
alternating field for a long time, U,, increases some- 
what. Apparently this is due to some smoothing out of 
the distortion and to a corresponding diminution of the 
amount of the space charge. At high frequencies, the 
space charge lags in phase behind the applied voltage 
in the direction perpendicular to the field. Therefore 
with increase of the frequency of the externalfield, U, 
increases, 

While having a number of common features, EHD 
instability in the smectic A phase differs from its 
analog in the nematic state. Fi rs t ,  motion of a smec- 
tic liquid a t  once acquires turbulent character, and 
destruction of the layered structure occurs without 
the rotary flow that is usually observed in the form of 
nematic Williams domains. Second, in contrast to in- 
stability in NLC, W, in SLC depends on the thickness 
d of the sample (Fig. 6). There is a relation of direct 
proportionality between Uth and d, in confirmation of 
theoretical calculations (see formula (9) of Ref. 4). At 
the same time, the threshold of the conformal-homo- 
tropic transition is proportional to Q ( F ~ ~ .  6, Curve 5). Translated by W. F. Brown, Jr. 
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The Shubnikov-de Haas (SdH) effect in single-crystal samples of Bi and Bi-Te alloys is investigated at 
hydrostatic pressures, p ,  of up to 20 kbar in magnetic fields of up to 60 kOe at helium temperatures. It 
is found that hydrostatic pressure induces a transition of the electron constant-energy surface (ECES) 
from a quasi-ellipsoidal to a dumbbell-like shape and then to a doubly connected surface. A magnetic-field- 
induced change in the connectivity of the ECES is observed in the region of pressures where the cross 
section of the neck of the dumbbell becomes sufficiently small. The shape of the ECES at different 
pressures p is established from the angular dependences of the SdH-oscillation frequencies. The obtained 
pressure dependences of the extremal cross sections, S ,  of the ECES are discussed on the basis of the 
McClure band spectrum model for materials of the Bi type. The computed S(p) functions agree with the 
experil~~ental functions if it is assumed that the spectrum at the L point of the Brillouin zone is inverted 
and egL- - 7 meV. It is found that the parameter ratio Q,, '/a, < 0.0005 a.u. in the McClure model. 

PACS numbers: 72.15.Gd, 71.25.Pi. 62.50. + p  

INTRODUCTION 

The band structure and the Fermi surface (FS) of the 
current carr iers  in Bi have been investigated in a large 
number of experiments by different methods (compre- 
hensive lisis of references on this question a re  given in 
~a l 'kovsk i i ' s~ '~  and 6del'man'scz1 review articles). The 
data obtained in the investigations on Bi were up until 
very recently interpreted on the basis of two different 
band-spectrum t h e ~ r i e s :  the Lax theoryL3] and the Ab- 
rikosov-Fal'kovskii ( A F ) [ ~ * ~ ]  theory. It follows from 
Lax's two-band model that the electron constant-energy 
surfaces (ECES) in Bi a re  ellipsoidal, while the electron 

and hole spectrum at the L point of the Brillouin zone is 
a mirror  spectrum and is the same whether the spec- 
trum at the L point is inverted (cgL= &(La) - E(L,) < 0; the 
bottom of the conduction band is formed by the L, term, 
while the bottom of the valence band is formed by the L, 
term, it being then possible for saddle points to exist in 
the spectrum) o r  direct (cgL > 0; the spectrum cannot 
contain saddle points). 

In principle, the Lax model cannot explain the experi- 
mentally established deviationc6s7] of the ECES in Bi 
from the ellipsoidal shape. The AF model satisfactorily 
describes the angular dependences of the cyclotron 
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massesc8] and the quantum-oscillation periods.c61 But it 
is in this case impossible to  correlate the data computed 
on the basis of the AF model with the experimental val- 
ues of the cyclotron masses in the central orbits and at 
the reference points,c71 the quantum-oscillation peri- 
o d ~ , ~ ~ * ~ ~  and the Fermi momentacIo1 to within, on the 
average, something smaller than 8%,[111 which is signi- 
ficantly lower than the experimental e r r o r  in the deter- 
mination of these quantities. The fundamental difference 
between the AF theory and the Lax model consists in the 
dependence of the energy c on the quasimomentum k 
when k is directed along the direction of elongation of 
the ECES. According to the Lax model, the energy c 
depends linearly on k in all directions. In the AF mod- 
el, however, there is no linear t e rm in k for the direc- 
tion along the long ECES axis: 

Here k,, k,, and k,  are  the wave-vector components; 
MI, M,, v,, and v ,  a re  parameters of the spectrum, and 
c, is the Fermi  energy, measured from the middle of 
the gap c,,. 

According to the AF model, for  c,,< 0 two saddle 
points, corresponding to the energies ~QE,,, exist in the 
spectrum at the points ky=O, the conduction band over- 
laps the valence band, and the spectrum is degenerate 
at the points 

(the electron and hole terms &(kY) intersect). 

M c ~ l u r e [ ' ~ '  has shown that the linear term also appears 
in calculations based on deformation theory if the spin- 
orbit interaction, which mixes the various spin states, 
is taken into account. Calculations carried out by the 
method of pseudo potential^"^* 14] and experimental da- 
tacl5*l6] indicate that the linear term is as important a s  
the quadratic-in k-terms introduced by Cohenc17] and 
Abrikosov and ~ a l ' k o v s k i i . ~ ~ ]  The dispersion law ob- 
tained by M c C l ~ r e ~ ~ ~ ]  can be written as  follows 

( E - ~ / ~ E ~ ~ - K , )  ( E + ' / ~ E ~ ~ - K o )  = Q t , 2 k ~ + Q ~ z Z k , 2 + Q ~ ~ z k ~ ,  

K,='/,a,k,2, KO=-'/,a,k,2: Q,,+O. 
(2) 

Here c,, i s  the gap at L ,  the energy c is measured from 
the middle of the gap, k, is parallel to the binary axis, 
k, makes an angle of 6" with the trigonal axis, k, is per- 
pendicular to k, and k, and directed along the long ECES 
axis. In the AF theory 

while in the Lax model 

For Q,, # 0 in the expression (2) the degeneracy at the 
points ikyo  [see (I)] is removed. In the case of a nega- 
tive gap (i.e., for c,, < 0) the saddle point in the conduc- 
tion (valence) band is  preserved also for the dispersion 
law (2) if 

When the inverses of the inequalities (3) a r e  fulfilled, 
there a re  no saddle points and the inverted spectrum 
differs from the direct spectrum only in having a flatter 
band bottom. Using (2), ~ c C l u r e ~ ~ ~ ]  achieved an agree- 
ment between theory and the experimental data that is 
better than the agreement that has been achieved with 
other  model^.^^-^^ However, in this case it turned out to 
be impossible to obtain a unique set  of parameters, c,  
EgL, Qu, Qzz, Q33, a,, and a,, from the experimental 
data, since only quantities found for an energy fixed at 
the Fermi level-quantities which are  not very sensitive 
to the structure of the bottom of the band-were used. 

The most reliable information about the structure of 
the spectrum c(k) at the L point of the Brillouin zone 
can, in our view, be obtained through the variation of 
the ratio of the Fermi energy c, to the magnitude of the 
gap E,,. One way of varying the ratio cF/cKL is to alloy 
bismuth with antimony. The extrapolation to x =  0 of the 
dependence of the gap at L in the alloys Bi,_,Sb, on the 
concentration x gives grounds to  suppose that the spec- 
trum at L in Bi is inverted and that &,, = -(5 i 2) meV. 
The behavior of the gap E,, in Bi in a strong magnetic 
field, computed on the basis of the analysis of the shape 
of the magnetooptical-transition linescI6] is similar to 
the variation in an H field of the gap c,, in the semicon- 
ducting alloys Bi,_.$b,, which have an inverted spectrum 
(P>Pim, c(L,)>c(L,) ),[la] which also indicates the in- 
verse disposition of the L ,  and La t e rms  in Bi. The 
doping of Bi with donor (Te, Se) o r  acceptor (Pb, Sn) 
impurities also changes the ratio cF/cKL. Measure- 
ments performed on doped alloys yield the following val- 
ue for E,,: cKL = -(4 i 4) meVclgl and I E,, 1 < 15  me^.^^^^ 

Investigations of the Bi,_.$b, alloys have shown that, 
under pressure, the L, term always moves upwards re -  
lative to the La term with a velocity a (&,, I /a# = 2.5 i0.2 
mev/kbar. Thus, it is possible to increase under the 
action of hydrostatic pressure the value of I c,, I to such 
an extent that it becomes comparable to, o r  exceeds, 
the Fermi energy. In this case, for I c,, I > 2Q& /a, the 
invertedness of the spectrum in Bi should manifest it- 
self in a qualitative change in the shape of the ECES; to 
begin with the quasiellipsoidal ECES goes over into a 
dumbbell-like shape and then into a doubly-connected 
surface. The possibility of the appearance of a dumb- 
bell-shaped o r  a doubly-connected ECES in materials of 
the Bi type was first  pointed out by A b r i k o s o ~ . ~ ~ ]  If 
2Q~,/cu,> 1 c,, 1 , then a qualitative change in the ECES 
does not occur: the shrinking ECES will all the time re-  
main quasiellipsoidal. 

Thus, the investigation of the ECES shape in Bi under 
pressure allows us to obtain additional information about 
the sign of the gap c,, and about the magnitude of the pa- 
rameter Q,, in Bi. The effect of hydrostatic pressure on 
the shape of the electron and hole FS in Bi has been in- 
vestigated in a number of It has been ob- 
served that the carr ier  concentration decreases with 
pressure and that the small  cross  section of the hole el- 
lipsoid and the near-minimal cross section of the ECES 
in the case when the field is oriented along the two-fold 
axis monotonically decrease with pressure p. The de- 
pendence of the large cross  section of the ECES on p 
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could not be measured in these investigations. The de- 
crease of the carr ier  concentration with increasing p 
gives r ise  to considerable difficulties in the observation 
of the Shubnikov-de Haas (SdH) oscillations starting from 
pressures -10 kbar. 

In view of this, more promising for the study of the 
effect of pressure on the shape of the ECES in Bi are  
samples of Bi slightly doped with Te (up to -0.01 at.% 
Te). Doping with Te increases with electron concentra- 
tion and, consequently, the number of observable peri- 
ods in the SdH oscillations in the high-pressure region, 
which significantly increases the accuracy of determina- 
tion of the oscillation frequencies. Furthermore, doping 
with Te increases the contribution from the oscillations 
corresponding to  the large ECES cross sections,[z61 
which allowed the first  observation of the pressure de- 
pendence of the frequency of these oscillations in Bi 
samples doped with T e  in the region of sufficiently high 
pressures. 

In the present paper we present the results of an in- 
vestigation of the SdH oscillations in single-cry stal  
samples of Bi and Bi-Te alloys at helium temperatures 
and hydrostatic pressures of up to 20 kbar in magnetic 
fields of up to 60 kOe. The pressure dependences of the 
oscillation frequencies in the case when the field is ori-  
ented along the principal crystallographic axes of the 
single-crystal samples, a s  well as  the angular depen- 
dences of the oscillation frequencies when the field is 
rotated in the basal plane at different fixed pressures,  
have been studied. 

MEASUREMENT PROCEDURE. SAMPLES 

Hydrostatic pressures of up to 20 kbar were produced 
with the aid of a pressure booster.C271 As the pressure- 
transmitting medium we used a dehydrated mixture of 
5% kerosene and 5% transformer oil. The magnitude 
of the pressure was measured at liquid-helium tempera- 
tures by a noncontact methodcz8' involving the measure- 
ment of the shift of the critical temperature of the tran- 
sition into the superconducting state of a tin transducer 
located in the pressure-booster channel beside the sam- 
ple. The pressure booster was located either in the in- 
ner channel of a superconducting Helmholtz system pro- 
ducing magnetic fields of up to 33 kOe directed perpen- 
dicularly to the pressure-booster channel, o r  inside a 
superconducting solenoid producing a field of maximum 
intensity 60 kOe directed along the channel. The sam- 
ples, which were of rectangular shape (-0.5 x 0.5 x 1.8 
mm), were cut out by the electric-spark method from 
single-crystal slabs of Bi-Te alloys and Bi along the 
trigonal, binary, o r  bisector axis. Four Bi-Te alloys 
with electron concentrations n, - 3.2, 4.0, 4.4, and 4.9 
X 10'' cm-S were investigated. The Bi-Te alloys w$re 
kindly made available to us A. D. Belaya (A. A. Baikov 
Institute of Metallurgy). 

The SdH oscillations were automatically recorded on 
an X-Y recorder, using the standard modulation tech- 
nique, and processed by the Fourier-analysis method 
on a computer.[z91 From the peaks of the spectral-den- 
sity curves I ( w )  we determined the oscillation-frequen- 

cy components w, to within 5%. When HIIC, the oscilla- 
tions corresponding t o  the large ECES cross sections 
and the oscillations when HIIC, were single-frequency 
curves. The periods of the oscillaions in this case were 
determined directly from the dependence of the arbi- 
t rary  quantum number of the oscillation extrema on the 
inverse field 1/H. 

VARIATIONOF THE SHAPE OF THE ECES UNDER 
PRESSURE 

Near-minimal ECES cross  sections were measured 
in all the investigated Bi-Te-alloy and Bi samples at 
atmospheric pressure in a field H directed along the bi- 
nary (C,) axis. The cyclotron masses m,B were deter- 
mined for the same orientation of H from the tempera- 
ture dependence of the oscillation amplitudes p,(H). 
From the ap/aH = f(l/H) curves measured in a field 
HIIC, we found the minimal hole-FS cross sections Sk,,, 
from which we can compute the relative shift, A&,, of 
the Fermi  level, a s  is done in Ref. 20. The dependence 
of the square of the cyclotron mass, ( w : ) ~ ,  on the ex- 
tremal cross  section S,,,, as  well a s  of S,,, on the quan- 
tity &2, computed from the value of &, in Bi (&,,,= 33.7 
meV['5~'61) and the shift A&,(&,= c,, ,+ A&,) a re  in good 
agreement with the dependences computed from the for-  
mulas 

(derived from (2)) with the parameters &,,= -7 meV, 
Q,,=0.435, Q2,=0.015, Q3,=0.327, a,=1.3, and a, 
= 1.53. The good agreement between the calculated and 
experimental data confirms the applicability of the rigid- 
band schemec30*201 for Bi-Te alloys with T e  concentra- 
tions of not less  than 0.01 at. %, which also agrees with 
the results obtained by Cucka and ~ a r r e t t [ ~ ' ]  in an x- 
ray structural investigation of these alloys with Te con- 
centrations of up to 0.2 at.%: the lattic parameters for 
the Bi-Te alloys a re  the same a s  for Bi. Therefore, the 
introduction of a small  quantity of T e  into Bi does not 
change the dispersion law for  Bi; it only increases the 
electron concentration, so  that the data obtained for the 
Bi-Te alloys characterize the dispersion law, & ( k ) ,  for 
Bi. 

In the superconducting Helmholtz system an investiga- 
tion of the effect of pressure on the SdH oscillations 
from the ECES cross sections close to S,,, was carried 
out on samples located along the pressure-booster chan- 
nel. The orientation of the axes was determinedtowith- 
in i0.5" from the symmetry of the oscillations from the 
large ECES cross sections. The B ~ / B H  = f ( l / ~ )  curves 
for H fields oriented along the various equivalent (binary 
o r  bisector) directions always coincided with each other. 
Therefore, everywhere we present the curves measured 
in an H field parallel to one of the equivalent axes. 

In Fig. 1 we show SdH oscillations, characteristic of 
all the Bi-Te alloys and pure Bi, at different pressures 
p for an H field directed along the bisectrix (C,) axis. 
Up to pressures -5 kbar the spectral composition of 
these oscillations is the same as  at atmospheric pres- 
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FIG. 1. Oscillations in 8p/8H in a magnetic field directed 
along the bisectrix (C,) axis in a Bi-Te alloy (n,=4.9 
x 1017cmg) at different pressures. 

sure. For HJIC, the ap/aH= f ( l / ~ )  curves have a mono- 
chromatic spectrum corresponding to two equal cross 
sections of the electron quasiellipsoids. For H(IC, the 
oscillations are  a superposition of two frequencies: the 
first  frequency is the oscillation from the S,,, of the 
ECES and the second, which is twice higher than the 
first, is the oscillation frequency from two other ECES. 
In the -5-13 kbar pressure range the spectrum of the 
oscillations is appreciably complicated: the oscillations 
in HI(C, contain four different frequencies: w, < w, < w, 
< w, with 2w, -- w, and 20, - w,, while the oscillations for 
HJJC, contain two frequencies. In the region of pres- 
sures p 2 1 3  kbar the ap/aH= f(l/H) curves again repre- 
sent a superposition of two frequencies, w, and o, (w, 
=2wl), when HIIC, and a monochromatic frequency when 
HIIC,. The pressure dependences of the extremal cross 
sections S pertaining to the same ECES a re  shown in 
Fig. 2 (HIIC,) and Fig. 3b. 

The angular dependences of the oscillations were 
measured for several fixed pressures as the field H was 
rotated in the basal plane (Fig. 4). Figure 5 shows 
computer-separated extremal cross sections ( p  = 8.4 
kbar). 

The dependence of S on cp for a highly anisotropic 

"I I I ! \ ! , ,  

8 16 24 
P. 

FIG. 2. Dependence on pressure p of the extremal cross 
sections of the ECES in Bi in H II CI. The solid curves a re  
theoretical curves computed on the basis of the McClure 
model. 

111  ' ' \ I  , 
1, 8 17 It i  sn 

11. kbar 

FIG. 3. a) Dependence on pressure of the frequency, ne-, 
of the oscillations from the maximal cross section of the 
ECES in a Bi-Te alloy (n, = 4.9 X 1 0 ~ ~ c m - ~ )  in H II C,. The 
solid curve is the theoretical a&, curve, computed on the 
basis of the McClure model with allowance for the displace- 
ment of the Fermi level in a strong magnetic field; the dashed 
line is the theoretical variation of the extremal cross section 
with pressure. The black points represent the oscillation 
frequency in a strong magnetic field. b) Variation under 
pressure of the extremal cross sections of the ECES in 
HI1 Cl for the same alloy. The solid curves a re  theoretical 
curves computed on the basis of the McClure model. 

ECES, such a s  is each of the three quasiellipsoids in Bi 
in the range of angles cp = 30-90 ", can be approximated 
with a sufficient degree of accuracy by the angular de- 
pendence of the cross sections of a cylinder described 

I lo), arbitrary units 

FIG. 4. a) Oscillations in 8p/BH in a Bi-Te alloy (n, 
=4.9 X 1 017cm'3) a s  the field H is rotated in the basal plane. 
The pressure p = 8.4 kbar. The angle p is measured from 
the binary axis. b) The spectral densities, I b), of the 
indicated oscillations a s  calculated on a computer. Along the 
abscissa axis is plotted the cross  section S, which is pro- 
portional to the oscillation frequency. 
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FIG. 5. Angular dependences of the extremal cross sections, 
S, of the ECES in a BCTe alloy (n, =4.9 X 10l~cm'~) at 
p = 8.4 kbar (a) and p = 0 (b). The solid lines are theoretical 
curves computed on the basis of the cylindrical ECES model. 

around the ECES in such a way that the axis of the cy- 
linder is parallel to the long axis of the ECES. The an- 
gular dependences of the ECES cross  sections close to 
S,,, a re  well approximated by the cross  sections of 
three cylinders described around the quasiellipsoidal 
ECES only in the region of pressures p S 5 kbar and 
p a 1 3  kbar. Inthe range 5Sps13kbar theS(cp)  and 
S(p) curves look a s  if each of the three ECES were re -  
presented by two coaxial cylinders, the difference be- 
tween the cross sections of these two cylinders being 
equal to zero a t  p - 5 kbar and increasing as the pres- 
sure is increased to pk-13 -15 kbar, when the cross 
section of the smaller cylinder vanishes. 

It should be noted that on the spectral-density curves 
(Fig. 4b) the contribution, Z(w,), of the lower frequency 
w, is always lower than the maximum of Z(w,) (w,< w, 
<w,<w,), the ratio I(w,)/I(w,) decreasing a s p  is in- 
creased from -5 to -13 kbar. The pressure dependences 
of the oscillation frequencies (Fig. 2) and the S(cp) 
curves at fixed pressures for pure Bi a re  completely 
similar to the corresponding dependences for the Bi-Te 
alloys (Figs. 4a and 5), although in the -5 -13 kbar 
pressure range the quantity I(w,)/I(w,) has a smaller 
v,alue in Bi than in the Bi-Te alloys. 

The obtained pressure dependences of the cross sec- 
tions and the angular dependences for p = const can be 
interpreted in the following way. As p is increased the 
parameter 1 E, , 1 increases: E, ,  < 0, E, ,  = - I E K L O I  - 
1 a (p. For p = O  there can be no saddle point in the spec- 
trum when &, , < 0 [see (3)]. However, as  I &,, I increas- 
es, there first appears a saddle point at the bottom of 
the band (~2 , , / ( y ,=  $ 1  E , ,I) and then a further increase 
in I &, , I induces a change in the ECES. which. starting 
from p - 5 kbar (the cross  in Figs. 2 and 3) and ending at 
p - 13 - 15 kbar, becomes dumbbell-like (Fig. 6). 

From the dispersion equation (2) we can find the con- 
ditions under which the inequality 8k:/8k2,>0, which 
corresponds to the appearance of the dumbbell-shaped 
EC ES 

is fulfilled. In this case when the field is oriented along 
the direction of elongation of the ECES there ar ises  
along with the minimum central cross section, S,, ,, of 
the "neck" of the dumbbell a second, somewhat larger, 
extremal cross section, S,, ,, of the "belly" of the 

FIG. 6. The contours p,(p,) of the ECES in the $,= 0 plane 
(p, II C2), computed on the basis of the McClure model at 
different pressures. The scale along the p, axis is  five 
times larger than the scale along the p, axis. 

dumbbell. The cross section S,, , can be found by calcu- 
lating from (2) the k, dependence of S,, and then, using 
the equation aS,,/ak, = 0, determine the k, value, k, ,,,,, 
corresponding to the "belly" of the dumbbell: 

for 
er (a. - a,) - ' / ~ E ~ L  (a. + 4 - 24211 

k,' = k:,=, = 
a.a. 

(7) 

At a pressure p,=13.5 rt0.8 kbar in the case of Bi and 
pk - 15 kbar in the case of the Bi-Te alloys (the differ- 
ence inp,  is a consequence of the difference in &,), the 
cross  section 

degenerates into a point. At this moment 

At p >pk the ECES becomes a doubly connected surface 
(Fig. 6 and Fig. 12 below). The oscillations from the 
central cross  sections (k,=O) disappear (Figs. 2 and 3) 
and only oscillations from the cross  sections at k, = k ,  ,,, 
a re  observed. 

To the decrease of I(w,)/Z(w,) a s  p increases from -5 
to -13 kbar corresponds the decrease of the radius of 
curvature in the region of the neck of the dumbbell (Fig. 
6), as  a result of which the contribution to the oscilla- 
tions from the extremal orbit of the neck decreases. 
The angular dependences of the oscillation frequencies 
from the cross  sections close to the minimal cross sec- 
tions (Fig. 5) a re  well described by the following trans- 
formation of the ECES under pressure: up t o p  - 5 kbar 
each of the three ECES can be approximated by one cir-  
cumscribed cylinder; in the range 5-13 kbar, by one 
circumscribed cylinder touching the ECES in the re-  
gion of the belly of the dumbbell and one inscribed cy - 
linder touching the ECES in the region of the neck of the 
dumbbell. At p >pk the dependences S(cp) for the s ix  
ECES that ar ise  can again be approximated by the cross 
sections of three cylinders each of which is described 
around two drop-shaped ECES formed as a result of the 
rupture of one dumbbell. 

In Figs. 2 and 3 the solid lines a r e  theoretical curves 
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computed from the formulas (6)-(8) with the parame- 
t e r s  

Since &,,(p) = E,,, + @, we can determine E,(P) from 
&,,(P) found from (8). Simultaneously, &, was also 
computed from the equation n =p (for Bi) o r  n -p =no 
(for the Bi-Te alloys); here no is the donor-electron 
concentration. The dependence of the T-hole concentra- 
tion on pressure was computed from the minimal cross 
sections, S:,, (p), for Bi, which were taken from Refs. 
22 and 23: 

The c,(p) values obtained by the two different methods 
coincided with each other to  within -0.8 meV. After the 
rupture of the neck of the dumbbell ( p  >pk) only one 
cross section (S,,,) was observed in H((C,, and E ,  was 
determined by the second method. 

Notice that the increase of the cross section S,,, , at 
high p in the Bi-Te alloys (Fig. 3) is due to  the fact that 
these alloys differ from Bi in the character of the mo- 
tion, as  the pressure is increased, of the Fermi level, 
which at p>p,, when there are  already no holes at T, is 
established in such a way that the electron concentration 
satisfies the condition n =no = const, which leads to the 
increase of E, and, consequently, to a limited increase 
in S,, , as  p increases. 

In the calculation the quantity a =a&, Jap was found 
from the formula (9) for the cross section, S,,,, of 
the belly of the dumbbell at the moment of formation of 
the conic point (p =pk) and was for the gap c,, = -7 meV 
at zero pressure equal to -2.9 meV/kbar, which is 
close to the value CY = -(2.5 &0.2) meV/kbar for the semi- 
conducting alloys Bi,_$b,.cls' The cross-section calcu- 
lations carried out on the basis of the McClure model 
with the parameter values taken from Ref. 38 yield re-.  
sults that agree with the experimental cruves just as 
well a s  the results obtained in the computation with the 
parameters given above in the present paper if we set 
ac,,/ap = -3.3 meV/kbar. It should be noted that the re-  
sults of the computation with the use of the spectral pa- 
rameters given by McClure in Ref. 12 disagree sharply 
with the experimental data: even for E,,, = -13 meV they 
yield the rate B&,,/BP - -16 m e ~ / k b a r ,  which is many 
times greater than the experimental value of -(2.5 k0.2) 
meV/kbar. 

THE PRESSURE DEPENDENCE OF THE OSCILLATION 
FREQUENCY FROM THE LARGE CROSS SECTIONS 

Doping with T e  is convenient in that, first, as indica- 
ted above, i t  leads to the increase of the amplitude and 
the number of oscillations from the large ECES cross 
sectionsc26' and, secondly, it increases the difference 
between the maximum cross section, Sk,, of the hole 
FS and the maximum cross section, S:,, of the ECES. 
(In pure Bi these cross  sections are  close, having in 
units of 10-42g-cmz/sec the values S:,=19.27, Sk, 
= 22.5.c61) Therefore, for HIIC, the oscillation curves in 

L J 
V8 ZB 16 12 

H. kOe 

FIG. 7. Oscillations in bp/aH=f (l/H) in a Bi-Te alloy 
(ne=4. 9 x for HI1 C2. On the left above is demon- 
strated the determinatiun of the period of the oscillations from 
the dependence of the arbitrary quantum number of the 
oscillation on 1/H. 

strong fields for the Bi-Te alloys, in contrast to the 
curves for Bi, are  due only to the oscillations from the 
Si,, and do not represent a superposition of close fre- 
quencies from Sk, and Sk, (Fig. 7). 

Under pressure the frequency, a:,, of the oscilla- 
tions from S:, initially (0 s p  5 11 kbar) increases 
slightly, o r  remains almost constant (Figs. 3 and 8). 
In this case the ap/aH= f(l/H) curves have a monochro- 
matic composition. In the range 12 kbar 5 p  5 14 kbar 
the character of the oscillation curves changes: in 
fields of intensity higher than 30 kOe the fundamental 
frequency disappears, and there appears a frequency 
lower than the fundamental frequency by roughly a fac- 
tor  of two (Fig. 9). Upon further increase of the pres- 
sure  the frequency a:, at first  ( p  = 13 - 15 kbar) de- 
creases sharply (roughly by a factor of two) and then 
decreases more slowly with increasing pressure. For  
all the investigated Bi-Te alloys the oscillations from 
Si, depend on pressure in like manner. In the case of 
pure Bi we investigated only the initial part  of the a:, 
(p) curve for pressures p < 5 kbar: the S:, oscillations 
disappeared at p a 5 kbar. In the range 0-5 kbar the 
frequency, a;,, of the oscillations in Bi remained 
roughly constant. The absence of oscillations in B i  at p 
2 kbar can, apparently, be explained by the fact that the 

0 4 8 12 I6 20 
p. kbar 

FIG. 8. Pressure dependence of the oscillation frecluency on 
the maximal cross section of the ECES in a Bi-Te alloy 
(ne = 3 .2  X 10'7cm'3). The solid and dashed curves are 
respectively theoretical oscillation-frequency and extremal- 
cross-section curves computed on the basis of the McClure 
model. 
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FIG. 9. The halving of the oscillation frequency as a result 
of the magnetic-field-induced ~hange in the connectivity of 
the ECES. The dumbbell-lie contour is the theoretical 
dependence of p, on p, in the p, = 0 plane at p = 12.2 kbar as 
derived from the McClure model. 

single-crystal samples of pure B i  were more plastic 
than the Bi-Te alloy samples, as a result of which the 
presence of some nonhydrostatic pressure component in 
the pressure-booster channel led to partial damage of 
the sample, which affected primarily the oscillations 
from the large cross  sections. 

In analyzing the Wmpl(p) dependence i t  is necessary to 
take into account the fact that in the case of the HIIC, 
field orientation, starting from some value of H, the 
light carr iers  on two ECES a re  in the ultraquantum lim- 
it (see Fig. 7, where the extremum corresponding to the 
light-electron yield of the Landau level 0' can be seen), 
i.e., there remains under the Fermi  level in each of 
these ECES a single Landau cylinder whose capacity, 
n,,,, is proportional to the magnetic field: 

where p, is the maximum momentum of the light elec- 
trons in the direction of the field H. The equality of the 
electron and hole concentrations leads to a situation in 
which an increase in the magnetic-field intensity leads 
to the overflow of carr iers  from the third ECES and 
from the hole FS into levels lying in the ultraquantum 
limit,c321 in consequence of which the Fermi level moves 
downward counter to the motion of the Landau levels in 
the unquantized ECES. As a result, the oscillation fre- 
quency is no longer connected through the relation Sex,, 
= e ~ , , / c  with the corresponding extremal cross section 
S,,,, and the computation of Sex,, from w,, yields too 
high an Sex,, value. 

In view of this i t  was of interest to  measure the cross 
section, S(HIIC3), that is close to the intermediate cross 
section, S,,,, of the ECES for a field orientation along 
the trigonal axis C,, when the cross  sections of all the 
three ECES are equal and there is virtually no overflow 
of carr iers  in fields of up to 60 kOe. To determine 
S(H(IC,) as a function of p in Bi we measured the angular 
dependences of the oscillations 8p/8H a s  the field was 
rotated in the bisectrix-trigonal plane for different p 
(Fig. 10). The application of transverse magnetic-field 
modulation allowed us  to separate out near C, only the 
oscillations from the electronic cross  sections, since in 
this angle range the extremal cross section of the hole 
FS weakly depends on the angle. The cross sections 

FIG. 10. Angular dependences of the extremal ECES cross 
sections in Bi when the field is rotated in the bisectrix- 
trigonal plane. The points A indicate the extremal cross 
sections as determined from the second harmonic of the 
oscillations. 

near the trigonal axis were determined from the halved 
frequency of the second harmonic of the oscillations, 
since a strong second harmonic of the oscillations was 
observed in such a field orientation because of the close- 
ness of the spin-damping angle (HIIC,). The cross sec- 
tions S (HIIC,) determined from the angular dependences 
at different pressures a r e  shown in Fig. 11. The cross 
section S (HIIC,) decreases monotonically with pressure 
in the region of pressures p s 13 kbar, sharply (roughly 
by a factor of two) in the range 13-14.5 kbar, and again 
monotonically thereafter. It is worth noting that spin 
damping of the fundamental harmonic of the oscillations 
was no longer observed near the trigonal axis at two 
pressures after the drop in the S(p) curve: 14.5 and 
15.6 kbar (Fig. 10). k 

The different behaviors of the cross sections S(HIIC,) 
(Fig. 11) and the frequencies Ok,(p) (Fig. 3) as func- 
tions of the pressure indicates that the increase of the 
frequency O;, in the regionp 2 11 kbar is not accom- 
panied by an increase in the corresponding maximum 
cross  section St,, but is the result of the growth with 
pressure of the corrections for the motion of the Fermi 
level. The correction for the variation of E ,  with the 
field H, a correction which characterizes the difference 
between the t rue  extremal cross section and the "cross 
section" computed from the frequency, w,,, of the os- 
cillations produced in the case of a moving E,, increas- 
e s  upon doping with T e  and under the action of pressure, 

0 4 8 12 16 
P, kbar 

FIG. 11. The extremal ECES cross sections, S(HII C,), in 
Bi when the field is oriented along the trigonal (C3) axis as 
functions of the pressure p .  
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since in both cases the density of states of the holes at 
T decreases; these holes, by overflowing into the elec- 
tronic valleys found in the ultraquantum limit, slow 
down the Fermi  level." 

The decreasing part of the n;,(p) curves for the Bi- 
T e  alloys, a s  well as the change by a factor of two of 
the cross section S(HIIC3) in Bi, occurs in the pressure 
range 12-15 kbar, i.e., just at those pressures at which 
the cross section of the neck of the dumbbell vanishes, 
and to the change in O,,(p) and the halving of S (Hl(C3) 
corresponds the rupture of the dumbbell-like ECES into 
two at p =p,. 

MAGNETIC-FIELD-INDUCED CHANGES IN THE 
CONNECTIVITY OF THE ECES 

In the pressure range 12-14 kbar, a s  described 
above, the oscillation frequency in fields of intensity up 
to -35 kOe is roughly twice the oscillation frequency in 
H 2 35 kOe (Fig. 9). Such a distinctive feature is ob- 
served in all Bi-Te samples in the indicated pressure 
range. Notice that the pressures of 12-14 kbar precede 
the transition from a dumbbell-like to a doubly -connec- 
ted ECES, i.e., the cross section of the neck of the 
dumbbell is already sufficiently small. A similar situa- 
tion obtains in Te, whose valence band is described by 
a dispersion law with a saddle point. At a definite hole 
concentration in T e  the Fermi level &, passes near the 
saddle point c, and an intraband magnetic breakdown is 
observed in strong fields.c341 The intensity, H,, of the 
field in which a breakdown occurs between the close t r a -  
jectories ad and bc (Fig. 9) can be estimated from the 
formula 

where A& = I E, - E ,  I and p, is the Bohr magneton. For 
H ,  - 35 kOe the estimate from (11) yields A& - 0.4 meV. 

In the case of the Bi-Te alloys with the field orienta- 
tion HIIC, we should, besides the intraband magnetic 
breakdown, also take into account the displacement of 
the Fermi level c, in the magnetic field a s  a result of 
overflowing. Estimates show that because of the over- 
flowing &, gets shifted by -4 meV in fields of intensity 
30-60 kOe. The downward motion of &, along the con- 
duction band leads to a situation in which at f i rs t  the 
condition, ( l l ) ,  for magnetic breakdown begins to be 
fulfilled, then &, coincides with E,  and a change in the 
connectivity of the ECES occurs. Further displacement 
of the Fermi  level, in  this case from the saddle point 
E ~ ,  will violate the condition, ( l l ) ,  for the occurrence 
of a magnetic breakdown. However, the oscillation fre- 
quency will remain half as high, since the ECES is doub- 
ly connected when &,< &,. 

Therefore, the reduction of the oscillation frequency 
by a factor of two in fields of intensity H 2 35 kOe is both 
a consequence of the intraband magnetic breakdown and 
a result of the change in the connectivity of the ECES 
upon the displacement of the Fermi level in the magnetic 
field as  a result of the overflow effect. These effects 
cannot be divorced from each other in this case. 

THE RECONSTRUCTION OF THE SPECTRUM OF 
Bi UNDER PRESSURE 

It follows from the results  of Refs. 20 and 35 that in 
the region of hole Fermi energies &! less  than 8: in Bi 
(10.9  me^[^^]) the energy spectrum of the holes at T is 
described by Kane's two-band model with a gap &,,= 200 
&40 meV. According to this model, the decrease of the 
minimal cross  section, Ski,, of the hole ellipsoid under 
p r e s ~ u r e [ ~ ~ * ~ ~ ~  should be accompanied by a similar 
change in the large cross  section Sk,, i.e., the hole el- 
lipsoid remains similar to itself when compressed. 

The pressure dependences of the ECES cross sections, 
the angular dependences S(p) for fixed pressures, and 
the magnetic-field-induced change in the connectivity of 
the ECES in the pressure region where the cross  sec- 
tion of the neck is small are in satisfactory agreement 
with the results  obtained in a McClure-model calcula- 
tion with the above-indicated [see (lo)] values for the 
model parameters if we assume that the spectrum in Bi 
is inverted (c,,<O) and the gap parameter I &,, 1 in- 
creases with pressure at a rate of 2.9 meV/kbar. The 
obtained experimental data on the transition of the ECES 
in Bi at p - 5 kbar to a dumbbell-shaped ECES and on the 
rupture of the neck of the dumbbell at p = 13.5 &0.8 kbar 
indicate that the model-parameter values given by Mc- 
Clure in Ref. 12 a re  too high. Using the reasonable- 
in our opinion-assumption that the value of the rate 
a&,,/ap in  Bi is close to the values in the alloys 
Bi,,.$b, (for x -  8 - 10 at. %), we can find that the para- 
meters Q,, and (a, should satisfy the inequality 

Notice clso that the se to f  parameters (10) only satis- 
factorily describes both Edel'man's data for Bi at p = 
- oC361 - and the various pressure dependences obtained in 
the present work. 

0 '! Y 71 16 211 7'1 
p kbar 

FIG. 12. Schematic representation of the reconstruction of 
the spectrum of Bi under pressure. The dependences of the 
electron and hole energy, E ,  at L on the wave vector k, at 
different pressures were computed on the basis of the 
McClure model. The dashed curve at p = 0 depicts the de- 
pendence of E on ky for Q22 = 0 (the AF model), The curves 1 
and 2 respectively depict the motion under pressure of the T 
term and the Fermi level. The pressure p, corresponds to 
the passage of the Fermi level through a saddle point, while 
the pressure p& corresponds to the metal-dielectric phase 
transition. The p ,  values are given in units of l ~ - ~ ~ & c m / s e c .  
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The reconstruction scheme for the spectrum of Bi un- 
der pressure is shown in Fig. 12. The linear dependence 
of S;,, on p presupposes the linear decrease of z(T) - E ,  

= E; under pressure and the vanishing of E: at p =p,, - 26 
kbar, when the ECES and the hole FS in Bi shrink to 
points.C371 For the parameters Q,, =0.015 and a,= 1.53 
the saddle point in the electron spectrum in Bi at p = 0 
( E , ~  = -7 meV) is absent and appears only at E,, = -8 
meV. The invertedness of the spectrum (&,<O) f o r p  
= O  manifests itself only in some flattening of the ex- 
trema of the bands a t  L. When I &,, I is increased, the 
bottom of the band flattens out even more and, starting 
from some pressure 

a saddle point appears in the electron and hole spectrum 
at L. The T,, term moves relative to the middle of the 
gap &,, with velocity B =  B E ~ / B P  = 0.9 meV/kbar (Fig. 12). 
The rupture of each of the three dumbbell-like ECES in- 
to two drop-like surfaces occurs at p =p,, when the Fer-  
mi level &, passes through the saddle point, i.e., when 
&, = -8&,,. 

The metal-dielectric phase transition at p - 26 kbar 
occurs through the shrinking of the six ECES to points 
and not through the shrinking of the three quasiellipsoi- 
dal ECES in Bi, a s  was thought earlier. At the transi- 
tion point the Fermi level passes through the two min- 
ima forming the bottom of the conduction band. The 
points *kyo corresponding to  these minima a re  deter- 
mined from the condition as(kJ /aky = 0: 

The signs * in front of the term 2Q,,. . .determine the 
locations of the maxima and minima in the hole and 
electron bands at L. If a,= a,, then the terms a re  sym- 
metric and the distance between the minima of the con- 
duction band and the maxima of the valence band is 
equal to 

The gap E,,, after the appearance of the saddle points 
in the spectrum, differs from the quantity c,, = &(La) 
-&(L,) .  

It was observed in the investigation of the Bi,,$b, 
alloys in the semiconductor region of compositions un- 
der pressurec181 that the 1.5* 0.2 m e ~ / k b a r  rate of 
change of the direct gap after the inversion point is low- 
e r  than the rate, a! = 2.5 *0.2 m e ~ / k b a r ,  of change of 
the gap E,,>O up to the inversion pressure pin,. This 
result is in accord with the appearance of saddle points 
in the spectrum, a s  a result of which the energy gap 
E,, between the minima of the conduction band and the 
maxima of the valence band at the points kk,,, (13), be- 
comes smaller than the quantity I &,, ( = I &(La) - &(L,) I 
[see (14)]. If we use the Q,,- and a,-parameter values 
given In Ref. 12 for the Bil-$b, alloys, then the appear- 
ance of the saddle point should occur at pressures that 
exceed the inversion pressure by Ap = 13 kbar. How- 

ever, experimentally, the post-pin, rate of change of the 
gap, which is different from the preinversion rate, is 
observable even in the range Ap=p -pi,-3 kbar, which 
also indicates a value for Q&/a, substantially lower 
than the value given in Ref. 12. 

In conclusion, we take the opportunity to  express our 
sincere gratitude to S. D. Beneslavskii and Ya. G. Pono- 
marev for useful discussions and to P. A. Saltykov for 
his help in the measurements. 

"Tn Ref. 33, our previous paper, it would have been more 
correct to have written Q3 in place of S3 in Fig. 1. The 
solid curve shown there (the result of a calculation with 
allowance for the motion of the Fermi level) depids the 
variation of the frequency of the oscillations corresponding 
to the cross section S3 and not the variation of the cross 
section S3 itself. 

'L. A. Fal'kovski?, Usp. Fiz. Nauk 94, 3 (1968) [Sov. Phys. 
Usp. $1, 1 (1968)l. 

2 ~ .  S. E,delrman, Adv. Phys. 25, 555 (1976). 
'5'. S. Edel'man, Usp. Fiz. Nauk 123, 257 (1977). 
3 ~ .  Lax, J. G. Mavroides, H. J. Zeiger, and R. J. Keyes, 

Phys. Rev. Lett. 5, 241 0960). 
4 ~ .  A. Abrikosov and L. A. Fal'kovski?, Zh. Eksp. Teor. 

Fiz. 43, 1089 6962) ISov. Phys. JETP 16, 769 096311. 
5A. A. +brikasov, J. Low Temp. Phys. 8, 315 (1972). 
6V. S. Edel'man, Zh. Eksp. Teor. Fiz. 64, 1734 (1973) 

[Sov. phys. JETP 37, 875 (19J3)I. 
?V. S. Edel'man and M. S. Khaikin, Zh. Eksp. Teor. Fiz. 

49, 107 (1965) bov. Phys. JETP 22, 77 (196611. 
'R. J. Dinger and A. W. Lawson, Phys. Rev. B7, 5215 
(1973). 

$R. N. Bhargava, Phys. Rev. 156, 785 6967). 
"?3. Takaoka, H. Kawamura, K. Murase, and S. Takano, 

Phys. Rev. B13, 1428 6976). 
"B. A.  Akimov, Candidate's Dissertation, Moscow State 

Univ., 1975. 
1 2 ~ .  W. McClure, J. Low Temp. Phys. 25, 527 0976); J. W. 

McClure and K. H. Choi, Solid State Cornmun. 21, 1015 
(1977). 

1 3 ~ .  G. Fereira, J. Phys. Chem. Solids 28, 1891 (1967). 
I4S. Golin, Phys. Rev. 166, 643 6968). 
1 5 ~ .  Maltz and M. S. Dresselhaus, Phys. Rev. B2, 2877 
(1970). 

1 6 ~ .  P. Vecchi and M. S. Dresselhaus, Phys. Rev. B9, 3257 
(1974); B10, 771 (1974). 

'?M. H. Cohen, Phys. Rev. 121, 327 6961). 
"N. B. Brandt, S. M. Chudinov, and V. G. Karavaev, Zh. 

Eksp. Teor. Fiz. 70, 2298 6976) kov. Phys. JETP 43, 
1198 (1976)l. 

I%. B. Brandt, V. A. Yastrebova, and Ya. G. Ponomarev, 
Fiz. Tverd. Tela (Leningrad) 16, 102 (1974) bov. Phys. 
Solid State 16, 59 Q975)I. 

2'%. B. Brandt, R. Miiller, and Ya. G. Ponomarev, Zh. 
Eksp. Teor. Fiz. n, 2268 (1976) bov. Phys. JETP 44, 
1196 (1976)l. 

2 1 ~ .  S. Itskevich, I. P. Krechetova, and L. M. Fisher, Zh. 
Eksp. Teor. Fiz. 52, 66 (1967) bov. Phys. JETP 25, 41 
(1976)l. 

n ~ .  S. Itskevich and L. M. Fisher, Zh. Eksp. Teor. Fiz. 
53, 98, 1885 (1967) [Sov. Phys. JETP 26, 66 6968)l. 

2 3 ~ .  B. Brandt, Yu. P. ~aldukov, E. S. Itskevich, and 
N. Ya. Minina, Zh. Eksp. Teor. Fiz. 47, 455 (1964) 
bov. Phys. JETP 20, 301 6965)l. 

2 4 ~ .  B. Brandt, N. Ya. Minina, and Yu. A. Pospelov, Fiz. 
Tverd. Tela deningrad) 10, 1268 (1968) [SOV. Phys. Solid 
State lo, loll (1968)l. 

2 5 ~ .  B. Brandt and N. I. Ginzburg, Zh. Eksp. Teor. Fiz. 
39, 1554 6960) [Sov. Phys. JETP 12, 1082 (1961)l. 

2 6 ~ .  V. Moshchalkov and G. A. Mironova, Pis'ma Zh. Eksp. 

96 1 Sov. Phys. JETP 47(5), May 1978 Brandt etal. 96 1 



Teor. Fiz. 26, 538 0977). 
2 T ~ .  S. Ibkevich, Prib. Tekh. A s p .  No. 4 ,  148 0963); 

N. B. Brandt and Ya. G. Ponomarev, Zh. Eksp. Teor. 
Fiz. 55, 1215 (196y8) [Sov. Phys. JETP 28, 635 (196911. 

2 8 ~ .  E. Alekseevskii, N. B. Brandt, and T. I. Kostina, Izv. 
Akad. Nauk SSSR Ser. Fiz. 16. 233 0952). 

2 9 ~ .  A. Akimov, V. V. Moshchalkov, and S. M. Chudinov; 
Fiz. Nizk. Temp. 4, 60 0978). 

3 0 ~ .  A. Antcliffe and R. T. Bate, Phys. Rev. 160, 531 
(1967). 

3 1 ~ .  Cucka and C. S. Barrett, A d a  Crystallogr. 15, 865 
(1962). 

3 2 ~ .  E. Smith, G. A. Baraff, and J. M. Rowell, Phys. Rev. 
135, A1118 (1964). 

3 3 ~ .  B. Brandt, V. V. Moshchalkov, and S. M. Chudinov, 
Pis'ma Zh. Eksp. Teor. Fiz. 25, 361 0977) [JETP Lett. 

25, 336 097711. 
3 4 ~ ~ .  V. Kosichkin, Kand, dissertatsiya (Candidate's Dis- 

sertation), FIAN, Moscow, 1970; V. B. Anzin, M. S. 
Bresler,  I. I. Farbshtein, Yu. V. Kosichkin, and V. G. 
Veselago, Phys. Status Solidi 40, 417 (1970). 

3 5 ~ .  T. Bate and N. G. Einspruch, Phvs. Rev. 153, 796 - - 
(1967), 

36V. S. Edel'rnan, Dokt. dissertatsiya (Doctor's Dissertation), 
IFP. Moscow. 1975. 

3 1 ~ .  ~ a l l a  and N. B. Brandt, Zh. Eksp. Teor. Fiz. 47, 
1653 0964) [SOV. Phys. JETP 20, 1111 (196511. 

3 8 ~ .  P. Buyanova, V. V. Evseev, G. A. Mironova, G. A. 
Ivanov, and Ya. G. Ponomarev, Fiz. Tverd. Tela 
(Leningrad) No. 8 (1978). 

Translated by A. K. Agyei 

Contribution to the theory of defectons in quantum crystals 
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Deformation produced in a quantum crystal by the presence of a point defect is considered. It is shown 
that a bound defecton state with deformation of the lattice can be produced in the one-dimensional case. 
It is shown that the deformation moves together with the defect with constant velocity without changing 
shape. In the three-dimensional case, the bound state is produced at deformation dimensions for which the 
continual approximation can be used. 

PACS numbers: 67.80.Mg 

As shown by Andreev and I. Lifshitz, ['I at low tem- 
peratures point defects in quantum crystals a re  trans- 
formed into quasiparticles - defectons. A quantum 
theory of defectons, based on a microscopic model, was 
constructed by one of us. c21 Defectons connected with 
motion of complexes of defects were considered by 
Andreev and ~e ' ierovich.  c3v41  They have also shown 
that even in a three-dimensional crystal there can 
exist defectons with one or  two degrees of freedom. 
In these papers the lattice deformation around the de- 
fect was assumed specified, and i ts  influence on the 
defecton spectrum was taken into account. A one- 
dimensional model of a quantum crystal with a defect 
was considered in,c53 where it was shown that a self- 
consistent state can be produced, such that the defect 
moves together with the deformation i t  produces. The 

where tRa is the a component of the displacement vec- 
tor of the atom situated at the site R compared with i t s  
equilibrium position in a perfect crystal; p = (M-m)/m, 
where M and m are  respectively the masses of the im- 
purity and of the host lattice atom; 

A. - C A... ceR - ER.) 
R' 

(2) 

is the difference between the interaction energy of the 
defect with the remaining atoms, and the interaction 
energy of the host atom with them. The second sum 
in (1) describes the potential energy of an ideal crystal 
in the harmonic approximation; B,+ and B, are  the 
Bose operators of defect creation and annihilation at 
the site R; AR,&, i s  the amplitude of the probability of 
the transfer of a defect from site R to site R'. 

appearance of this state i s  mathematically connected 
The solution of the SchrSdinger equation with the soliton solutions of the nonlinear Schrodinger - 

equation. In the approximation used in, C51 no account iliO'I'/at=R'Y 
was taken of the change of the probability of a transit 

(3) 

of a defect to a neighboring node as a result of the will be sought in the form of an expansion 
lattice deformation. 

In this paper we consider both a one-dimensional and Y = C a n ( t ) ~ n ,  (4) 
R 

a three- dimensional crystalwith a defect. In the har- 
monic approximation, the system Harniltonian can be 
written in the form where 9, = B,' 1 0 )  is the wave function of the system 

with a defect localized at the site R; 10) is the wave 
function of the ideal crystal. ~ a t u r a l l y ,  the coef- 
ficients a, should satisfy the normalization condition 
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