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The temperature dependence of the electron specific heat is investigated. The kliashberg method is used to 
obtain a general formula including the function g(o) = aZ(w)F(o) and the universal function Z(T/o); an 
expression is found for Z(x); this formula can be used to describe the nonmonotonic C,(T)  dependence 
at all temperatures for an arbitrary electron-phonon interaction. Calculations are made for specific metals 
and the available experimental results are analyzed. The question of the temperature and carrier-density 
dependences of the mass is considered. An approximate method is suggested for obtaining information on 
the function g(w). 

PACS numbers: 65.40.Em. 71.25.Jd 

We shall consider the temperature dependence of the 
electron specific heat and effective mass. The elec- 
tron-phonon interaction is known to affect considerably 
the characteristics of an electron system. The question 
of the renormalization of the electron mass associated 
with this interaction was investigated (for T =0) by 
~igda1.I" The state of the phonon system varies with 
rising temperature. Excitation of thermal phonons re- 
leults in temperature dependences of the electron 
characteristics. The temperature dependence of the 
effective mass has been observed in cyclotron resonance 
studies. C2'51 These studies have been carried out in the 
temperature range T s 6" K, i.e., for T c w , .  

The electron-phonon interaction causes the tem- 
perature dependence of the electron specific heat to 
deviate from the simple linear law. This has been ob- 
served experimentally on several  occasion^.[^-^^ 
li?liashbergclol developed a method based on the exact 
expression for the thermodynamic potential. He ob- 
tained a general expression for the entropy and showed 
that allowance for the electron-phonon interaction re- 
sults, in the T -0 limit, in an additional contribution 
AC,(T) 0~ Tsln(w,/T). The question of the temperature 
dependence of the electron specific heat C,(T) and 
effective.mass m*(T) has also been investigated by 

(see also Grimvall's review clS1). ~ r a d i n ~ ' ~ '  
calculated analytically the dependence C,(T)/T through- 
out the temperature range in the Einstein model of the 
phonon spectrum. The asymptotic behavior of C,(T) 
in the limits T-0 and T-.o was investigated by 
Masharo~.~ '~]  We shall use the dliashberg method 
to obtain relationships which describe the dependence 
C,(T) throughout the investigated temperature range 
for an arbitrary electron-phonon interaction and we 
shall apply these relationships to some specific sub- 
stances. 

The influence of the phonon system on the electron 
characteristics i s  known to be described by the function 
g ( w )  = 02(w)F(w)  [F(w) is the density of the phonon states 
and a2(u) describes the electron-phonon interaction]. 
The function g(w)  can be determined with high accuracy 
by investigating superconductors using the tunnel spec- 
troscopy methods and it i s  known for many metals (see 
Figs. 2 and 3 be lo^).^^^"^' 

The deviation of the dependence C,(T) from linearity 
can be expressed directly in terms of the function g(w)  
(see below). We shall use the available tunnel data to 
plot curves describing the behavior of the specific heat 
and mass in several metals. We shall compare the 
predicted behavior with the available experimental 
data. 

We shall present the results in three sections. In 
the first section we shall consider the temperature 
dependence of the electron specific heat. We shall 
discuss the available experimental data, the question 
of the separation of the phonon contribution, etc. In 
the second section we shall deal with the problem of 
the temperature and carrier-density dependences of 
the effective mass. In the third section we shall con- 
sider the possibility of obtaining information on the 
function a2(w)  describing the electron-phonon interac- 
tion. 

1. ELECTRON SPECIFIC HEAT 

The electron-phonon interaction results in deviation 
of the temperature dependence of the electron specific 
heat from the simple linear law. As mentioned above, 
the C,(T) dependence has been considered in several 

We shall solve this problem in its general 
form for an arbitrary electron-phonon interaction 
constant for all temperatures. 
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~l iashbergcLol  showed that an analysis of the general 
expression for the thermodynamic potential gives the 
following expression for the entropy S,: 

where vo = m0p0/2n2 is the renormalized value of the 
density of states on the Fermi surface; f(&) is the 
odd part of the function CR(&,p); CR(&,p) is the self- 
energy part describing the electron-phonon interac- 
tion. According to &ashberg, [lgl Z,(&,p) satisfies 
the equation 

where G , ( E , ~ )  is the retarded Green function which is 
known to be of the form 

The expression for the function f ( ~ )  can be reduced 
to 

, ( E ) = b j  . f d s f d a g ( o ) ~ ( s r . s . a ) .  
2 o  0 

where 

' d o  
6-(i+ho)-', hl=2 J w g ( o ) ,  

0 

(3) 

We have introduced above the functiong(w) = cu2(w)F (w). 
After integration by parts and several simple trans- 
formations, we obtain the following expression for the 
electron specific heat 

where the function y(T) describing the deviation of the 
C,(T) dependence from linearity due to the eledron-pho- 
non interaction has the form 

Equation (5) can conveniently be represented in the 
form 

where y(0) = m* (0)p0/3, m* (0) is the renormalized 
value of the electron mass, m*(O) =m*O(l+ b), m*O i s  
the unrenormalized electron mass, 

is the renormalization parameter, and p is the re- 
normalization coupling constant given by 

The kernel Z(T/w) is described by 

6  " d t t  
z ( x ) = - J -  - t+t' 

n2 ch2t f c i z t *  { i - [ ~ x ( t + t f ) l a +  1-12x( t - to  lz 

14-2.6~4- 162' z3+4 1z2 
Z ( x )  = cD (9s') , @ ( z )  = -1.6--- . (7r) 

1+65z3 z4+9(z '+l )  

The expression for the kernel Z(x) can be simply 
transformed to 

where G(x)  is the function introduced by G r i m ~ a l l [ " ~  
[see Eqs. (12) and (12') below]. 

The formula (6) is convenient because it contains 
only the renormalized quantities. It can be compared 
directly with the experimental data (as is done below). 
The kernel Z(x) is given by Eqs. (7) and (8), Figure 1 
shows graphically this universal function. 

The formulas (6)-(8) describe completely the solu- 
tion of the problem of the tempe-ature dependence of 
the specific heat. In each concrete case i t  is governed 
only by the form of the function g(w); this function 
is known for many metals from the results of the tun- 
nel spectroscopy  method^.^'^"^' Figures 2 and 3 give 
the functions g(w) for a number of metals and the de- 
pendence y(T)/y(O) deduced from Eq. (6). 

It is clear from Eqs. (6) and (7) that in the limit T 
-0, we have [y(T)/~(0) - 1]=T21n(w,/T), in agree- 
ment with Eliashberg's treatment.[lol In the limit T 
-a, we find that Z(T/G)--0. Then, [Y(T)/Y(O) - 1]  
a (-T2). In this case y( T) tends to the unrenormalized 
value YO = m*OpO/3. 

If the electron-phonon interaction is weak <<I), 
Eq. (6) becomes 

-72 f$ ( a )  [Z ( T / w )  -i 1. (6 ' )  
0 

The temperature dependence m*(T) will be considered 

FIG. 1. Universal function Z Q .  
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FIG. 2. Deviation of the electron specific heat from linearity: 
a) function g(d; b) function y (2') = C,(T)/T. Curves 1, 2, and 
3 represent In, Ta, and Nb, respectively. 

in the next section. However, i t  should be pointed out 
that y(T) +m*(~)p,/3 (see Figs. 5 and 7). This equality 
h3 valid only in the limits T --0 and T -- a. Thus, al- 
lowance for the electron-phonon interaction makes the 
formula C, = m*p,~/S invalid even if we take into ac- 
count the temperature dependence of the effective mass. 
For this reason this temperature dependence m*(T) 
cannot be determined directly from the above formula 
(as is done erroneously in some c a ~ e s [ ~ * ~ ~ ] ) .  The point 
is that allowance for the function Z, (&,P)  [see Eq. (2')] 
alters the electron dispersion law [it is found first  a s  
the root of the equation E = [ ( p )  + ZR(& ,p)  1. Thus, the 
effective mass approximation itself becomes invalid. 
The excitation energy begins to depend in a complex 
manner on T. Therefore, i t  seems to us that the 
most consistent approach to  the problem of the 
behavior of C,(T) is to use the i l iashberg method based 
on an investigation of the expression for the thermo- 
dynamic potential. 

The deviation of the dependence C,(T) from linearity 
was investigated in greatest detail by Chernoplekov et 
at. ,  C61 who determined the specific heat of vanadium, 
and by Miller and Brockhouse, ['I who studied the speci- 
fic heat of palladium and copper. 

The main difficulty in these experiments is the need 
for accurate separation of the lattice component of 
the specific heat. As pointed out by iliashberg,['O1 in 
the limit T -0 the correction AC, a ~~ln(T/w,)  becomes 
considerable because of the logarithmic factor. At 
higher temperatures the problem of determination of 

FIG. 3. Deviation of the electron specific heat from linearity: 
a) function g(w); b) function Y (T) = C,(T)/ T. Curves 1, 2, and 
3 represent Bi ,  TI, and Pb, respectively. 

C,,,, becomes more complex. 

In the cited inve~tigations[6.~] the lattice component 
was separated as follows. The neutron method was 
used to find the density of the phonon states F ( w )  (Fig. 
4) and then to calculate C,,,,. The electron contri- 
bution was then found by subtracting C,,, from the 
total specific heat C. 

FIG. 4. Phonon density of states for V, obtained by the 
neutron method. 

" 
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where 

FIG. 5. Function y ( n  for 
V found experimentally. l6 

It was shown by Chernoplekov et ~ 1 . ~ ~ ~  that the e r r o r  
in the determination of C,,, was considerably less than 
the value of C,. The selection of vanadium was very 
fortunate because neutron investigations of this metal 
could be carried out with a fairly high degree of pre- 
cision and, moreover, V was a transition metal with a 
high density of states, so  that the value of C, was fairly 
large. 

Figure 5 shows the experimental data obtained by 
Chernoplekov et u Z . [ ~ ]  We can see that the temperature 
dependence of C ,  is in agreement with the above re-  
lationships (compare Figs. 2 and 3). The dependence 
y(T) has a low-temperature maximum [T - O.lG,, 
where (5 corresponds to the frequency of the lower peak 
of g(w)] and a minimum (T -a2) ,  where y(0) + y(m). 
Only the value of y(T,,) disagrees with Eq. (6). This 
may be due to insufficient precision of the neutron 
measurements at low values of w (this was pointed out 
also by Chernoplekov et ~ 1 . ' ~ ~  and elsewhere C211). 
Moreover, the asymptotic values y(w)/y(O) may be too 
high [the asymptotic behavior of y(T) may be established 
independently by means of a formula which gives the 
critical temperature of the transition to the supercon- 
ducting state: y(O)/y(w) = 1 a A,]; clearly, more ac- 
curate data on the thermal expansion of V a re  required 
because these can be used to estimate the contribution 
of the anharmonic effects which a re  important in the 
T >> wo, range. The value of T,,, and the dependence 
y(T) are established more accurately in the range 
100°K > T > 50°K. A detailed comparison with Eq. (6) 
cannot yet be made because the functiong(w) i s  not yet 
known for V. Therefore, after suitable tunnel experi- 
ments and reconstruction of the function g(w) for vana- 
dium we may calculate the specific heat of V using 
Eq. (6) and compare it with the experimental data.c61 
The results reported by Miller and  rockh house^^] a re  
also in agreement with Eq. (6). It is also possible to 
use the experimental data to obtain information on 
the function g(w) (see third section below). 

2. DEPENDENCES OF THE EFFECTIVE MASS ON T 
AND n 

1. We shall begin from Eq. (2) for the retarded 
Green function. We shall then assume that the usual 
dispersion law unperturbed by the electron-phonon 
interaction is quadratic, i.e., [(P) = (P2 -p;)/2m*O (m*' 
is the renormalized effective mass corresponding to a 
negligible electron-phonon interaction). 

We shall write G-,'(&>p) in the form 

so  that (C~&)], , , --0.  It is important to note that the 
quantity 0 depends on temperature (see below). 

The renormalized effective mass is given by 

We shall ignore the quantity 

The dependence m* (T) i s  consideredby G r i m ~ a l l . [ ' l * ~ ~ ~  
We shall discuss this dependence is a somewhat dif- 
ferent way. The results will be obtained in a form 
which makes it possible to  carry out a direct com- 
parison with the experimental data. 

Allowance for the electron-phonon interaction 
generally alters the electron dispersion law, as  in- 
dicated by Eq. (2). However, in measurements car-  
ried out by the cyclotron resonance method one has 
to allow only for the function B ,  C22' SO that we can de- 
termine directly the effective mass m*(T) from Eq. (9). 
Allowance for the function Ck and, therefore, for the 
corrections associated with the change in the dispersion 
law, is essential in the calculation of the electron 
specific heat (see above, Sec. 1). 

It is clear from Eq. (9) that the calculation of the 
required function reduces to the calculation of the self- 
energy part  C,(&,p). This function satisfies Eq. (2). 
Next, we substitute Eq. (2) for Z,(& ,p) into Eq. (9) and 
separate Z, into the odd fo  and even CL +if parts; we 
thus allow also for the contribution of the imaginary part  
(see also the treatments of ~ i g d a l [ l l  and 6 l i a ~ h b e r ~ ~ ' ~ l ) .  
After simple calculations, subject to Eq. (3), we obtain 
the formula 

We shall now integrate over the phonon momentum 
q and assume that k, = midq,, 2p0). 

Introducing in the usual way the function g(w), we 
find that simple transformations yield 

where 

is the function introduced by Gr im~a l l .~" ]  

We shall represent the function G(x) in a form con- 
venient for calculations: 

~ ( z ) = ( ~ n x ) z z  (2n+i) / ( i+l  ( 2 n + i ) n ~ ] ~ ) ~ .  
"-0 

(12') 
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FIG. 6. Universal function G Q .  

Figure 6 shows a graph of the function G(x). At T = 0, 
Eq. (11) reduces to the well-known expression 

If we use Eq. ( l l ) ,  we obtain the final expression 

Equation (13) includes the experimentally measurable 
guantities. In the case of a weak electron-phonon in- 
bract ion (p << 1) , Eq. (1 3) becomes 

Clearly, this influence of the electron-phonon inter- 
action appears most explicitly in metals exhibiting tight 
binding (for example, Pb, Hg, Bi, etc.). Therefore, 
in a detailed comparison of the theory with experiment 
one should use Eq. (13). 

The formulas (13), (12), and (12') allow us to  inves- 
tigate the question of the temperature dependences 
m*(T). In the limit T -0, we have G(T/C$ = T2 and 
m*(T) increases quadratically. The quadratic depen- 
dence of [m*(T)/m* (0) - 1 ]  has been observed experi- 
mentally. [2-53 

The function g(w) is usually characterized by maxima 
(normally there are  two peaks corresponding to the 
longitudinal and transverse branches : see, for exam- 
ple, the work reported in [I7]). The dependence 
[m* (T)/m* (0) - 1 ] cc T21n(3/T) is valid in the range 
T <<a, (a rougher estimate is given by the inequality 
T <<a,). In the other limiting case of T >> w, we have 
G(T/J) cc T2 and m*(T) decreases quadratically. In 
the intermediate temperature range there should be a 
maximum of m* (T). 

Figure 7 gives the dependences m*(T) for lead and 
tantalum calculated by means of Eq. (13) using the tun- 
nel spectroscopy data for Pb  and Ta. We can see  that 
T,,=12OK for Pb and T,, =30°K for Ta. 

The cyclotron resonance measurements were carried 
out at somewhat lower temperatures. For example, 
Krasnopolin and ~ h a i k i n [ ~ ]  studied lead in the range T 
5 4°K. A comparison of the theory with experiment can 
naturally be made also in this temperature range. It 
is clear from Fig. 8 that Eq. (13) describes the ex- 
perimental data quite satisfactorily. 

FIG. 7. Temperature dependence of the effective mass. 
Curves 1 and 2 represent Pb and Ta, respectively. 

An increase in temperature results  in broadening of 
the cyclotron resonance line s o  that studies of this kind 
cannot be carried out at high temperatures. However, 
the attainment of T - T,, - 1O0K, i.e., the observation 
of a maximum of m*(T), is possible and this makes it 
interesting to carry  out the relevant experiments. 

2. The electron-phonon interaction gives r i se  to a 
dependence of the effective mass on the electron density. 
This may be most important in semiconductors andsemi- 
metals. For example, studies of Si by the cyclotron 
resonance methodc5' report the dependence m*(n). An 
investigation of the nature of this dependence will be 
made starting from Eq. (10) and assuming that T =0: 

We shall next assume that 

(see, for example, zimancZ3] and ~ e i l i k r n a n [ ~ ~ ] ) .  We 
shall ignore the umklapp processes; the necessary 
generalization presents no difficulties. 

We can thus see that the function m*(n) is governed 
primarily by the direct dependence of m* on Po xnih.  
Moreover, i t  is necessary to allow for the dependence 
of the phonon frequency on the electron density: w, 
=S2,,/&(q1 0), where 51, is the plasma frequency. In the 
random phase approximation, & = 1 + 4ne2n/q2 [a is the 
polarization operator equal to ll = 1 + A2/q2, where A 
=4ne2vo (see, for example, Ziman [23')]. Substituting 
next Eq. (15) into the expression for w, in Eq. (14), we 

FIG. 8. Dependence m* (T) for Pb; the experimental data ob- 
tained in Ref. 2 are given; the continuous line i s  plotted ac- 
cording to Ref. 13.  
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can investigate the dependence m*(n). We shall first 
consider the range of carr ier  densities in which 2p0 
<q,, s o  that k ,  = 2p0. We can easily see that then nz* 
rises with increasing n, so that 6rn a p ,  an1/*. At higher 
carrier densities (when k, = q,), m* decreases with 
increase in n in accordance with the law m* Thus, 
the dependence m*(n) is nonmonotonic and has a maxi- 
mum. At a carrier density corresponding to a Kohn 
singularity (2p0 = q,) there is a sudden change in the 
derivative of m* (n). 

3. INVESTIGATION OF THE FUNCTlON g(w)  

The function g(w) = a2(w)F(w) can be found by the 
tunnel spectroscopy methods. In the case of super- 
conductors a method has been developed on inversion 
of the E'liashberg eq~ation.['~-'~] In this way the form 
of the function g(w) has been found for certain super- 
conductors; we have used the relevant data above (see 
Figs. 2 and 3). It should also be pointed out that a series 
of papers have appeared (see, for example, Geerk et 
al.c251) in which the tunnel measurements for establishing 
g(w) are  compared with the neutron data which give 
directly the phonon density of states F(w). This com- 
parison makes it possible to  determine the function 
a2(w) describing the electron-phonon -interaction and 
to estimate the relative intensity of the interaction of 
electrons with the various phonon branches. 

A new method of microcontact spectroscopy, c261 

which makes it possible to obtain information on the 
function g(w) from the nonlinearities of the current- 
voltage characteristics, seems a very promising way 
of finding the function g(w) for normal metals. 

However, in the case of some substances (for examp18, 
V) the use of the tunnel method for reconstructing the 
function g(w) is a very complex task. This is due to  the 
difficulty of the preparation in these cases of tunnel 
junctions of sufficiently high quality. For this reason 
the function g(w) has not yet been determined for V. 
Therefore, the search for methods not involving tun- 
nel spectroscopy and enabling the determination of the 
behavior of the function g(w) at least approximately i s  
of considerable interest. 

The temperature dependence of the electron specific 
heat and its deviation from the linear law are  governed 
by the form of the function g(w) [see Eq. (6)]. More- 
over, neutron measurements have given us the phonon 
density of states F(w) (this is important in the separa- 
tion of the phonon component of the specific heat; see  
above). We shall now consider the possibility of ob- 
taining information on the function a2(o)  and, conse- 
quently, on g(w) from the experimental measurements 
of the electron specific heat and from the neutron mea- 
surements of F (w). The direct inversion problem (see, 
for example, Lifshitz C271) is  unstable and can be 
solved only i f  additional information is available on the 
required function. Therefore, it seems natural to 
solve this problem in a different way. 

The behavior of the current-voltage characteristic 
of a tunnel junction in a superconductor makes it 
possible to deduce singularities of the function g(w) 
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FIG. 9. Phonon spectrum 
of V. 

from sudden changes in this characteristic. We know 
the function F(w). It represents approximately two 
Lorentzians describing the density of states of the 
transverse and longitudinal phonon branches. The 
positions of the peaks g ( w )  and F(w) coincide because 
they a r e  known to be associated with the Van Hove 
singularities of the phonon dispersion law. 

We shall adopt an approximate method for the des- 
cription of g(w) first suggested by Scalapino et al.c281 
The function a2(w) i s  approximated by two constants 
a t  = ~ ( 5 ~ )  and a ,  = a(J2) ,  representing the interaction 
of electrons with the transverse and longitudinal bran- 
ches, respectively. Then, we apply Eq. (6) and select 
the values of a, and a, in such a way a s  to obtain a curve 
close to the experimental dependence y(T). It i s  im- 
portant to note that 

can be determined from an analysis of the asymptotic 
behavior y(T) because (see Eqs. (5) and (6)] y(O)/y(m) 
= 1 + b. A different way of finding X, applicable to 
superconductors i s  based on the use of the formula for 
T,; we can then apply the McMillan expressionL291 o r  
similar  formula^.^^^-^'^ The temperature T, is related 
directly to X,. The problem of finding g(w) for V was 
solved by us by the second method because the results 
of high-temperature measurements of y(T) did not 
seem to be sufficiently reliable. 

We carried out the relevant calculations for V using 
the experimental data given by C hernoplekov et al.  c61. 

This approach was of intrinsic interest because the 
function g(w) for V was not yet known. It was found 
(the calculations were carried out on a computer) that 
5 = a2,/a; = 3.7, i.e., that electrons in V interacted more 
intensively with the lower branch. The function g(w) for 
V i s  shown in Fig. 9. It agrees satisfactorily with the 
neutron data and the values of y(T) and T,. 

We shall conclude by express@g our deep gratitude 
to I. Ya. Krasnopolin, M. S. Khaikin, G. Kh. Panova, 
and N. A. Chernoplekov for discussions relating to the 
experimental aspects, to B. T. Geilikman, M. I. Kaganov, 
and I. M. Lifshitz for valuable discussions, and to 
V. F. Gantmakhes for making available the preprint of 
his reviewcl3' before publication and for interesting 
discussions. 
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Cholesteric liquid crystal in a magnetic field near the 
phase transition into a smectic-A 

V. M. Filev 
L D. Landau Institute of Theoretical Physics, USSR Academy of Sciences 
(Submitted 26 December 1977) 
Zh. Eksp. Twr. Fiz. 74, 1899-1903 (May 1978) 

The dependence of the period of the cholesteric helix on the magnetic field perpendicular to the axis of 
the field is calculated above the point of the phase transition into the smectic-A. The dependence of the 
critical field H, on the temperature is obtained. 

PACS numbers: 61.30.Gd, 64.70.E~ 

The behavior of a cholester ic  liquid c rys ta l  in  a mag- 
netic field perpendicular to the axis of the choloester ic  
helix w a s  investigated both theoreticallyc1] and experi-  
mentally.c31 With increasing magnetic field, per iod of 
the cholester ic  s t ruc ture  increases and above the  criti- 
cal field H ,  the  c rys ta l  h a s  nematic  ordering. In weak 
magnetic fields, the period increases l ike the  fourth 
power of the field and d iverges  logarithmically near the 
critical field. We examine th i s  problem f r o m  the point 
of view of the phase transition of a cholester ic  liquid 
c rys ta l  into a smect ic  one. In t h e  phase transition into 

the smectic-A phase, the  o r d e r  p a r a m e t e r  is t h e  Fou- 
rier component J ,  of the  c r y s t a l  density, with wave vec- 
t o r  qo = 2% /d, where  d is the dis tance between planes 
and n, is the average  d i r e c t o r  and is perpendicular to 
the  equidistantly disposed layers .  T o  take into account 
the  quadrat ic  fluctuations of the  o r d e r  we use the  d e  
Gennes Hamiltonian. c41 

a= (COS (F ( 2 )  , sin (F (z) , 0) , 
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