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Contribution to the theory of defectons in quantum crystals 
D. Pushkarov and Z. ~oinov 
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Zh. Eksp. Teor. Fiz. 74, 1845-1852 (May 1978) 

Deformation produced in a quantum crystal by the presence of a point defect is considered. It is shown 
that a bound defecton state with deformation of the lattice can be produced in the one-dimensional case. 
It is shown that the deformation moves together with the defect with constant velocity without changing 
shape. In the three-dimensional case, the bound state is produced at deformation dimensions for which the 
continual approximation can be used. 

PACS numbers: 67.80.Mg 

As shown by Andreev and I. Lifshitz, ['I at low tem- 
peratures point defects in quantum crystals a re  trans- 
formed into quasiparticles - defectons. A quantum 
theory of defectons, based on a microscopic model, was 
constructed by one of us. c21 Defectons connected with 
motion of complexes of defects were considered by 
Andreev and ~e ' ierovich.  c3v41  They have also shown 
that even in a three-dimensional crystal there can 
exist defectons with one or  two degrees of freedom. 
In these papers the lattice deformation around the de- 
fect was assumed specified, and i ts  influence on the 
defecton spectrum was taken into account. A one- 
dimensional model of a quantum crystal with a defect 
was considered in,c53 where it was shown that a self- 
consistent state can be produced, such that the defect 
moves together with the deformation i t  produces. The 

where tRa is the a component of the displacement vec- 
tor of the atom situated at the site R compared with i t s  
equilibrium position in a perfect crystal; p = (M-m)/m, 
where M and m are  respectively the masses of the im- 
purity and of the host lattice atom; 

A. - C A... ceR - ER.) 
R' 

(2) 

is the difference between the interaction energy of the 
defect with the remaining atoms, and the interaction 
energy of the host atom with them. The second sum 
in (1) describes the potential energy of an ideal crystal 
in the harmonic approximation; B,+ and B, are  the 
Bose operators of defect creation and annihilation at 
the site R; AR,&, i s  the amplitude of the probability of 
the transfer of a defect from site R to site R'. 

appearance of this state i s  mathematically connected 
The solution of the SchrSdinger equation with the soliton solutions of the nonlinear Schrodinger - 

equation. In the approximation used in, C51 no account iliO'I'/at=R'Y 
was taken of the change of the probability of a transit 

(3) 

of a defect to a neighboring node as a result of the will be sought in the form of an expansion 
lattice deformation. 

In this paper we consider both a one-dimensional and Y = C a n ( t ) ~ n ,  (4) 
R 

a three- dimensional crystalwith a defect. In the har- 
monic approximation, the system Harniltonian can be 
written in the form where 9, = B,' 1 0 )  is the wave function of the system 

with a defect localized at the site R; 10) is the wave 
function of the ideal crystal. ~ a t u r a l l y ,  the coef- 
ficients a, should satisfy the normalization condition 
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The quantities A, and A,-,. depend on the displace- 
ments [," of the atoms. In the approximation linear in 
the displacements we have 

AR = A + x hpatEapr hpa ( a h ,  R + P ~ ~ E R ~ )  a = - A:, 
6-z tna-E~+~ 

(6) 

AR-R' = A&, +ZA:-kt' (EE - tgOR'), AkR' ( ~ A R - R . / ~ & R ~ ) -  
a sna-ti. - - 

For simplicity we shall take into account only the 
(7) 

transitions of the defect to the nearest lattice sites. 
The Hamiltonian of the system then becomes 

where 8 rune over only the nearest neighbors of the 
defect. 

Substituting the expansion (4) in the Schrbdinger 
equation (3) with the Hamiltonian (8), we obtain the 
following system of equations for the amplitudes: 

where E,  = *(A + y ~ O )  (y  is the number of nearest neigh- 
bors), , 

It i s  important in what follows that the defecton vel- 
ocity i s  much less than the speed of sound in the crys- 
tal and the lattice atoms have time to become adjusted 
to i t s  motion. This means that the variables 5; and 
4," can be determined from the condition that the 
functional 

+ ; A ~ " ( E R ~ -  ~~+b)aR*aR+b* (10) 
Rba 

which plays the role of the Hamilton function, be a 
minimum with respect to the coordinates tRa and the 
momenta pea = m (1 + ,u I a, 1 ') t i u ,  To this end, we 
write down the Hamiltonian equation and, eliminating 
the variables pEa, we obtain the following system of 
equations for the displacements: 

Thus, i t  is necessary to solve simultaneously the 
systems of equations (9) and (11). Since we shall be 
interested hereafter in deformations whose character- 

istic dimension is much larger than the lattice con- 
stant, i t  i s  convenient to go over to the continual limit 
and regard the amplitudes a, and atom displacements 

as functions of one continuous variable r. Then 
Eqs. (9) and (11) take the form 

where 

ONE-DIMENSIONAL CASE 

We consider f i rs t  a one-dimensional chain with a 
defect atom. (We note once more that one-dimension- 
al defecton motion can result either from strong ani- 
sotropy of the crystal o r  from specific singularities 
of the motion of complexes made up of defects.c31) In 
this case the fundamental equations (12) and (13) re- 
duce to the following: 

where 

m msZ ag 
~ o - ~ j b ' d ~ .  ~ ~ - ~ j ( - j - - )  dx, 

A = A  + A' and s is the speed of sound. 

We are  interested in solutions corresponding to the 
motion of the defecton and the deformation with con- 
stant velocity v .  We therefore seek a solution in the 
form 5 = [(x- vt), la 1 = f(x-vt) . A natural condition 
is also that the deformation vanish far  from the defect. 
Integration of (15) then yields for the vector of the 
deformation u = 8[/8x 

Substituting (16) in (14) we obtain for the amplitude 
a(x, t )  the following nonlinear integro-differential 
equation 

aa A" lala 
ih- - (eo+T,+U,)a - 

a t  ms2(l-p2)  ~ - p p ~ ~ a ~ ~ / ( l - p ~ )  a 

1 aza pp2AZ 
+ - A - +  

lal' 
2 axa 2 m ~ ' ( l - p ~ ) ~  l - p p ' l a l V ( l - ~ 2 )  a' 

(17) 

If we denote by d: the characteristic dimension of the 
deformation, then ( a  ( -C1. Since this dimension i s  
large compared with the lattice constant, we need re- 
tain in (17) only the f i rs t  few powers in the expansion 
in S.". Discarding terms of order dY3 and higher, we 
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obtain the SchrMinger nonlinear equation 

aa i aza 
ih- - (eo+To+Ut.)a - " lalza+-A- .  

at ms2(l-pZ) 2 ax2 (18) 

In this approximation, the deformation vector u(x, t) 
is given by 

This expression has a simple physical meaning- the 
deformation i s  proportional to the probabilistic distri- 
bution of the defecton over the lattice, and the pra- 
portionality coefficient is equal to the total change of 
the chain length. (This can be easily verified by in- 
tegrating (16) with account taken of the fact that the 
amplitude a(x, t) is normalized to unity.) 

The solution of (18), normalized to unity and assum- 
ing a zero value at infinity, is of the form 

where k = Ev/A = m*v/E coincides with the wave vector 
of the free defecton, xo is the defecton coordinate, v is 
the defecton velocity, and the constant q~ depends on 
the initial phase. The energy of the defecton connec- 
ted with the deformation is 

A'v' 2 A 1-58" Ao-eo f ----- 
2A 3 ( W R ) '  (i-8')' ' 

and the dimension of the deformation is 243, where 
&= go (1 - p2), So = ms2r/k2, and E is the width of the 
defecton band. The kinetic and potential energies are  

The deformation around the defect is described by 
the formula 

It moves together with the defecton with constant vel- 
ocity and about a change of shape. It is interesting to 
note that the dimension and shape of the deformation 
depend on the velocity. Relations of similar kind were 
obtained earlier for crowdions in crystals. 

If the excitation energy is represented in the form of 
the sum of the rest  Eo and the kinetic energy K, then 

We see thus that a bound state of the defecton is energy- 
wise more favored. If the excitation rate is s p a l l  com- 
pared with the speed of sound, then the exitation moves 
along the chain like a particle with an effective mass 

that is close to the effective mass of the free defec- 
ton. c51 

The condition for the applicability of the continual 
approximation is the inequality 

5z/ems'ai-8'. (20) 

We note that the free defecton cannot pass through 
regions where the potential varies over the lattice con- 
stant by more than the width of the energy gap. The 
condition (20) indicates that the defecton can move to- 
gether with i ts  own potential well whose variation over 
the lattice constant is much larger than the band width 
(A1 >> €). 

If A <0, which corresponds to a negative effective 
mass of the free defecton, the solution obtained above 
is unstable. In this case, however, there exist stable 
solutions in the short-wave part of the spectrum (which 
corresponds to the low-lying states). This can be 
easily seen if we seek the solution of the SchrUdinger 
equation in the form 

in place of (4). 

If we retain in (17) also the terms of next order of 
smallness (= S'7'2) we obtain another linear equation 

As shown in ['I, Eq. (21) also has soliton solutions. 
If /.L >0, corresponding to a heavy defect, the normal- 
ized solution of (21) can be written in the form 

+-- 'l " '\ (q - s inq)  (1+3ctgZq)+tgz-((q+l)sin2q-1) ] . 
2Lq I-p1 2 t 

(22) 
If /.LC 0, then q becomes imaginary and the solution 

of (21) is given by formulas (22), in which the trigono- 
metric functions must be replaced by the correspond- 
ing hyperbolic ones. 

We note that both the term -a5  and all the remaining 
ones, which can appear when (16) is expanded further, 
contain an additional small parameter b2. If q is 
small, meaning low velocities o r  small p, the solu- 
tion (22) goes over into (19). 

THREE-DIMENSIONAL CASE 

Consider an isotropic three-dimensional crystal 
with a defect. The initial equations (12) and (13) then 
take the form 

where 
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c, and cz are  constants expressed in terms of the elas- 
tic moduli of the medium. 

A direct solution of this system is difficult, and we 
shall use a different approach. We point out that in 
the one-dimensional case the kinetic energy is of the 
order of b2 compared with the potential energy. Thus, 
to find the shape of the deformation i t  suffices to find 
the minimum of the functional (10) without taking the 
kinetic energy into account. We shall also disregard 
the change that the l ~ t t i c e  deformation introduces in- 
to the probability amplitude of the defect transfer. It 
can be shown that in this case, too, the deformation 
is proportional to the probability of finding the defect 
in a given site. The functional (10) thus takes the 
form 

where G is a measure of the elastic energy. In anal- 
ogy with the one-dimensional case, we seek the solu- 
tion in the continual approximation in the form 

Substituting in (25), we get 

A G 
u = A + ~  (k) + --I ( ~ q ) ' d ~  - -I q4 dR,  

Vo 
v. v" v, 

where ~ ( k )  is the dispersion law of the free defecton, 
V, is the crystal volume, and cp and Vcp are  assumed 
equal to zero on the boundary of the volume. For  
simplicity we assume that V, = V,. Then the normali- 
zation condition takes the form 

We choose the trial function in the form of the spheri- 
cally symmetrical function 

where S i s  the dimension of the deformation region and 
R, is the radius vector of the defect. We define the 

FIG. 1. 
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function x as follows: 

For a one-dimensional chain i t  takes the form 

Figure 1 shows a plot of the function X, at C / I A  I 
= 0.2. If A >O, the minimum is reached at &, = 2A/G. 
As already noted, for A < O  the solution is unstable and 
xi has no minimum. 

Figure 2 shows a plot of X ,  for G/ (A 1 = 130. In con- 
t ras t  to the one-dimensional case, there is no minimum 
in the continual approximation a t  either A>O or  A <O. 
The function X, becomes negative for the dimensions 

The continual approximation is valid then if G/ (A I >>a. 
We shall show that the absence of a minimum is due to 
the use of the continual approximation. To this end we 
set  up in lieu of (27) the function ,y in the site repre- 
sentation: 

where aR0=iTi'2eim. With decreasing dimension 6: of 
the deformation, as S- 1, i t  is obvious that U > A  
+ ~ ( k ) .  We see thus that the function (30) should have 
a minimum outside the region of applicability of the 
continual approximation. 
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The de Haas-van Alphen effect was used to measure the broadening r ,  due to electron scattering by 
dislocations, of the Landau levels of the electrons of the fl and y sections of the Fermi surface of 
aluminum. The dislocations were produced by uniaxial dilatation of the samples directly in the course of 
the measurements at 1.3 K, at a load o 11 [Il l] ,  and in a magnetic field B II [ l i ~ ] .  It was observed that r 
depends strongly on the position of the electron orbit on the Fermi surface and on the dislocation density. 
A ratio rv/rp = 3.5 is obtained for dislocation densities D- lo8, and decreases to 2 with increasing D. 
An increase in the areas S of the extrernal sections of the Fermi surface is observed at the same time 
when the degree of uniaxial deformation A V/ V is increased. The values of p = -(3/2)(AS/S)/(A V/ V) 
were measured and found to be 90 and 60 for the f i  and y sections, respectively. These values of p were 
used to calculate the anisotropy of the broadening of the Landau levels in accord with Watts' theory 
[Phys. Cond. Matt. 19, 125 (1975)l. The values obtained are in satisfactory agreement with the results of 
the direct measurements. 

PACS numbers: 71.25.Hc, 72.15.Qm 

1. INTRODUCTION 

We have investigated the scattering of conduction 
electrons by dislocations in aluminum with the aid of a 
procedure based on the measurements of the amplitude 
of the de Haas-van Alphen effect, followed by calcu- 
lation of the Dingle temperaturec1] that characterizes 
the collision broadening r of the Landau levels. Parti- 
cular attention was paid to the study of the relation be- 
tween the Dingle temperature for electrons on different 
sections of the Fermi surface, a relation governed by 
the anisotropy of the scattering in momentum space. 

In the case of electron scattering by point defects, 
the Dingle temperature xi and the (non-transport) elec- 
tron collision frequency 7;' in a zero magnetic field, 
averaged over the i-th electron orbit, a re  in essence 
equivalent characteristics of the scattering1': 

The connection between the Dingle temperature and the 
characteristics of electron scattering by dislocations in 
a zero magnetic field has not yet been rigorously estab- 
lished. We shall therefore regard the measured Dingle 
temperature a s  an autonomous characteristic of the 
scattering, and use relation (1) to calculate the effec- 
tive frequency of the collisions with the dislocations in 
a magnetic field when we compare the obtained data 
with the results of the investigation of scattering by 
other methods. 

The dependence of the Dingle temperature on the 

electronic characteristics and on the parameters of the 
dislocation system was investigated theoretically in a 
number of papers.c4101 This dependence is clearly seen 
from the Watts formulac7] calculated on the basis of the 
mechanism of "dephasing of the quantum oscillations": 

where B i s  the magnetic field, D is the dislocation den- 
sity, R is the Larmor radius, F is the oscillation fre- 
quency, 6 = AV/V i s  the change of the volume in the uni- 
axial deformation, I i s  the correlation length (seeC7]), 
L i s  the length of the classical electron trajectory, and 
aF/F = - ( 2 / 3 ) ~ < .  

If we assume that -D and 1 "D-"~ then, a s  seen 
from (2), X-Dl1' in the case of large dislocation den- 
sities ( 5  >> 1) and X -D/B in the case of small dislo- 
cation densities (5 << 1). This agrees with the results of 
V i n o k ~ r , ~ ~ ]  who calculated the probability of the scatter- 
ing of conduction electrons by dislocations in the Born 
approximation. 

It should be noted that the quantities 7 and I in form- 
ulas (2) a r e  not uniquely determined by the dislocation 
density D. Thus, for example, the formation of dislo- 
cation dipoles decreases 7, although the dislocation 
density may not change in this case. For  this reason, 
and also because the existing experimental methods of 
determining the dislocation density a r e  not accurate 
enough, the comparison of the experimental and theore- 
tical dependences of the Dingle temperature on the dis- 
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