition 

(which shall ignore the correction 2). Using Eq. (3) and 
Fig. 8b, we can easily find the limit to which the num- 
ber  n tends for H - 0: 

The number of filled levels in the field H, i s  a function 
of the SdH oscillation period: 

nd = 
1 - -- Se:f7 d 

H A H  4nfipz ' 

Thus, the number of the resistance singularities in 
fields 0 <H < H, i s  equal to An = In, - n, I. Using thk ex- 
tremal section area Sktr = Q2p,, we obtain 

p2d prd nd An=n,-nd = -- - B - 
nfi 4h 4 ' 

Table I lists for every sample the value of nd/4 cal- 
culated from the experimental values of H, and A(H-l) 
a s  well a s  the number An,,,, equal to the number of 
new a p / a ~  peaks observed in fields H <Ha. We can see 
that An,,, is  approximately 20-30%less than the cor- 
responding value of n,/4. This small disagreement 
may be attributed to the nonellipticity of the corres- 

ponding section of the Fermi  surface of antimony. (For 
example, if the section i s  a rectangle, there should be 
no peaks for H <H, because An=O.) 

The positions H ,  of the peaks in fields H <H, a re  
found from 

no-n(Hi)=i,  i-1, 2, . . . An. (7) 

This i s  an approximate expression because the cross- 
ing of the n-th Landau level by the Fermi level i s  as- 
sociated with the position of the corresponding mini- 
mum of the curve B p / B ~  =f(H). In fact, this crossing 
depends on the phase of the quantum oscillations, which 
is governed by the factor Y in the quantization law S,,, 
= 2nekcic"H(n + y), shape of the electron trajectory, and 
spin splitting of the Landau For  example, in 
the quasiclassical approximation and for a convex tra- 
jectory without points of inflection (y=1/2) the point of 
crossing of the level i s  displaced by +n/4 relative to 
the minimum of the oscillatory function 

Thus, the above calculations of the peaks a re  approxi- 
mate (to within half a distance between them) but the 
relative separations can be found exactly. 

Application of Eqs. (3) and (4) gives 

no-n ( H )  = 
2nheH ( s r  ( H )  ( H )  ) = 2nheH 

AS ( H ) ,  

It should be noted that: a) the condition (8) is formally 
analogous to the condition of quantization f o r  the area  
AS@) =S,(H) -Sd,,,(H); b) it follows from Eq. (8) that 
An = (c/2nle~)AS@)-see Fig. 8c. 

We shall estimate the values of H, and H, correspond- 
ing to the first  two peaks on the weak-field side. In 
weak fields we may assume that the extremal section 
SRtr i s  limited by two parallel lines passing a t  a dis- 
tance ieHd/2c from the center and by a r c s  of a circle 
of radius p ,  (in fact, the cross  sections of interest to 
us differ from a circle by *lo%). Then, to a term of 
the third order in H, the difference between the areas  
AS can be written in the form 

Using the condition (7) with i =  1, we find the field cor- 
responding to the first  peak: 

Similarly, for i = 2, we obtain H, Z H , ~ .  

We shall now compare these relationships with the 
experimental data. Figure 9 gives the experimental 
values of the field H, corresponding to the first  peak of 
samples of different thickness and lines based on Eq. 
(9) for the hI hole (p, = 5.7 x lo-,' g.cm-sec-') and e1 
electron (p, = 4.3 X 1V2' g . cm . secml) Fermi  surfaces. 
The deviations of the experimental points from the depend- 
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FIG. 9. Field of the first peak Hi for samples of different 
thickness d: *) H II c, 1 I; 0) H II cz HI. 

ence (9) maybe attributed to the e r r o r  in the determination 
of the thickness of the samples and to the departure of 
the shape of the section from the circle. Since the val- 
ues of the field H, 6 for the hI  holes and e ,  electrons 
differ by less  than 15%, i t  i s  difficult to determine 
which of these two groups of ca r r i e r s  i s  responsible f o r  
the first  peak of the dependence ~ P ( H ) / B H .  

Table I l ists  also the values of the fields H, c8rres- 
ponding to the second peaks and of the ratio H,/H, found 
experimentally. We can see that H , = H , G  to within 
i 3 a .  For thinner samples with d-C 0.2~(,  character- 
ized by pure hole SdH oscillations in fields H >H,, the 
ratio i s  H,/H, = 1.27 i 4%, whereas for the two thicker 
samples with d>0.41 with pure electron oscillations 
the ratio is H,/H, = 1.7 * 4%. These deviations of the ra- 
tio H,/H, from d-2- may be explained by the deviation of 
the shape of the Fermi  sections from the circle, and 
also by the difference between the shapes of the hole 
and electron sections. 

The lower values of the field H, for samples Sb-58 
and Sb-73, compared with other samples, can be ex- 
plained in a natural manner by the smaller curvature of 
the hII  and e,, cutoff sections bearing in mind that their 
dimensions represented by p3 a re  approximately the 
same a s  those for eI and h I .  

The large deviation of the point H, for sample Sb-44 
from the general dependence can be explained only by 
the fact that there may have been an e r r o r  in the deter- 
mination of the number of the interference fringes in 
the course of the measurement of i t s  thickness. 

The experimental values of H,, H,, and H, obtained in 
the longitudinal field Hllc,llI a re  approximately the same 
a s  those obtained in the transverse field HIlc,lI because 
the dimensions of the cutoff sections a re  similar for 
both cases. 

4.3. Determination of the shape of extremal sections of 
the Fermi surface from positionsof Hi peaks in fields 
H<Hd 

We shall now demonstrate the possibility of solving 
the problem which is the inverse of that solved in Sec. 
4.2. 

Employing the expressions (7) and (8), we can find 
the a rea  of the truncated extremal section Sf,,,(H,). 

FIG. 10. Determination of the shape of a section of the Fermi 
surface based on the positions of the peaks Hi on the magnetic 
field scale; i = 1, 2, . . . . 

Knowing a se t  of values of such areas,  we can recon- 
struct  the exact shape of the section. A reliable cal- 
culation can be carried out for the electron section be- 
cause the electron Fermi  surface of antimony has the 
central symmetry and reflection symmetry relative to 
the trigonal-bisector plane. 

The calculations a re  explained in Fig. 10 and they 
a r e  based on Eqs. (7) and (8). The difference between 
the areas  of a rectangle S,(H) and a section S:,, can be 
represented by a sum of a right-angled triangle (for H,) 
and a trapezium shown shaded in Fig. 10: 

i s  the condition for the first  peak, 

(e:;d e;;d ) , cos a,+p,--p,., cos a*) - - - 

is the condition for the second peak, and s o  on. 

Such a calculation was carried out for two samples, 
Sb-63 and Sb-45, exhibiting electron SdH oscillations 
and it was used to reconstruct the shape of the small 
section of the electron Fermi  surface (Fig. 11). The 
results indicate that the section differs little from the 
ellipse although it i s  slightly more convex. The plot in 
Fig. 11 i s  based on the values of @,(a = 0) and p,(ff = 90") 
taken from Ref. 10. (Generally speaking, this proced- 
ure i s  not necessary if we know the exact values of H, 
and An.) 

The above expressions allow us to calculate for each 

FIG. 11. Plotting of a section of the Fermi surface of anti- 
mony on the basis of the positions of the oscillation peaks 
H= Hi on the magnetic field scale: 0) sample Sb-63, d= 0.44 p ;  
0) sample Sb-45, d =  0.42 p . 
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peak the angles at which electrons o r  holes are  incid- 
ent on the surface of a sample: p ,  =90 - a,. For elec- 
trons these angles are  within the range p,"3O0-70°and 
they should be the same for holes. 

Since the oscillations associated with the extremal 
truncated orbits may exist only in the case of specular 
reflection from the surface, we can say that the prob- 
ability of such reflection in our samples is close to 
unity even for large angles of incidence of electrons and 
holes on the surface. 

4.4. Effect of inclination of a magnetic field relative to 
the plane of a sample 

When the field H i s  inclined at an angle 9 moving from 
the C, to the c, axis, the extremal size p, of the corres- 
ponding orbit in the momentum space i s  not affected and the 
other semiaxis of the orbit becomes 

sin" c o s 2 6  -'h 
P o -  (- p.. +TI 

However, in real space the inclination of the plane of 
the el orbit i s  practically zero because for small ang- 
l e s  9 the Fermi surface differs little from a cylinder. 
Consequently, the cutoff field H, should be independent 
of 9 and the position of the f i rs t  peak should, according 
to Eq. (9), va:y in accordance with the law 

Figure 6 shows the measured dependence of Hi on the 
angle of inclination of the field a s  well a s  the values of 
H, calculated from Eq. (11). The asymmetric position- 
ing of the experimental points relative to the angle 9 = 0 
i s  clearly due to inclination by 7-8' of the major semi- 
axis of the electron "ellipsoid" of the Fermi surface 
relative to the c, bisector axis.c71101 

4.5. Amplitude of aplaH oscillations in fields H < Hd 

Since the Fermi surface sections e, and h ,  in Hllc, 
differ by not more than +I@ from the circle, we shall 
continue our analysis for the case of a circular section. 

For the SdH oscillations in a bulk conductor the am- 
plitude dependence i s  of the f ~ r m ' ~ ' " " ~ '  

where w" = eH/m *c i s  the cyclotron frequency of elec- 
tron revolution on a circular orbit in a field H and T ,  i s  
the Dingle temperature for the scattering in the bulk of 
a metal. 

The revolution frequency i s  different for a thin con- 
ductor subjected to a field H <H, and characterized by 
truncated orbits (Fig. 12a). Figure 12b shows a trun- 
cated electron trajectory in the coordinate space. The 
revolution frequency along this trajectory is 

x eH 1 
o d ( H ) =  -- 1 - 0" (H)? 

2 m'c arcs in(H/Hd)  2 arc s in(H/Hd)  ' 

or, in terms of the reduced magnetic field x =H/H,, 

FIG. 12. a) System of Landau levels in the momentum space 
derived for a thin plate with a spherical Fermi surface, 
subjected to a field H. b) Truncated extremal orbit of an 
electron in a field H in the coordinate space. 

O d ( x )  = Lo- ( ~ d ) - .  x  
2 arc sin z 

This dependence i s  shown graphically in Fig. 13. 

We can see that the simple exponential dependence of 
the field in Eq. (12) for fields H>H, becomes much 
more complicated in fields H <Ha because of the nonlin- 
ear  variation wd@):  

AHdaH" exp {-2n2 
t i o d ( H )  

where Tb represents the electron scattering in the bulk 
and (mainly) on the surface of the sample, governed by 
the angle of incidence of electrons on the surface. 
Thus, a special size dependence of the oscillation am- 
plitude on the field H and on the sample thickness d i s  
observed. 

The oscillation amplitude was calculated by a rigor- 
ous mathematical method in the paper by Kosevich and 
~ i f s h i t z . ' ~ '  Using the fact  that apollc/aH aHM,,,, we 
find that in the case of an electron gas with a quadratic 
isotropic dispersion law, the expression (14) in the 
paper by Kosevich and ~ i f s h i t z , ' ~ ]  gives for x > l  

It follows from Eq. (12) of Kosevich and ~ i f t s h i t z ' ~ '  
that for x <  1, 

arc sin x - [ x " l - z Z )  1'" 4narc sin z k ( T + T o f )  
A.da 

a  sin x  x  I - z  - x  hmm (H.) ] (15) 

It i s  clear from Eq. (14) that in strong fields x >> 1 the 
amplitude of oscillations in a thin sample behaves in the 
same way as in a bulk sample. Near the cutoff field in 
the limit x - 1 + 0 the oscillation amplitude vanishes ex- 
actly a s  in the limit x -  1 - 0 [see Eq. (15)]. 

Figure 14 shows a graph of the oscillations amplitude 
a s  a function of the magnetic field x = H/H,, based on 
Eqs. (14) and (15). The Dingle temperature for fields 

FIG. 13, Dependence of the cyclotron mass on the magnetic 
field. The axes give the values reduced to the cutoff field Hd. 
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FIG. 14. Dependence of the amplitude of the oscillatwns of 
the derivative of the magnetoresistance reduced to the 
amplitude of the second peak A, on the reduced magnetic 
field H/Hd with the HI1 ci 1 I orientation: X) Sb-35, d=  0.22 p , 
T= 1.5"K; e) Sb-69, d= 0.21 p ,  T=1.4"K; A) Sb-63, d=O.44 p ,  
T = 1.4OK. The continuous curve represents the amplitude of 
the quantum oscillations calculated on the basis of Eqs. (14) 
and (15). 

H  <H, i s  assumed to be T b  = T ,  = 1°K. The field depen- 
dence of this amplitude is in full agreement with the ex- 
perimental data given in the same figure: there i s  a 
characteristic fall of the amplitude to zero  in the l imit  
H - H ,  and an increase of this amplitude on both sides 
of this point. 

We shall illustrate this point additionally by consid- 
ering the positions of the quantum energy levels in a 
thin plate. The separation between these levels near the 
Fermi  surface i s  governed by the cyclotron frequency: 
Ac =Ew. In fields H > H ,  there a r e  no truncated orbits  
and the levels a r e  equidistant: Ac = Ew" a H ,  the num- 
b e r  of the filled levels in such fields being n = c F / A c m  
E H  -'. In fields H  < H d  the energy levels in the momen- 
tum space have the form shown in Fig. 12a. The dis- 
tance between the lower untruncated levels should obey 
Ae m H ,  whereas the distance between the upper levels 
i s ,  in accordance with Fig. 13, 

i.e., A c d ( ~ ) >  AQ*(H) in fields H  < H d .  

Thus, although the number of the filled levels  in- 
c reases  by a finite amount k on reduction of the field 
from Hd to H  = 0, the distance between the upper levels 
increases. The positions of H  a r e  shown schematically 
in Fig. 15. The unusual distribution of the quantum lev- 
e l s  in a magnetic field i s  responsible f o r  the charac- 
ter is t ic  dependences of the period and amplitude of the 
quantum oscillations in thin samples on the field H  and 
sample thickness d. 

We note that in H  = 0 there is a se t  of quantum energy 
levels of conduction electrons. Clearly, these levels 
simply represent the results  of s ize quantization of the 
energy of electrons characterized by the quasimomen- 
tum p, and moving in the coordinate space along the c, 
axis between tw6 surfaces of a plate of thickness d. 

e; FIG. 15. Energy of the 

E F  
Landau levels In a thin 

An plate plotted a s  a function 
of the magnetic fleld. 

ll,l 

I1 !/, I f z  Hd H 

Our comparison of the experimental results  with the 
theory thus confirms interpretation of the observed ef- 
fect  a s  the cutoff of the quantum oscillations of the mag- 
netoresistance by the dimensions of a ribbon- shaped 
sample under conditions of almost specular reflection 
of electrons from the surfaces and a s  the appearance 
(in fields l e s s  than the cutoff value) of quantum oscil- 
lations of the magnetoresistance in extremal electron 
orbits  cut off by the thickness of the sample, a s  pre- 
dicted by Kosevich and Lifshitz. 

The observed effect allows us, in principle, to deter- 
mine the shape and dimensions of the extremal sections 
of the F e r m i  surface from the positions of the peaks in 
fields H  < H d ,  and also the characterist ics  of the sur-  
face scattering of the selected groups of c a r r i e r s  from 
the dependence of the amplitudes of these peaks on the 
Eield. 

')The system of axes ci, c2, and c3 will be taken as linked to 
the sample in the way shown in Fig. la. 
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