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The polarization of vibrations and behavior of the vibration plane in layer and chain crystals are 
investigated throughout the continuous spectral band. It is shown that there are at least four critical 
points. The density of flexural vibrations exhibits a standard square-root kink only is very narrow regions 
next to critical points located close to the lower limit of the spectrum. Outside these regions the behavior 
of the vibration density is quite different. The influence of anisotropy on the properties of local vibrations 
is considered. It is established that the threshold of appearance of local vibrations is considerably less than 
in an isotropic crystal and that the shape of the localization region is extremely anisotropic. 

PACS numbers: 63.20.P~ 

1. INTRODUCTION 

In 1952, I.M. Lifshitzcl] f i r s t  drew attention to the 
existence-in strongly anisotropic crystals  with layer 

o r  chain structures-of "flexural9' vibrations resem- 
bling flexural waves in noninteracting atomic layers  o r  
chains. He pointed out a considerable qualitative dif- 
ference between long-wavelength flexural vibrations and 
vibrations polarized in the plane of a layer or along a 

phonon spectrum may be very considerable. F o r  ex- 
ample, the formation of a sharp  peak on the curve re- 
presenting the density of flexural vibrations near  the 
lower l imit  of the spectrum is reported by K o s e v i ~ h . ~ ~ ~  
However, the parameters  of this  peak have not yet been 
investigated. Moreover, the problem of the number, 
nature, and positions of the Van Hove cri t ical  points 
throughout the vibration spectrum of these  crystals  has  
not been tackled. 

chain. This difference is manifested in a number of 
There  is a lso  considerable interest  in the properties 

properties of a crystal  and, in particular, it gives rise 
of local vibrations in strongly anisotropic crystals .  

to an  unusual temperature dependence of the specific 
The existence of local vibrations near  point defects in 

heat at low temperatures. 
crystals  was firstpointed outbv I. M. Lifshitz in 1 9 4 7 . ~ ~ ~  

The recent years  have seen concentration of attention ~ h e s e  vibrations appear near"various imperfections of 
on the conducting properties of strongly anisotropic 
crystals .  Less  work has been done on the phonon spec- 
tra of these crystals. This accounts for  the absence, up 
until now, of a complete description of the properties of 
the density of vibrations in such crystals. Only some 
characterist ic  features of the behavior of this  density 
are known fo r  layer crystals  at low frequenciesc2' and 
these indicate that the influence of anisotropy on the 

the lattice and have been investigated quite thoroughly 
for  isotropic ~ r y s t a l s . ~ ~ ' ~ ]  However, up to now the 
problem of the influence of a strong anisotropy on the 
properties of local vibrations has not been considered. 
We may expect local vibrations in strongly anisotropic 
crystals  to have properties different f rom those in iso- 
tropic crystals .  In fact, since planar layers  and l inear 
chains of atoms with a strong interaction are physically 
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separate in layer and chain crystals, they should ex- 
hibit features characteristic of two- and one-dimension- 
a1 systems (i.e., of systems existing in spaces with two 
o r  one dimension). However, it is clear from quantum 
mechanics C 6 l  that the formation of a bound state, such 
a local vibration, occurs in such systems under con- 
ditions very different from those in the three-dimen- 
sional case. However, the problem does not reduce 
completely to a standard situation. A strongly aniso- 
tropic crystal is a three-dimensional body and although 
the three-dimensional effects can, in a sense, be re- 
garded a s  "weak," they cannot be excluded completely. 
Therefore, the nature of vibrations in layer and chain 
crystals is governed by the competition between two 
factors: the three-dimensional nature of the crystal 
and its"1ow-dimensional" aspect, i.e., the tendency for  
the appearance of properties typical of two- and one- 
dimensional systems. A strongly anisotropic crystal 
behaves a s  two- o r  one-dimensional throughout most of 
i ts  frequency spectrum and only in the immediate vicin- 
ity of singularities on the frequency axis and near the 
limits of the spectrum do the three-dimensional pro- 
perties become of primary importance. 

We shall investigate the phonon spectrum and proper- 
ties of local vibrations near a point defect in layer and 
chain crystals. In our study of the vibration density 
g(b) (E = w2 is the square of the vibration frequency) 
attention will be concentrated on the behavior of this 
density near the Van Hove critical points. This is 
greatly facilitated by the circumstance that the proper- 
ties of g(b) near singularities a r e  governed primarily 
by the topology of the constant-frequency surfaces of a 
crystal and depend relatively weakly on the detailed 
form of the dispersion law. Therefore,it is sufficient 
to know only the first  few terms of the expansion of the 
dispersion law in the vicinity of singularities in the k 
space (corresponding to the critical points) at which 
there a r e  changes in the topology of the constant-fre- 
quency surfaces.cll 

In Sec. 2 we shall discuss the polarization of vibra- 
tions in strongly anisotropic crystals. In Secs. 3 and 4 
we shall analyze the properties of chain crystals and in 
Secs. 5 and 6 those of layer crystals. 

2. POLARIZATION OF VIBRATIONS IN  STRONGLY 
ANISOTROPIC CRYSTALS 

The branches of vibrations in planar and linear struc- 
tures may be classified in accordance with their polar- 
ization.Cs1 We may distinguish "longitudinal" vibrations 
with the polarization vector lying in the plane of a layer 
o r  along the line of a chain and "flexural" vibrations for 
which the polarization vector is normal to the plane of 
a layer o r  to the direction of a chain. Deviations from 
this classification in the case of strongly anisotropic 
crystals, in which planar layers o r  linear chains of 
strongly interacting atoms a r e  physically separate, 
are  small because of the weakness of the coupling be- 
tween the layers o r  chains. At all  frequencies w at  
which the weak coupling between the layers o r  chains 
can be ignored (i.e., if I w - w , I>> wl , where w,  a r e  the 

boundaries of the Brillouin zone o r  singular points in- 
side it and wl is a low frequency representing the coup- 
ling between layers o r  chains) the branches of vibra- 
tions in strongly anisotropic crystals can also be class- 
ified in accordance with their polarization into longitu- 
dinal and flexural. The density of vibrations in each 
branch for such values of o, i.e., practically throughout 
the zone, is identical with the density of vibrations of 
the corresponding branch of a planar o r  linear structure 
to within small  corrections of the order  of w f .  

We shall now analyze in greater detail the polariza- 
tion of the vibrations in various branches. We shall 
consider only the acoustic vibration mode. To be spe- 
cific, we shall discuss a simple tetragonal lattice and 
assume that the interaction of atoms along the fourfold 
axis z differs greatly from the interaction in the basal 
plane ( x ,  y). We shall consider a chain crystal bearing 
in mind that the conclusions drawn apply essentially 
also to layer crystals. 

A chain crystal can be represented a s  a se t  of chains 
of strongly interacting atoms along the z axis with a 
weak couplingbetween the chains.c21 We shalluse a,,(n) 
for the dynamic matrix of a crystal; n is the vector 
number of a lattice site. To determine the frequencies 
we&) and the polarization vectors e,(k) (s =1,2,3) of the 
vibrations, we have to solve the problem of reducing to 
the diagonal form the matrix 

which depends on the quasiwave vector k; the quantity 
r(n) in Eq. (2.1) is the radius vector of a lattice site 
whose number is n. In our case, the matrix A,,(k) is 
real  and symmetric. 

F o r  a chain crystal the elements of the matrix a,,(n) 
with the vector n lying along the z axis a r e  much great- 
e r  than the elements a,,(n) with other values of n repre- 
senting the weak interaction between the chains. Con- 
sequently, we shall divide the summation over n in Eq. 
(2.1) into two parts: 

A::) (k) = a,, (n) exp [ikr (n) 1, 
(n,, n y ) r O  

where ~t,O'(k,) describes the strong interaction of atoms 
in a chain and At:) (k) is a small, compared with Ali)(k,) 
correction due to the weak coupling between the chains. 
In other words, for  almost all the values of k, we have 

where w, i s  a high frequency representingthe coupling of 
atoms in a chain. 

F o r  some values of k, Eq. (2.3) is not obeyed and the 
values of AcO) and At1) become of the same order of 
magnitude. 1n fact, it follows from the familiar rela- 
tionship for the elements of the force matrix 
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that 

The quantities A\O,)(k,) retain the same order of mag- 
nitude in a narrow region of width Ak,- qk, ,, near the 
point k, = 0. Outside this region we have A::)(k, ) - w,2. 

The difference between the orders of magnitude of the 
quantities A(O) and A") over a large part of the Bril- 
louin zone allows us to apply the perturbation theoryts1 
in reducing the matrix A*,@) to the diagonal form. This 
is done by expressing A,,&) in a coordinate system 
linked to the crystallographic axes of the crystal. In 
terms of these coordinates the quantity A:i)(k,) becomes 
diagonal; one of i t s  eigenvectors eiO) is directed along 
the z axis and the other two, e jO)  and eF1, a re  ortho- 
gonal to one another and can be oriented in an arbitrary 
manner in the basal plane. We shall assume that they 
a r e  directed along the x and y axes, respectively. The 
eigenvalues A: "(k , )  and A: O)(k,), corresponding to the x 
and y axes a re  equal and different from the eigenvalue 
A: "(k,) for the z axis. The difference A',O)(k,) - A',O)(k,) 
is generally of the same order of magnitude a s  each of 
these quantities. Considerations of symmetry do not 
impose any other requirements on the magnitude of this 
difference nor do they require that the difference van- 
ishes or  is anomalously small a t  some values k, # 0; 
this may happen only for accidental reasons. We shall 
not consider such accidental situations. 

The eigenvector e3(k) of the matrix A , , & )  is, in the 
first  approximation, 

where the index j labels the components of the vector 
e,@). The corresponding eigenvalue i s  

The formulas (2.5) and (2.6) determine the polariza- 
tion and dispersion law of that branch of vibrations of a 
chain crystalwhich is closest to the properties of a long- 
itudinal branch of a linear chain; we shall call it quasi- 
longitudinal. It follows from Eq. (2.5) that for all values 
of k satisfying (k, ( >> qk, ,, and, consequently, w >> w,, 
the polarization of vibrations in a quasilongitudinal 
branch of a chain crystal differs from the case of a 
purely longitudinal polarization in a linear chain only by 
small quantities of the order of $ << 1. If the vector k is 
almost orthogonal to the chain direction, Ik, 1 s qk, ,, 
(w S w,), and also differs significantly from the values 
of $, k,, and k, corresponding to points of the type 0, 
1, and 2 in Fig. 1, the polarization of the quasilongi- 
tudinal branch deviates considerably from the direction 
parallel to the chains. In this small part of the Bril- 
louin zone the perturbation theory formulas cease to be 
valid. However, in the direct vicinity of the points of 
the 0, 1, and 2 type correction to the vector e d o )  of the 
purely longitudinal polarization is again small and of the 
(ax)2 type, and the second correction to the square of 
the frequency is a small quantity of the $(ax )4 type 

FIG. 1. Brillouin zone o f  
a crystal with a simple 
tetragonal lattice. 

( 1% ( is the distance to the corresponding point in the k 
space). At all points on the boundary of the Brillouin 
zone of high symmetry (points of the 1-5 type in Fig. 1) 
the polarization of a quasilongitudinal branch becomes 
rigorously longitudinal. 

Two other branches of vibrations in a chain crystal 
have properties close to those of flexural branches of a 
linear chain; we shall call them quasiflexural. The de- 
viation of the polarization of quasiflexural branches 
from one which is rigorously transverse may be consid- 
erable in the same small part of the Brillouin zone 
where there is a corresponding deviation for the quasi- 
longitudinal branch. Outside this region the polarization 
of the quasiflexural branches differs from the rigorous- 
ly transverse only by a small amount of the order 
$ << 1. However, the interaction between chains lifts 
the degeneracy along the directions of polarization in 
the plane which is transverse relative to the chains; the 
vectors e,(k) and e2@) rotate with k varying along the 
direction of chains but remain orthogonal to one another 
and almost orthogonal to the direction of chains in the 
w >> w ,  case. At points of the 1-5 type (Fig. 1) the quas- 
iflexural branches a re  polarized rigorously along the 
crystallographic axes and in the vicinity of these points 
the polarization is almost transverse, to within correc- 
tions of the order of (ax )2 .  

Layer crystals have one quasiflexural branch and two 
quasilongitudinal. The deviation of the polarizations of 
these branches from that rigorously transverse rela- 
tive to the plane of a layer o r  from the rigorously long- 
itudinal orientation becomes considerable only when the 
wave vector k is almost normal to the plane of a layer, 
Ik, I Sqk,,, (w s w,), and differs significantly from the 

value k3 corresponding to a type 3 point. Since longitud- 
inal branches of a planar lattice a re  generally nondegen- 
erate, the interaction between layers does not result in 
their coupling of the kind observed between two flexural 
vibrations in a chain crystal. 

3. CHAIN CRYSTAL. QUASILONGITUDINAL 
BRANCH 

In the case of strongly anisotropic crystals we shall 
be interested mainly in the influence of the anisotropy 
of a crystal on the position and nature of the Van Hove 
critical points and on the properties of local vibrations 
near point defects. In investigating the behavior of the 
vibration density g(r) near these critical points we have 
to know only, a s  pointed out in the Introduction, the 
f i rs t  few terms of the expansion of the dispersion law of 
vibrations in the vicinity of singularities in the k space a t  
whichthere i s  a change in the topology of the constant-fre- 
quency surfaces.c73 Such expansions were obtained by 
I. M. Lifshitzcl1 for strongly anisotropic crystals in the 
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FIG. 2. Density of quasilongitudinal vibrations in a chain 
crystal (wi << 1). The dashed curve is the density of longitu- 
dinal vibrations in a corresponding linear chain. 

long-wavelength range; they can be constructed in the 
vicinity of each of the singularities on the basis of the 
crystal lattice symmetry and the known anisotropy of 
the forces of interaction between atoms. As before, we 
shall assume that a chain crystal has a simple tetra- 
gonal lattice. We shall use a system of units in which 
the frequency of the strong coupling between atoms in 
chains (or layers) is taken as unity. 

Omitting simple calculations, we shall give the resul- 
tant density of vibrations in a quasilongitudinal branch. 
The graph of the function g(< ) then has the form shown 
schematically in Fig, 2. There a re  four Van Hove cri- 
tical points. Two of them lie near the lower limit of 
the spectrum at  a distance 4 from it  and the other two 
at the same distance from the upper limit 6,. Through- 
out the frequency band between these limits, with the 
exception of narrow ( -  wf) regions near the limits of the 
spectrum, the density g(c )  has no singularities and, to 
within small corrections of the order of wl, it is equal 
to the vibration density go(<) of a corresponding linear 
chain. Near the limits of the spectrum the density g(e) 
has large values of the order of l/w,. At all critical 
points the density g ( r )  exhibits a standard square-root 
kink. 

We shall consider the question of local vibrations 
which appear near a point defect in a chain crystal. In 
considering the influence of the anisotropy of a crystal 
on the properties of such vibrations i t  is natural to re- 
strict the analysis to the simplest of point defects, 
which i s  an isotropic atom at one of the lattice sites. 
Kagan and ~ o s i l e v s k ~ ~ ~ ~  showed that an isotopic point 
defect is an isotropic perturbation and i t  does not give 
rise to a coupling between vibrations of different polar- 
izations. Consequently, in lattices of symmetry not 
lower than orthorhombic the local vibrations near an 
isotopic atom a re  polarized strictly along the crystallo- 
graphic axes.co1 In other words, the local vibrations 
in a chain crystal with a simple tetragonal lattice can 
be divided, in accordance with their polarization, into 
strictly flexural and longitudinal. Local vibrations with 
each of these polarizations a re  generally formed from 
all the independent vibration branches simultaneously. 
Consequently, there is a characteristic coupling bet- 
ween the various vibration branches within the same 
polarization and this, a s  is known, may convert a local 
frequency into a quasilocal one on condition that the 
maximum vibration frequencies in the different branch- 

e s  a r e  different. However, in strongly anisotropic 
crystals this coupling between quasilongitudinal and 
quasiflexural vibrations is negligible. In fact, the 
formation of local vibrations above the acoustic zone is 
dominated by vibrations above the acoustic zone is dom- 
inated by vibrations of an ideal crystal with near-max- 
imal frequencies. I t  is shown in Sec. 2 that in this fre- 
quency range the deviation of the polarization of a quas- 
iflexural branch from rigorously transverse is very 
small, of the order of wI2 << 1. An admixture of vibra- 
tions of a quasiflexural branch to longitudinal local vi- 
brations is proportional to the square of the projection 
of the polarization vector of the quasiflexural branch 
onto the direction of the chain [e,~(k)y , which is a 
small quantity of the order of w: over a considerable 
range of k. In other words, local vibrations polarized 
along the chains form mainly from vibrations of the 
quasilongitudinal branch. Broadening of local frequen- 
cies of the order of w,4 << w: will be ignored; moreover, 
we shall not discuss here a possible coupling between 
two quasiflexural branches in a chain crystal and two 
quasilongitudinal branches in a layer crystal but we 
shall assume that, for example, the maximum frequen- 
cies in these branches a r e  identical. 

Consequently, the frequency of local vibrations polar- 
ized along chains can be found from the Lifshitz equa- 
tionC3] 

M-m 
m e-z 

where g(z) is the density of vibrations in a quasilongitu- 
dinal branch, M is the mass of the isotope, and m is the 
mass of the host lattice atom. 

We shall investigate Eq. (3.1) in the case when the fre- 
quency of local vibrations E, lies fairly close to the up- 
per limit of em of the continuous spectrum: <, - <, << 
em. For  such values of < the main contribution to the 
integral defining the Green function 

'" g (z) dz 
G.(o)= jY 

0 

is due to the values of z near the upper limit of the 
spectrum. T h e  integral (3.2) converges for all values 
E 2 E,, a s  in the isotropic case, because g(<) vanishes 

at the point < =<,. However, i t s  value is much greater 
than in the isotropic case because of the square-root 
singularity of g(<) near the upper limit of the spectrum, 
which is characteristic of one-dimensional crystals and 
which is cut off a t  a distance of the order of 4 from the 
upper limit in the case of a chain crystal. 

To investigate the integral (3.2) as a function of <, i t  
is convenient to express i t  in terms of a function ~ ( x )  
defined by 

A comparison of Eq. (3.3) with the expansion g (€)  in the 
limit E -0 shows that 
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For  x 2 w,, the function cph) is of the order of unity. 

Simple transformations give 

The relationship (3.5) gives G,(O) in two limiting cases: 

Here, 

is a number of the order of unity depending on the na- 
ture of the function g(<). We note that a finite contri- 
bution to A is made not only by the square-root singu- 
larity of the functiong(e) near the upper limit of the 
spectrum but also by a narrow region in the vicinity of 
the point < =<, Therefore, the number A cannot be ex- 
pressed simply in terms of the vibration density go(€) 
of the corresponding linear chain. 

In view of the finite value of G,(O) a t  the point c = <, , 
there is a threshold for the appearance of local vibra- 
tions: 

which is a manifestation of the three-dimensional nature 
of the crystal. The "low-demensional" effect is dem- 
onstrated by a strong reduction in the threshold value 
of U,, compared with that for an isotropic crystal. 

Formulas (3.6) and (3.7) give the frequency of local 
vibrations in two limiting cases: 

Formula (3.10), valid in the case when <, is suffi- 
ciently far from the limit of the continuous spectrum, 
has the form typical of the one-dimensional case and 
known from quantum mechanics.C61 In the immediate 
vicinity of the limit of the continuous spectrum, we have 
Eq. (3.11), which is typical of the three-dimensional 
situationcs1 and reflects the existence of a threshold for 
the appearance of local vibrations. 

We shall now consider the shape of the region where 
vibrations a re  localized. The dependence of the ampli- 
tude u(r) of local vibrations on the distance r from a 
point defect is given by the familar expression 

where V, is the volume of a unit cell. Hence, we find 
that, in a plane transverse relative to the direction of 
chains, the vibration amplitude decreases with the in- 

crease of the distance p from a defect in the same plane 
in accordance with the law typical of an isotropic cry- 
stal, irrespective of the dependence of the value of €,: 

The transverse size of the localization region 

is governed by the ratio of the frequency representing 
the coupling in the direction considered to the distance 
(along the frequency axis) from the limit of the continu- 
ous spectrum. 

In the case of atoms in the same chain a s  a point de- 
fect the dependence of the local vibration amplitude on 
the distance z from the defect is sensitive to  the posi- 
tion of a, relative to the limit of the continuous spec- 
trum. If <, l ies sufficiently far  from this limit, s o  that 
<,-<,>>w:, the law describing the fa l l&) is typical of 
a one-dimensional crystal: 

The size I , ,  of the localization region along the chains is 
governed, like the transverse size given by Eq. (3.14), 
by the ratio of the frequency representing the coupling 
of atoms in a chain to the distance from the limit of the 
continuous spectrum: 

If the vibration frequency lies in the direct vicinity of 
the limit of the spectrum, E, - Q << wf , the change in the 
vibration amplitude becomes the same a s  in an isotropic 
crystal: 

e a 
Iu(z) I=U(O)IU~I or' L-exp(-t), z 

z>a, e l - ~ , < o r a  

and the value of 1,, remains the same. A comparsion of 
Eqs. (3.13) and (3.17) shows that the amplitude of local 
vibrations of atoms in the same chain as a point defect 
exceeds by a factor of 6 / w l  >> 1 the amplitude of vib- 
rations of atoms in neighboring planes. 

It follows from the above that the localization region 
is the cigar-shaped, being greatly elongated along the 
direction of the strong interaction parallel to the chain 
of atoms containing a defect; the ratio of the transverse 
dimensions to the longitudinal is w, << 1. 

4. CHAIN CRYSTAL. QUASIFLEXURAL BRANCH 

Near the lower limit of the spectrum the dispersion 
law w2(k) of flexural vibrations in a chain crystal has 
the familiar expansionL1] which we shall write in the 
form 

where w, and w, a r e  small parameters of the same or- 
der of magnitude, describing the weak coupling between 
the chains. 
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In the absence of the coupling between the chains 
(w, = w, = O ) ,  i t  follows from Eq. (4.1) that the density of 
flexural vibrations go(<) in the corresponding linear 
chain has a power-law singularity in the limit c - 0: 

which is stronger than for the vibrations polarized along 
the chains. Near the upper limit of the spectrum the 
behavior of go(<) for flexural vibrations in a linear chain 
i s  essentially the same a s  in the case of vibrations po- 
larized along the chains. 

Bearing in mind the weak coupling between the chains, 
we find from Eq. (4.1) that in the case of a chain crystal 
the density g(c) in a quasiflexural branch i s  a small 
square-root quantity near the lower limit of the spec- 
trum, of the same kind a s  in the case of an isotropic 
crystal: 

However, away from the limit even for very small val- 
ues of E the dependence g(c) changes to 

The f i rs t  critical point a = cl - wi is associated with a 
transition from closed constant-frequency surfaces to 
open surfaces at type 1 points on the boundary of the 
Brillouin zone (Fig. 1). In the vicinity of such a point, 
we have 

where u = k -  kl is the vector in the k space measured 
from a singularity corresponding to k = k,. 

Substituting the expansion (4.5) of the dispersion law 
into the definition of the density of states 

we find that the behavior of g(d) in the vicinity of the 
first  cirtical point i s  given by the integral 

where A = a  - a, denotes here (and later) the distance 
along the frequency axis from the corresponding crit- 
ical point. The integration domain D in the (cp, $) plane 
consists of that part of the square defind by 0 c cp c n/2, 
0 c $ c 17/2 in which all the expressions in the radicals 
of the integrand a re  simultaneously nonnegative. 

The function g ( ~ )  given by Eq. (4.7) has a character- 
istic square-root kink only in a very narrow range of 
frequencies near the point C = E,: 

where B(x) = 1 for x > 0 and B(x) = 0 for x < 0; ~(l/.\n) i s  
a complete elliptic integral of the first  kind. Outside 
this narrow range of frequencies but still close to the 
critical point the dependence of g ( ~ )  on A i s  different: 

w3' /4< 1 A 1 < 0 z 2 ,  

where v,= a f o r  A>O but vA= 1 for A<O; E ( I / ~ )  is a 
complete integral of the second kind. 

Consequently, in a relatively wide range of frequen- 
cies the expansion of g(c) is in powers of I A  ( ' I4 of the 
difference A =  E - 6,. It i s  clear from Eqs. (4.8) and 
(4.9) that near the f i rs t  critical point el the density of 
quasiflexural vibrations has a sharp tooth-like peak. 

The second critical point, c, > E l ,  €, - w:, is due to a 
transition from open constant-frequency surfaces to 
closed a t  type 2 points (Fig. 1). In the vicinity of these 
points, we have 

The density of vibrations near the point a = E, is given 
by Eq. (4.7) where we have to reverse the sign in front 
of p2 and regard A a s  equal to < - c,. An analysis of 
this function shows that in the vicinity of the second 
critical point E = 6, the function g(c) has a square-root 
kink again in a very narrow range of frequencies: 

Outside this narrow range the expansion of g(c) is in 
powers of / A  Ill4 on the high-frequency side (A>O) and 
in integral powers of A on the low-frequency side (A<O): 

F a r  from the limits of the spectrum, € >> w& E,- c 
>> 4, i.e., throughout most the frequency range, 
the density g ( ~ )  i s  equal to the density of flexural vibra- 
tions go(<) of a linear chain, whereas in the vicinity of 
the upper limit of the spectrum there a re  singularities 
fully analogous to those exhibited in the same range by 
the density of vibrations of a quasilongitudinal branch. 

It follows that an important feature of quasiflexural 
vibrations, which distinguishes them from quasilongi- 
tudinal branches, is the occurrence near the lower 
limit of the spectrum and in the vicinity of the first  two 
critical points of several frequency intervals in which 
g(e)  behaves differently. The familiar square-root Van 
Hove kink occurs only in a very narrow range (of width 
of the order of w:<< 1) near the critical points c lmd  
E,. Outside this range the behavior of g(c) is quite 
different. It should also be noted that although in the 
vicinity of the critical points c, and c, there is no def- 
inite polarization, nevertheless all  the important fea- 
tures of the behavior of g(c) a re  still governed by vib- 
rations with the flexural polarization in a quasiflexural 
branch, a s  deduced in Sec. 2. Vibrations of other po- 
larizations of the frequencies in the quasiflexural 
branch dominate the value of g ( ~ ) .  The general appear- 
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FIG. 3. Density of quasi- 
flexural vibrations in a 
chain crystal (wz << 1). 
The dashed curve rep- 
resents the results for a 
linear chain. 

ance of the density of quasiflexural vibrations i s  shown 
schematically in Fig. 3 .  

The equality of the densities of quasiflexural and 
quasilongitudinal vibrations near the upper limit of the 
spectrum allows us to apply to a quasiflexural branch 
all  the results (without significant changes) of the pre- 
ceding section on the conditions of appearance of local 
vibrations, values of local frequencies, and shape of the 
localization region. 

5. LAYER CRYSTAL. QUASILONGITUDINAL 
BRANCH 

In considering the phonon spectrum of layer crystals 
we shall, a s  before, assume that they have a simple 
tetragonal lattice and that the direction of weak binding 
between the layers coincides with the fourfold axis z .  
A schematic representation of the density of states of 
a quasilongitudinal branch obtained for this case i s  giv- 
en in Fig. 4. There are  four Van Hove critical points, 
two of which a re  near the limits of the spectrum and the 
other two near i t s  midpoint. At all critical points the 
density g(<) has the standard square-root kink. 

As in the case of a chain crystal, the Green function 
G,(O) of vibrations in a layer crystal has the character- 
istic (of the three-dimensional case) finite limit a s  € 

tends to the maximum frequency of the spectrum from 
above. The "low-dimensional" effect is manifested by an 
increase in the limit: 

where, a s  before, go(€) denotes the density of vibrations 
of the corresponding planar lattice: 

Further away from the limits of the spectrum, we 

FIG. 4. Density of quasilongitudinal vibrations in a layer 
crystal (wi << 1). The dashed curve represents the density of 
longitudinal vibrations in a planar lattice. 

have 

Gt(0) =go(Em)ln(i/y)+O(ot'/r), o:<y<l. (5.2) 

Since G,(O) is finite a t  € = e m ,  there is a threshold of 
appearance of local vibrations near a point defect in a 
layer crystal: 

which i s  lower than for an isotropic crystal. 

It follows from Eqs. (5.1) and (5.2) that under condi- 
tions such that the frequency of local vibrations is 
sufficiently far  from the limit of the continuous spec- 
trum, €, - f, >> w:, the value of E, is given by the stan- 
dard quantum-mechanics formula for the two-dimen- 
sional case: 

However, sufficiently close to the limit of the contin- 
uous spectrum the local frequency i s  given by the typi- 
cal "three-dimensional" formula reflecting the exist- 
ence of the threshold: 

The localization region of vibrations is strongly anis- 
otropic in shape. If the frequency of local vibrations i s  
sufficiently far from the limit of the continuous spec- 
trum, 6 ,  - em >> o;, the dependence of the vibration am- 
plitude u(p) of atoms in a layer containing a defect on 
the distance p from the defect in the plane of the layer 
is the same a s  in the two-dimensional case: 

where Ko(x) is a modified Hankel function of the first 
kind. The size of the localization region in the plane of 
the layer i s  governed, a s  before, by the ratio of the 
coupling frequency in the plane of the layer to the dis- 
tance from the upper limit of the continuous spectrum: 

On approach of 6 ,  to the upper limit of the continuous 
spectrum, the expression for u(p) assumes the "three- 
-dimensionaly' form: 

In a direction normal to the plane of the layer the 
amplitude of local vibrations i s  always expressed in the 
form typical of an isotropic crystal: 

The last result is to be expected because the presence 
of more than one layer of atoms makes a crystal three- 
dimensional. It should be noted that in a layer crystal 
the amplitude of vibrations of atoms in a layer contain- 
ing a defect is much greater than the amplitude of vib- 
rations in neighboring layers. Thus, the region of local- 
ization of vibrations in a layer crystal is pancake- 
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shaped and it  is located in the plane of the layer con- 
taining a defect; the ratio of the thickness of this pan- 
cake to its diameter is of the order of w, << 1. 

6. LAYER CRYSTAL. QUASI FLEXURAL BRANCH 

We shall now consider the influence of anisotropy on 
the position and nature of critical points for quasiflex- 
ural vibrations in a layer crystal and we shall largely 
ignore numerical factors of the order of unity; to sim- 
plify the calculations, we shall write down the neces- 
sary expansions of the dispersion law of flexural vibra- 
tions near singularities in i t s  simpler form which 
allows for the characteristic properties of flexural vi- 
brations. In the long-wavelength range, we have 

The above form of the dispersion law is simplified by 
omitting the product k:kt, which is generally of the 
same order of magnitude as the remaining terms with 
kz and k:. This simplification does not alter the topolo- 
gical properties of the constant-frequency surfaces and 
does not affect the important properties of the vibration 
density. 

If we ignore the interaction between the layers as- 
suming that w, = w, =0, we find that the resultant planar 
lattice is characterized by the density of flexural vib- 
rations go(<) with a square-root singularity near the 
lower limit of the spectrum: 

Moreover, there is a power-law singularity of the fun- 
ction go(<) at < = <,/2 and this singularity is stronger 
than in the case of quasilongitudinal vibrations: 

The function go(<) has no singularities near the upper 
limit of the spectrum and i t  tends to a finite limit [the 
function go(€) is represented by a dashed curve in Fig. 
51. A weak interaction between layers in a crystal 
limits the vibration density g(c)  and results in truncation 
of the function go(<) near the limits of the spectrum. 

Application of the expansion (6.1) shows that the fun- 
ction g(<)  varies extremely rapidly in the direct vicin- 
ity of the lower limit and that i t  vanishes at r = 0 in ac- 
cordance with the square-root law: 

but a short distance away C-  w: << 4 << 1 it  reaches a 
high value of the order of l/w2. Outside this region, 
but far from the f i rs t  critical point a, the function g(€)  
is constant: 

Formulas (6.4) and (6.5) a re  in full agreement with the 
results obtained by K o s e v i ~ h . [ ~ ~  

FIG. 5. 
(wf << 1, 
flexural 

Density of quasiflexural vibrations in a layer crystal 
4 << 1). The dashed curve represents the density of 
vibrations In a planar lattice. 

In contrast to chain crystals, the density of quasi- 
flexural vibrations in a layer crystal has only one crit- 
ical point < =el - 4 in the low-frequency range and a t  
this point the function g (€)  changes from a rising sec- 
tion to a falling one. This circumstance is associated 
with the possibility that at low frequencies the constant- 
frequency surfaces of a layer crystal become open 
along just one direction, which is normal to the plane 
of the layer (at points of type 3 in Fig. 1). 

Expansion of the dispersion law of a quasiflexural 
branch near a point of type 3 (Fig. 1) can be written in 
the form 

02(k )  =e,+'/,,b4(x,'+x,') + 1 / ~ w S 2 b 2 ( ~ = ' + ~ y l )  -t/4wplaa~:, x=k-k3. 

(6.6) 

In the vicinity of the f i rs t  critical point E, the depend- 
ence g(c) is given by the integral 

2 
g(e)-  - JJdqd~[1/,wr2+(1/,w~+~+~~~2-~~2qz- CP )"I" 

,' 0 

where the integration domain is defined as before. The 
function (6.7) has i t s  usual square-root kink a t  the point 
E = E, but the frequency interval where this occurs is 
very narrow: 

(6.8) 
Outside this narrow interval the dependence of g(<) on A 
changes and become logarithmic and symmetric: 

Thus, in the vicinity of the lower limit of the spectrum 
the density of quasiflexural vibrations has a sharp peak 
whose existence was f i rs t  pointed out by K o s e ~ i c h . ~ ~ ]  
This peak is asymmetric only in a very narrow fre- 
quency interval w: << 4 << 1 near i t s  center. 

The next two critical points <, and <, are  located near 
the midpoint of the spectrum < = <,/2 and a re  separated 
by distances of w i  from it. Near these points there a re  
again several frequency ranges with different behavior 
of the functiong(<). For  example, near the point €,, 

we have 
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(6.10) 

in a wider range, we find that 

Throughout the frequency range, with the exception of 
narrow (-  w;) intervals near the limits and near the 
middle of the spectrum the functiong(c) is identical, 
apart  from small corrections of the order of w i ,  with the 
density of flexural vibrations of the corresponding planar 
lattice. Near the upper limit of the spectrum the behavior 
of g ( r  ) is analogous to that of quasilongitudinal vibrations. 
Figure 5 shows schematically the behavior of g ( ~ )  for a 
quasiflexural branch. 

The properties of local vibrations in a quasiflexural 
branch a re  also similar to the properties of vibrations 
polarized in the plane of a layer. It should be noted that 
if the difference between the behavior of the densities 
of vibrations in the limit Q - 0 described by Eqs. (5.la) 
and (6.2) had occurred in the optical zone, the condi- 
tions for the appearance (below the bottom of the zone) 
of local flexural vibrations near a heavy impurity would 
have been quite different from the case of vibrations 
polarized in the plane of a layer. The difference be- 
tween the threshold values, due to the different behav- 
ior of the vibration density, would have ensured the 
existence of only local flexural vibrations for a wide 
range of impurity masses. 

It must be stressed that the numbers and positions of 
the critical points of strongly anisotropic crystals have 
been obtained above for the simplest most symmetric 
case. In other situations the number of the critical 
points may be greater. 

We shall conclude by pointing out that all the results 
obtained above apply equally well to the spectra of other 
excitations in strongly anistropic crystals provided 
their dispersion law agrees with one of the types dis- 
cussed above. 

The author is grateful to I.M. Liftshitz, E.A. Kaner, 
and A.M. Kosevich for their interest in the above anal- 
ysis and valuable discussions of the topics considered. 
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Quantum oscillations of the magnetoresistance of thin 
antimony ribbons 

Yu. P. ~aidukov and E. M. Golyamina 

Moscow State University 
(Submitted 13 January 1978) 
Zh. Eksp. Teor. Fiz. 74, 1936-1949 (May 1978) 

An investigation was made of the dependence of the derivative of the magnetoresistance of antimony 
whiskers on magnetic fields of 0-80 kOe intensity applied at temperatures of 1.34.2"K. These 
whiskers were broken up into ribbon-shaped samples with the following dimensions: thickness from 0.08 
to 0.44 p, width from 1.1 to 31 p, and length from 0.2 to 3 mm. The size cutoff of quantum oscillations 
of the magnetoresistance was observed and investigated. It was also found that quantum oscillations 
appeared in truncated extremal electron orbits in fields below the cutoff value. These phenomena were 
predicted by A. M. Kosevich and I. M. Lifshitz in 1955 [Sov. Phys. JETP 2, 646 (195611. The 
experimental results indicated that the probability of specular reflection of conduction electrons from the 
surface of a sample was close to unity. 

PACS numbers: 72.20.My, 72.20.Dp, 72.80.C~ 

INTRODUCTION the case of specular reflection of electrons from the 
surface. The possibility of specular reflection has been 

One of the important current problems in the physics demonstrated experimentally.r1s21 
of metals i s  the interaction of conduction electrons 
with the surface of a sample. The most interesting i s  The interaction of electrons with a specularly reflec- 
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