
commensurate ones. 

We note that all our results were obtained in the self- 
consistent field approximation and we did not take phase 
fluctuations into account. In a purely one-dimensional 
system, such fluctuations a re  important; allowance fo r  
them jointly with consideratio! of commensurability ef- 
fect is reported by Brazovskii et al.c201 In quasi-one- 
dimensional compounds with sufficiently strong inter- 
action of the CDW on different chains o r  in layered com- 
pounds, the phase fluctuations a re  not s o  important, es- 
pecially far from the temperature at which the three- 
dimensional CDW structure appears. 

We note in conclusion that our results can apparently 
be used not only for compounds with CDW, but also to 
other systems in which structural transitions to a non- 
commensurate phase a re  observed..c211 

In conclusion, we a re  deeply grateful to L. V. 
Keldysh, as well a s  to V. L. Ginzburg and to the par- 
ticipants of his seminar, for useful discussions. 

l )~acmil lan 's  analysis is in fact fully equivalent to Dzyalo- 
shinskips earlier investigation of helicoidal magnetic 
structures .[121 

2 f ~ e  note that a relation similar to that in Fig. 1 was observed 
numerous times in different systems; e.g.,[". 

3 )~ imi la r  results a r e  arrived at also by a consistent quantiza- 
tion procedure.c171 
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A theory is developed for tunnel self-trapping of electrons (or of Frenkel excitons) as they interact with 
acoustic and nonpolar optical phonons. It is assumed that the electron-phonon interaction is strong enough, 
so that the size of the self-trapping barrier exceeds greatly the lattice constant and the continual theory 
can be used. It is shown that in these two cases the tunneling picture is entirely different. In the 
interaction with the optical phonons, the decisive contribution is made by quasiclassical trajectories with a 
spatial scale on the order of the barrier size. In interaction with acoustic phonons, on the contrary, the 
optimal trajectories have a scale much smaller than the barrier size. Explicit expressions for the 
transparency of the self-trapping barrier are obtained for both cases. 

PACS numbers: 63.20.Kr 

A sufficiently strong electron-photon interaction pro- 
duces in a crystal self-trapping of electrons (excitons) 
into states with scale dimensions equal to the lattice 
constant. They a re  called small-radius polarons, con- 
densons, and polarizing o r  deforming excitons. The 
character of the resultant final states (for example, 
single-site or  quasimolecular formation) a re  determined 
mainly by quantum-chemical considerations and i s  prac- 

tically independent of the type of the phonons with which 
the dominant interaction takes place. On the contrary, 
the process of formation of a self-trapped state from a 
band state is decisively affected by the type of the elec- 
tron-phonon interaction. Thus, for example, in a po- 
larization interaction with optical phonons the self-trap- 
ping, i. e. , the transition to the polaron state, always 
takes place without a barrier. On the contrary, if 
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short-range interactions predominate, then the self - 
trapping usually entails the surmounting of the poten- 
tial barrier that separates the self-consistent band and 
self-trapped states.c21 At low temperatures, the self- 
trapping barr ier  is overcome by tunneling. We have 
here an analogy with quantum formation of the embryos 
of low -temperature phase transitions, c3141 the only im- 
portant difference being that in the seli-trapping pro- 
cess the tunneling of the nuclei is accompanied by com- 
plete restructuring of the electron J ,  function-from a 
band function to a localized function. 

We calculate below the exponents for tunnel self-trap- 
ping of electrons and of Frenkel excitons when they in- 
teract with acoustic and with nonpolar optical phonons. 
We confine ourselves to situations in which the tunneling 
can be described within the framework of continual mod- 
els. 

1. QUALITATIVE ANALYSIS 

The main feature of the energy spectrum of electrons 
(or excitons) that interact strongly with acoustic o r  non- 
polar optical oscillations i s  the possible existence of 
free (band) and self-trapped states. One of us has 
shownc2' that for al l  the short-range interactions both 
types of solutions (both band and self-trapping) a re  in a 
rigorous sense self-consistent solutions (unlike the case 
of long-range polarization optical interactions). There 
is therefore, generally speaking, no alternative between 
the formation of band and self-trapping states, i. e. , 
they can exist simultaneously. Recent experiments on 
the coexistence of free and self-trapped excitons in 
noble gases, c5- 'I in iodides of alkali metals, c8'9' and in 
some other crystalsc101 agree fully with this statement. 

To compare the competing quantities, we write down 
the quantities with dimension of energy (E,, wD, C , and 
ps2v) that a r e  involved in the theory of electron-phonon 
interaction, and confine ourselves for concreteness to 
the case of interaction with acoustic phonons. 

Here EB i s  the width of the conduction band, C is the 
deformation potential, w,is the phonon Debye frequency, 
s is the speed of sound, and v i s  the volume per atom. 
The last two energies a re  in fact usually encountered 
a s  the combination EFc =c2/2  s2u corresponding to the 
Franck-Condon energy, i.e., to a lowering of the ener- 
gy of the system (compared with the centroid of the 
electron spectrum) when the electron is self-trapped. 
It i s  also convenient, followingc11', to introduce the di- 
mensionless parameters 

The condition for the coexistence of f ree  and self- 
trapped states consists mainly in the requirement that 
the electrons by "light": EB>> wD .C21 In addition, for 
self-trapped states to be formed the electron-phonon 
coupling must be strong enough: A 2 1 (for details see 
Refs. 12, 2, 13-15). An estimate of A in terms of the 
fundamental constants yields A - 1 ,  so  that the condi- 
tions for self-trapping should on the whole be favorable. 
The average electron range in the f ree  state can be 
large. Indeed, the level width & connected with the 

spontaneous phonon emission i s  &/& - X  - AwD/EB, 
where E i s  the electron energy. We see that at A - 1 the 
parameter A can be small  in t e rms  of the usual adiabat- 
ic parameter W ~ E .  - ( r n / ~ ) " ~ .  

Perfectly analogous arguments can be advanced for 
the interaction with nonpolar optical vibrations; in this 
case E FC = y2w0, where oo is the vibrational frequency 
and y i s  the dimensionless coupling constant. 

The energy diagram is shown in Fig. 1. It contains 
the total energy U(Q) of the system when the nuclei a r e  
a t  rest a s  a function of the configuration coordinate Q 
that describes the lattice deformation. Curves 1 and 2 
correspond to the adiabatic potentials of the nuclei under 
conditions when the electron is on a lower discrete lev- 
el. It is seen that the discrete level can ar ise  at a fi- 
nite (curve 1) o r  infinitesimally small  (curve 2) deform- 
ation energy. In either case,  however, the potential 
barrier remains finite. Its minimal value 
corresponds to a saddle on the U(Q) surface. We em- 
phasize that the existence of the barr ier  W (the self- 
trapping barr ier )  i s  peculiar to the relaxation from band 
states. 

Let us  examine the nonradiative relaxation of a sys- 
tem at  T = O  from a band state to a self-trapping state. 
If W >> w0/2, then the bottleneck is the system tunneling, 
shown by the wavy line in Fig. 1; the subsequent cas- 
cade process of vibrational relaxation along the curve 1 
will be relatively faster. This is precisely the situation 
that will be considered below. On the contrary, at W 
5 wo/2 the probability of the first stage is high and the 
limit is imposed by the second stage of the relaxation. 

The rate of the vibrational relaxation was already es -  
timated in several papers.c16'171 The probability of tun- 
neling through the self-trapping barr ier  has not yet been 
calculated, and sometimes sight is lost of the very fact 
that such a barrier exists. Yet in a number of cases 
it is precisely the tunneling probability which should 
govern the self-trapping rate. 

If W>> wo/2 (i. e. , AX << I ) ,  then we can use the quasi- 
classical approximation for the description of the tun- 
neling of the nuclear subsystem. On the contrary, the 
electron motion must be described by quantum theory, 
since the electron is constantly in the lower state and 
the very existence of the self-trapping barr ier  isentire- 
ly connected with the kinetic energy of the electron. 

There is also the question of the e r r o r s  introduced by 
the use of adiabatic potentials in region where the adi- 

FIG. 1. 
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abatic approximation i s  not valid, namely to the left of 
the point I( and also near K on curve 1 of Fig. 1. It i s ,  
however, easily seen that the quasiclassical integral 
over the region to the left of K coincides exactly with 

1 * 1  for the configuration K ,  i. e. , with the quantum- 
mechanical probability of the nuclear configuration at 
which the local level is produced for the electron; S' is 
the nuclear wave function. The nonadiabaticity influ- 
ences therefore only the pre-exponential factor, which 
we shall not calculate, and does not change the argu- 
ment of the exponential. 

The last question to be discussed here concerns the 
feasibility in practice of determining the adiabatic po- 
tentials, which we must have to calculate the quasiclas- 
sical integrals. The point is that self-trapped states 
(condensons, deforming excitons) have a spatial scale on 
the order of the laLtice constanti', a s  established in the 
initial paper of Deigen and ~ e k a r . ~ ' ~ '  Yet the character- 
istic spatial scale of the barr ier  is rO-M, where d is 
the lattice constant. In the case of strong coupling, the 
barrier can therefore be described in the macroscopic ap- 
p rox imat i~n ,~ '~ '  and this uncovers definite possibilities 
of developing also a macroscopic theory for the rates 
of tunnel self -trapping .'' According to the results of 
Fugol' and ~ a r a s o v a , ~ ~ ~ '  the case A >> 1 is apparently 
realized in light inert gases. 

2. FUNDAMENTAL EQUATIONS 
Naturally, U(Q) 2 0 along the entire tunneling path. 

Since we a r e  dealing with a classically forbidden region 
of Q, we introduce, as usual, the imaginary time ?=it 
and change to imaginary action S - iS. In this notation, 
the quasiclassical representation of the phonon wave 
function (with the electron in the ground quantum state) 
takes the formc3n4' 

where S is the extremal action: 

Q,are the normal coordinates, Q ~ = ~ Q ~ / ~ T ,  and L is the 
Lagrange function with imaginary time and corresponds 
to classical motion with potential energy -U(Q). In the 
case of tunneling with a total energy 6 = 0 (cf. Fig. I ) ,  
the two terms in L are equal and 

S=min J Q,Q-, dr. 

The minimization is over all  the phonon trajectories 
with 6 = 0 joining the free state with one of the states 
on the surface U(Q) = O  to the right of the barrier.  It is 
subsequently necessary to minimize S over the finite 
states and to separate those states that make the de- 
cisive contribution to the tunneling. Eliminating now 
the first term of L ,  we obtain the Maupertuis principle: 

S=rnin J 2~ d~=min J (2U) " ds, &'- dQ, dQ-,. (4) 
q 

The phonon Lagrange function that includes the elec- 
tron-phonon interaction is 

it is assumed that the normalization condition I I + I I  = 1 is 
satisfied. The integral term in (5) i s  the energy E ( Q )  of 
the electron at a fixed lattice deformation. 

For acoustic phonons we have w,=sq and rq=Cq/  
( p ~ ) " 2 ,  where p i s  the density. Introduction of the di- 
mensionless variables 

transforms the Lagrange function into L =gAS., where 
g, = p2s4/m3c4. The dimensionless Lagrange function 
S. takes in the coordinate representation the form 

1 1 
9'=-i-j ( 2 ) ' d r + - j  2 (divQI2dr 

1 
+min. lT 1 ~ l p l ' + d i u ~ l ( l ~  dr. 

In the same notation, 

For  optical phonons w, = W, and r, = ~ W , ( ~ W ~ V / V ) ~ ' ~ .  
The transformations 

lead to the relation L =goS, where go =(4m3v2w;y4)-I 
and the dimensionless Lagrange function is 

The action is transformed into 

S=o,Y. oo= 1/4m31:?o,'y'. 

The formulas for g, and Go determine the scale of the 
barr ier  W. In both cases w - E ~ / A ~  in accord withc1". 
At the same time, a,, and aOdetermine the scale of the 
action, for which we obtain different estimates in these 
cases : 

To determine the numerical coefficients in 0, and Do 

we must find the optimal trajectories Qq(r). Recogniz- 
ing the difficulty of this problem and the need for using 
variational methods we investigate this problem by two 
different methods and compare the results. 

3. TWO-PARAMETER APPROXIMATION 
We limit the class of trajectories in Q space to 

spherically symmetrical wells with Gaussian profiles: 
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div Q(r) =-Qe-@", Q(r) --Qe-6'' 

for acoustic and optical phonons, respectively. Then 
the trajectory in Q space is determined by the relations 
Q = Q(7) and @ =@(7). The lattice deformation energy is 

i 
(14) U . . - ~ C ~ . ~ Q - ~ = ' ( ~ L ) '  

1 2 28 

We calculate the electron energy in the field of the 
deformed iattice by means of the variational function o SMI ~ D O D  - 1500 

+a exp(-or2): 
FIG. 2. Diagram, on a ffp plane, corresponding to the two- 
parameter approximation. The line 8 =& corresponds to the 
instant when a local level appears for the electron (the local- 

(I5) iaation line). The entire region to the right of this line is the 
localization region. The region to the left corresponds arbi- 
trarily to the region of the free motion of the electron. The 
curve U = O  is the locus of the end points for the trajectories 

The 'Ondition E L  = O  for the determination of reduces corresponding to transitions into the self-trapping states. 
to 

(2a)"2B 
(16) To calculate the action in accord with formula (4) we 

( 8  + 2a)'l. must express the length element ds in terms of the vari- 
ables Qp and a@. This is easily done by using (13). 
Without writing out the rather cumbersome resultant 

Since this equation is easy to solve for Q, it is conveni- equations, we note that they a r e  different for acoustic 
ent to eliminate Q and operate in the subsequent examin- and optical phonons. Accordingly, the optimal trajec- 
ation of the region E < 0, in which the electron has a lo- tories a re  also different, and we therefore consider 
cal level, not on the Qp plane but on the a@ plane. these cases separately. 

The localization line, i. e. , the boundary between the 
region of the free motion and the localization region, is 1. Acoustic phonons 
determined by the condition E = 0, which reduces when We consider first trajectories of type 1 (Fig. 1) that 
account i s  taken of (16) t6 extend entirely over the region of the trapped states. 

For example, on the straight-line trajectories we have 
ds ap'5/4d/3 and ~ ' / ~ = p ' / ~  (at  small  p <<p ,,,), and 

8-4a. (I7) therefore the integral (4) diverges logarithmically a t  

small  p. The same holds for a l l  trajectories of type 1; 
they a r e  therefore ineffective. 

The right-hand boundary of the tunneling region is de- 
termined by the condition U=U,, + E = O ,  o r ,  taking (16) We consider now trajectories of type 2 (Fig. 2), on 

into account which the localization s e t s  in only a t  finite @. On these 
trajectories the integral consists of two contributions: 
over the free region and over the localization region. 
In the free region for the acoustic phonons with wq=q, 

(I8) all  Q47) = Q e i q .  Considering the trajectories that 
s tar t  a t  T =-a, with Q: -4 = 0 and at 7 = 0, we get 

A plot of ,¶=j3(a) as described by this equation is shown O 

in Fig. 2. The minimum of the curve corresponds to i %,,= min f Q.(~)Q-~(r)dr - (19) 
-- q 

The left-hand branch moves slowly away from the line 
p = 4 a ,  and i ts  slope @/a - 4. The right-hand branch is 
given by It is obvious that a direct meaning is 
possessed only by that part of the a p  plane which lies to 
the right of the line = 40. In the region of the free 
states we must operate with the original variables Qp, 
and the mapping of the trajectory sections corresponding 
to free motion on the a p  plane is purely arbitrary. 

The minimum must be calculated subject to the addi- 
tional condition that the deformation ($1 lie on the lo- 
calization line (e =O). The Schriidinger equation that 
follows for J I  from (7) admits on the localization line of 
the group r - hr ,  Q -Q/x. Under this transformation, 
Qq-~'/2€&. Therefore Sf,,, is invariant according to 
(19) and is determined exclusively by the functional 
form Q(r). If the Gaussian approximation (13) is used, 
Sf,,= 1.5%/8. Since S ,,,, does not depend on p, the 
optimal trajectory is determined by the contribution 
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from the localization region. Calculating in this region 
the integral (4) over the horizontal segments between 
the line p = 412 and the curve U = 0, we obtain S , , ,  - 50 
p-'I2 at P >>&in. Thus, the contribution from the free 
region to the action predominates, and the transparency 
i s  maximal at /3 >>@,,,, with S 2 3.0. 

These calculations lead to interesting conclusions. 
The tunnel self-trapping i s  effected predominantly not 
over the scales Ad corresponding to the spatial dimen- 
sion of the self-trapping barr ier  with minimal height 
(near the saddle point), but over scales r << Ad. Since 
we have used from the very outset the continual approx- 
imation, we must confine ourselves to consideration of 
the region d <<r << Ad. In this entire region the action 
is  approximately the same, and it corresponds therefore 
in principle to a large phase space and to a large pre- 
exponential factor. Unfortunately, the dimension of the 
region is substantially contracted by the large numeri- 
cal factor /3:{:- 20, and we therefore write out here 
specially the criterion for the existence of such a r e -  
gion: mc2 > > 2 0 ~ s ~ d .  

Since the lower edge of the tunneling region corre- 
sponds to microscopic dimensions, the sign of the cor- 
rections to the continual theory assumes a significant 
role. If the corrections decrease the barr ier  transpar- 
ency, then the results remain in force. But if they in- 
crease the transparency, then tunneling over micro- 
scopic scales r -d becomes predominant and the results 
provide only an upper limit for S. 

2. Optical phonons 

In this case d s  ap-S14dp on the trajectories of type 1 
(Fig. 2) and the integral diverges. For the class of 
straight-line trajectories, the minimum of S is reached 
a t  /3 = 2 a ,  and then S = 438. The competing trajectories 
a re  of type 2. On the free segment ~,,,=il. 55(r/2)312 
/3'12w 3. 748'12, and in the localization region S decreas- 
e s  with increasing p , and integration over the horizon- 
tal segments leads to s,,,- 50 a s  P - -. The optimum 
8 = 187 is reached a t  8:; = 26, and the integrals over the 
free-motion and localization regions make approximate- 
ly equal contributions. Since this number is markedly 
lower than that obtained for the ray trajectories, we 
give preference to trajectories of type 2. 

Thus, optical phonons tunnel via configurations that 
have symbolically a spatial scale r,,, -M. Numerical- 
ly, however, the scale is smaller since Pmt is large. 
Thus, for example rt,,- r,/5, where r, is the radius of 
the electron wave function for configurations near the 
saddle point.c1g'21' 

4. ELIMINATION OF PHONON COORDINATES 

The approach described in the preceding section ex- 
plains clearly the difference between the tunneling in 
interaction with acoustic and optical phonons, and de- 
scribes the character of the optimal trajectories. A 
more consistent and general formalism, however, is 
obtained by a different approach, based on the fact that 
the phonon variables enter the Lagrangian (5) only quad- 
ratically and linearly. Therefore the problem can be 
solved exactly in terms of the phonon variables and these 

variables can be eliminated. The problem then reduces 
to variation of the action, which depends exclusively on 
$(r r ) .  This way corresponds fully to the general form- 
alism of polaron theory, where the determination of the 
stationary states reduces to variation of the known func- 
tional J [$I .['I 

We shall consider the cases of acoustic and optical 
phonons separately. 

1. Acoustic phonons 

According to (27) and (7) 

We a r e  interested in those trajectories with energy 6 
= 0 which begin at the point Q = 0 at r =-.o (nonlocalized 
states) and end a t  r = 0 on the surface 

From the energy conservation law 

it follows that a t  the end point of the trajectory, corre- 
sponding to tunnel self-trapping we have aQ/ar = 0. 

Minimization of S with respect to Q yields Euler's 
equation : 

which must be solved under the conditions 

A solution satisfying the conditions (24) is 

where 

is the Green's function of the four-dimensional Laplace 
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operator, and 1 $ 1  is continued in even fashion into the physical meaning that can be ascribed to this limit has 
region T > 0. already been discussed in Sec. 3. 

Substituting (25) in (20), using (23), and extending the Substituting in (30) of the t r ia l  function $ a exp(-cur2) 
integration with respect to  7 to +m,  we obtain the func- leads to S =9n2/32 2.78, which refines somewhat the 
tional result of Sec. 3. 

1 1 
p = = L m i u *  2 J ( T l ~ , $ ( ~ ) l z + - l $ ( ~ )  I ~ A , J  G(R-W) I $ ( R < )  IWK], 2. Optical phonons 

2 
The initial formulas differ from the case of acoustic 

(27) phonons only in that div Q(r) is replaced by Q(r) in (20) 
and (21). The Euler equation for the displacements 

which depends exclusively on $(R); here R = r T .  From 
(27) follows Euler'8 equation 

a z Q / a ~ = - Q -  /$I2-0 

1 -T A ~ $ + $ A , ~  G ~ R - R ~ )  I*(R/) I ~ ~ ~ R , - E ( T ) $ ( R ) .  (28) should be solved with boundary conditions analogous to 
(84). It6 solution is 

Since the second term on the left is equal to $ d i v a $ ] ,  
e-'""-"' do according to (25) it follows that E(T) is the electron lev- Q(,r) - jG(T-Tll ,zdT,, G(r- T,) =- f . 

e l  for the deformation Q(r7). -- ro2 2n' (32) -- 
According to (26), the Green's function G ( R )  is a ho- 

mogeneous function of R of degree -2. This yields a 
sort  of "virtual theorem" for the action. lntroducing it is assumed that lJ,1 is continued in even fashion into 
the t r ia l  function x = x  3 '2~(xr ,  x T), where q(r7) is the the region T > 0. 
extremal of S, and differentiating S with respect to n, After eliminating Q, the action is represented in the 
we get form of the functional 

Since E(T) is the ground-state energy, it follows that 
E(T)< 0; in the free state E =0 ,  and in the localized One whose variation yields the Euler equation for $: 
E c 0. This leads to a rigorous proof of the conclusion 
arrived a t  above (see Sec. 3) that the extremal trajec- 
tories have an almost free character: the time of pas- 1 - 

- - A r r ~  j G -  I I z d r = E ~ ) $ ~ .  (34) sage through the localized states r0 tends asymptotical- 2 -- 
ly to zero on going to the exact extremal. But since the 
lattice velocity is finite, this means that localization 
se ts  in at infinitesimally small  radii. Therefore the The individual terms in (33) a r e  homogeneous with 
behavior of the system is singular a s  70-0. An analy- respect to pure spatial transformations. This enables 
s ~ S  of the limiting expression for the action a t  small  To to obtain a virial theorem by introducing the trial 
leads to the formula function x = ~ ~ ' ~ ~ l ( x r ,  T) and varying S with respect to x: 

3 
+- l$ (r~)  I' J G(T-TI) I$(r-rf) l'd~') ~ T = o .  

4 -- 
(35) 

Here $(r) =$(r, T = 0). I ts  derivation is given in the 
Appendix. 

Subtracting (35) from (33) and using (34), we get 
It is remarkable that expression (30) depends only on 

the functional form of J ,  at T = O  (i.e. , in the localized a 

state) and does not change when it undergoes a scale 9=- J E (7) dr. 
- e 

(36) 
transformation. This agrees with the results of Sec. 3 
and with the fact that we calculate the limit a s  the spatial It is seen from (36) that tunneling through the region E 
and temporal localization scales tend to zero. The c 0 occupies a finite time interval, in accord with the 
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conclusions of Sec. 3. 

Before we proceed to the approximate determination 
of S ,  we make the following remark. If the problem is 
rigorously formulated, the condition (21) does not change 
the extremal trajectories, and merely selects the ones 
that bring the system to definite final states; we have 
therefore determined the extremal trajectories above 
by simply varying s. In the approximate solution of the 
problem, however, it is necessary to make especially 
sure  that the trajectories land on the surface U(Q) = 0. 
This is easiest to do by introducing a Lagrange multi- 
plier, i. e . ,  by defining the functional 

and obtaining i ts  minimum under the conditions 

Variation with respect to Q at T f 0 leads to the Euler 
equation (31), and a t  T = O  to the boundary condition 

On going to the exact solution, h - 0 and (38) goes over 
into 

We define the tr ial  function in the form 

The solution of (31) with the boundary condition (38) is 
then 

We determine the function qo from the condition that 
it satisfy (34) a t  T = 0: 

At T(0) < 0 Eq. (41) easily reduces to the standard equa- 
tion investigated numerically by Zakharov, Sobolev, and 
~ ~ n a k h . ' ~ ' '  The lowest eigenvalue is 

4 n2 
E---En, Eo=1.5'-. 

F (0) 2 (42) 

Using the virial theorem for Eq. (41)~' 

jointly with (40), we can express all  the integrals in S 
and U in terms of T and Eo. As a result we arr ive  a t  
the expressions 

1 5-1 
-TO-~+-+-e-'" P = E ~  min. (&(%+a) --- 2 2(5+l )  

The equation U(r=O) =0,  which defines h ,  enables us to 
get T(O)=-$ and eliminate A from (44) with the aid of 
(40). The result is 

This expression is meaningful only a t  To such that 
U(T) 3 0, and the equality is reached only a t  7 = 0. It 
can be verified that this condition is satisfied only at To 

1112. Thus, in the class of t r ia l  functions, the mini- 
mum of the action is reached a t  7, = ln2 and is equal to 
S = 8(3-2 ln2)Eo = 12. 9Eo = 143, which likewise improves 
the result of Sec. 3. The tunneling time in dimensional 
units is ~ ~ = l n 2 / w ~ ,  i .e. ,  it is of the order of the r e -  
ciprocal frequency of the optical phonon. 

5. CONCLUSION 
Thus, analysis of tunnel self trapping by two different 

methods leads to a single picture of the phenomena and 
to close values of the numerical parameters. The main 
conclusion reduce to the following. Although the very 
fact of coexistence of free and self-trapped states and 
the presence of the self-trapping barr ier  a r e  common 
to electron (exciton) interactions with acoustic and non- 
polar optical phonons, the pictures of the tunnel self- 
trapping a r e  entirely different. For the optical phonons, 
the optimal quasiclassical trajectories pass over a 
spatial scale "Ad corresponding to the spatial extent of 
the minimum-height barrier.  Therefore if the coupling 
force is strong enough ( A  >> 1) the trajectories lie en- 
tirely in the region of applicability of the continual theo- 
ry. 

On the contrary, for acoustic phonons the action 
reaches a minimum on trajectories corresponding to 
tunneling in the region of asymptotically narrow barri-  
e r s .  It remains almost unchanged, however, in the 
scale region r << A d .  Therefore the continual theory, 
which determines the contribution made to the transi- 
tion probability from the region d <<r <<Ad ,  yields ei-  
ther the total probability o r  its lower bound (see Sec. 3). 

The barr ier  transparency can be characterized by the 
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quantity D =e-2S. The final result takes a particularly 
simple form for optical phonons. Assuming the dimen- 
sionless barrier height W = 4E , that follows from the 
virial theoremcig' and using the formulas for Do and go 
(Sec. 2) ,we have ultimately 

It remains to verify the satisfaction of the condition 
(21) when the trial function is so chosen. The Euler 
equation for the extremals of the functional (30) is 

i. e. , the transparency is expressed directly in terms 
of the barrier height and the phonon frequency. For 
acoustic phonons 

In either case, refinement of the calculation of S should 
decrease the numerical factor in the exponent and hence 
increase the transparency. 

The determination of D for noble gases is made diffi- 
cult both by the simplification of the model (the excitons 
a re  in fact noticeably different there from Frenkel ex- 
~ i t o n s ' ~ ~ ~ '  and have a degenerate band) and by the fact that 
m and C are  known for them only quite roughly. If we 
use nevertheless the parameter values p - 1.5 g/cm3, s 
% lo5 cm/sec, m - 3x  g, and C = 2 eV, which a re  
close to the real  ones, then we obtain the quite reason- 
able log D = -4. 

Analysis of the experimental data has led recently to 
the conclusion that in a number of crystal the trapping 
of carr iers  by some local levels is accompanied by a 
strong deformation of the l a t t i ~ e . [ ~ ~ ' ~ ~ '  The method de- 
veloped above can be applied also to this situation, pro- 
vided only that the barrier lies in the macroscopic re- 
gion. 

The authors thank A. M. F'inke'shtein for useful dis- 
cussions. 

APPENDIX 

DERIVATION OF FORMULA (30) 

We define o class of tr ial  functions in analogy with 
(39), with I), =#,(r/r,), where $J, is a normalized func- 
tion with localization radius r, and is to be determined. 
Using the homogeneity of G ,  we obtain from (27) an ex- 
pression for the action in the limit a s  T - 0: 

1 S=>- ~ I ~ ~ ~ ~ I ~ ~ E + ~ ( ~ ~ ~ ) I ~ I ~ ( ~ I ~ A ~ c ~ s - I , ~ ) I ~ ( ~ ~ ~ ~ ~ s ~ : .  1 2 

(A. 1) 

where 5 = r/r,. Minimizing S with respect to h = T,/Y; 

we get 

1 I = - - ~ I v  thla~[~l~~(E)12A~~(1-5..~)~$o(g')12dSd~~. 

(A. 2) 
Substitution of (A. 2) into (A. 1) leads directly to (30). 

with X defined by (A. 2). Comparison of (27) with (A. 3) 
leads to E (7  =0) = 0. Substitution of (25) and (39) in 
(21) shows that in the limit a s  T, - 0 and a t  constant A 
= T,/Y; the first term is vanishingly small compared 
with the remaining two and can be omitted. The vanish- 
ing of the sum of the two remaining terms is ensured by 
the equality E(T = 0) = 0. 

')provided only that nonlinearity and anharmonicity do not 
alter the results excessively.c181 

')1n this respect the picture recalls somewhat the quantum 
production of embryos near the lability point. 

3)~nalogous to the ''l:2:3:4 theorem" in polaron theory. 
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Temperature dependence of the electron specific heat and 
effective mass 
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The temperature dependence of the electron specific heat is investigated. The kliashberg method is used to 
obtain a general formula including the function g(o) = aZ(w)F(o) and the universal function Z(T/o); an 
expression is found for Z(x); this formula can be used to describe the nonmonotonic C,(T)  dependence 
at all temperatures for an arbitrary electron-phonon interaction. Calculations are made for specific metals 
and the available experimental results are analyzed. The question of the temperature and carrier-density 
dependences of the mass is considered. An approximate method is suggested for obtaining information on 
the function g(w). 

PACS numbers: 65.40.Em. 71.25.Jd 

We shall consider the temperature dependence of the 
electron specific heat and effective mass. The elec- 
tron-phonon interaction is known to affect considerably 
the characteristics of an electron system. The question 
of the renormalization of the electron mass associated 
with this interaction was investigated (for T =0) by 
~igda1.I" The state of the phonon system varies with 
rising temperature. Excitation of thermal phonons re- 
leults in temperature dependences of the electron 
characteristics. The temperature dependence of the 
effective mass has been observed in cyclotron resonance 
studies. C2'51 These studies have been carried out in the 
temperature range T s 6" K, i.e., for T c w , .  

The electron-phonon interaction causes the tem- 
perature dependence of the electron specific heat to 
deviate from the simple linear law. This has been ob- 
served experimentally on several  occasion^.[^-^^ 
li?liashbergclol developed a method based on the exact 
expression for the thermodynamic potential. He ob- 
tained a general expression for the entropy and showed 
that allowance for the electron-phonon interaction re- 
sults, in the T -0 limit, in an additional contribution 
AC,(T) 0~ Tsln(w,/T). The question of the temperature 
dependence of the electron specific heat C,(T) and 
effective.mass m*(T) has also been investigated by 

(see also Grimvall's review clS1). ~ r a d i n ~ ' ~ '  
calculated analytically the dependence C,(T)/T through- 
out the temperature range in the Einstein model of the 
phonon spectrum. The asymptotic behavior of C,(T) 
in the limits T-0 and T-.o was investigated by 
Masharo~.~ '~]  We shall use the dliashberg method 
to obtain relationships which describe the dependence 
C,(T) throughout the investigated temperature range 
for an arbitrary electron-phonon interaction and we 
shall apply these relationships to some specific sub- 
stances. 

The influence of the phonon system on the electron 
characteristics i s  known to be described by the function 
g ( w )  = 02(w)F(w)  [F(w) is the density of the phonon states 
and a2(u) describes the electron-phonon interaction]. 
The function g(w)  can be determined with high accuracy 
by investigating superconductors using the tunnel spec- 
troscopy methods and it i s  known for many metals (see 
Figs. 2 and 3 be lo^).^^^"^' 

The deviation of the dependence C,(T) from linearity 
can be expressed directly in terms of the function g(w)  
(see below). We shall use the available tunnel data to 
plot curves describing the behavior of the specific heat 
and mass in several metals. We shall compare the 
predicted behavior with the available experimental 
data. 

We shall present the results in three sections. In 
the first section we shall consider the temperature 
dependence of the electron specific heat. We shall 
discuss the available experimental data, the question 
of the separation of the phonon contribution, etc. In 
the second section we shall deal with the problem of 
the temperature and carrier-density dependences of 
the effective mass. In the third section we shall con- 
sider the possibility of obtaining information on the 
function a2(w)  describing the electron-phonon interac- 
tion. 

1. ELECTRON SPECIFIC HEAT 

The electron-phonon interaction results in deviation 
of the temperature dependence of the electron specific 
heat from the simple linear law. As mentioned above, 
the C,(T) dependence has been considered in several 

We shall solve this problem in its general 
form for an arbitrary electron-phonon interaction 
constant for all temperatures. 
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